aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-10-22 01:20:25 -0500
committerJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-10-22 01:20:25 -0500
commit179740f30f8768ec60d3a3324084ef754a2cff2c (patch)
treeef2cd5f49c2d2e567dd79c14f19d0644e5cdc887
parente5b3cd06b1ba2504831db203a6be30c184df3274 (diff)
Add symmetric monoidal structure to Push functor
-rw-r--r--Data/Circuit/Merge.agda27
-rw-r--r--Data/Fin/Preimage.agda6
-rw-r--r--Functor/Monoidal/Instance/Nat/Preimage.agda2
-rw-r--r--Functor/Monoidal/Instance/Nat/Push.agda339
4 files changed, 362 insertions, 12 deletions
diff --git a/Data/Circuit/Merge.agda b/Data/Circuit/Merge.agda
index b399cb4..82c0d92 100644
--- a/Data/Circuit/Merge.agda
+++ b/Data/Circuit/Merge.agda
@@ -20,7 +20,8 @@ open import Data.Subset.Functional
open import Data.Vector as V using (Vector; head; tail; removeAt)
open import Data.Fin.Permutation
using
- ( Permutation′
+ ( Permutation
+ ; Permutation′
; _⟨$⟩ˡ_ ; _⟨$⟩ʳ_
; inverseˡ ; inverseʳ
; id
@@ -101,7 +102,7 @@ merge-cong₁ = merge-with-cong U
merge-cong₂ : {A : ℕ} (v : Vector Value A) {S₁ S₂ : Subset A} → S₁ ≗ S₂ → merge v S₁ ≡ merge v S₂
merge-cong₂ = merge-with-cong₂ U
-merge-⊥ : {A : ℕ} (v : Vector Value A) → merge-with U v ⊥ ≡ U
+merge-⊥ : {A : ℕ} (v : Vector Value A) → merge v ⊥ ≡ U
merge-⊥ = merge-with-⊥ U
merge-[] : (v : Vector Value 0) (S : Subset 0) → merge v S ≡ U
@@ -172,13 +173,15 @@ open module FStruct {A B : Set} = FunctionStructures {_} {_} {_} {_} {A} _≡_ {
open IsInverse using () renaming (inverseˡ to invˡ; inverseʳ to invʳ)
merge-preimage-ρ
- : {A : ℕ}
- → (ρ : Permutation′ A)
+ : {A B : ℕ}
+ → (ρ : Permutation A B)
→ (v : Vector Value A)
- (S : Subset A)
+ (S : Subset B)
→ merge v (preimage (ρ ⟨$⟩ʳ_) S) ≡ merge (v ∘ (ρ ⟨$⟩ˡ_)) S
-merge-preimage-ρ {zero} ρ v S = merge-[]₂
-merge-preimage-ρ {suc A} ρ v S = begin
+merge-preimage-ρ {zero} {zero} ρ v S = merge-[]₂
+merge-preimage-ρ {zero} {suc B} ρ v S with () ← ρ ⟨$⟩ˡ zero
+merge-preimage-ρ {suc A} {zero} ρ v S with () ← ρ ⟨$⟩ʳ zero
+merge-preimage-ρ {suc A} {suc B} ρ v S = begin
merge v (preimage ρʳ S) ≡⟨ merge-removeAt (head ρˡ) v (preimage ρʳ S) ⟩
join
(head (v ∘ ρˡ) when S (ρʳ (ρˡ zero)))
@@ -190,19 +193,21 @@ merge-preimage-ρ {suc A} ρ v S = begin
merge-with vρˡ0? (tail (v ∘ ρˡ)) S- ≡⟨ merge-suc (v ∘ ρˡ) S ⟨
merge (v ∘ ρˡ) S ∎
where
- ρˡ ρʳ : Fin (suc A) → Fin (suc A)
+ ρˡ : Fin (suc B) → Fin (suc A)
ρˡ = ρ ⟨$⟩ˡ_
+ ρʳ : Fin (suc A) → Fin (suc B)
ρʳ = ρ ⟨$⟩ʳ_
- ρ- : Permutation′ A
+ ρ- : Permutation A B
ρ- = remove (head ρˡ) ρ
- ρˡ- ρʳ- : Fin A → Fin A
+ ρˡ- : Fin B → Fin A
ρˡ- = ρ- ⟨$⟩ˡ_
+ ρʳ- : Fin A → Fin B
ρʳ- = ρ- ⟨$⟩ʳ_
v- : Vector Value A
v- = removeAt v (head ρˡ)
[preimageρʳS]- : Subset A
[preimageρʳS]- = removeAt (preimage ρʳ S) (head ρˡ)
- S- : Subset A
+ S- : Subset B
S- = tail S
vρˡ0? : Value
vρˡ0? = head (v ∘ ρˡ) when head S
diff --git a/Data/Fin/Preimage.agda b/Data/Fin/Preimage.agda
index f6e4373..4f7ea43 100644
--- a/Data/Fin/Preimage.agda
+++ b/Data/Fin/Preimage.agda
@@ -40,3 +40,9 @@ preimage-∘
(z : Fin C)
→ preimage (g ∘ f) ⁅ z ⁆ ≗ preimage f (preimage g ⁅ z ⁆)
preimage-∘ f g S x = ≡.refl
+
+preimage-⊥
+ : {n m : ℕ}
+ (f : Fin n → Fin m)
+ → preimage f ⊥ ≗ ⊥
+preimage-⊥ f x = ≡.refl
diff --git a/Functor/Monoidal/Instance/Nat/Preimage.agda b/Functor/Monoidal/Instance/Nat/Preimage.agda
index e687443..59c9391 100644
--- a/Functor/Monoidal/Instance/Nat/Preimage.agda
+++ b/Functor/Monoidal/Instance/Nat/Preimage.agda
@@ -67,7 +67,7 @@ preimage-++ {n} {n′} {m} {m′} f g {xs} {ys} e = begin
; commute = λ { {n′ , m′} {n , m} (f , g) {xs , ys} e → preimage-++ f g e }
}
-open import Category.Instance.Setoids.SymmetricMonoidal {0ℓ} using (Setoids-×)
+open import Category.Instance.Setoids.SymmetricMonoidal {0ℓ} {0ℓ} using (Setoids-×)
open import Categories.Functor.Monoidal.Symmetric Natop,+,0 Setoids-× using (module Lax)
open Lax using (SymmetricMonoidalFunctor)
diff --git a/Functor/Monoidal/Instance/Nat/Push.agda b/Functor/Monoidal/Instance/Nat/Push.agda
new file mode 100644
index 0000000..2ccfc27
--- /dev/null
+++ b/Functor/Monoidal/Instance/Nat/Push.agda
@@ -0,0 +1,339 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Functor.Monoidal.Instance.Nat.Push where
+
+open import Categories.Category.Instance.Nat using (Nat)
+open import Data.Bool.Base using (Bool; false)
+open import Data.Subset.Functional using (Subset; ⁅_⁆; ⊥)
+open import Function.Base using (_∘_; case_of_; _$_; id)
+open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_)
+open import Level using (0ℓ; Level)
+open import Relation.Binary using (Rel; Setoid)
+open import Functor.Instance.Nat.Push using (Values; Push; Push₁; Push-identity)
+open import Categories.Category.Instance.SingletonSet using (SingletonSetoid)
+open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
+open import Data.Vec.Functional using (Vector; []; _++_; head; tail)
+open import Data.Vec.Functional.Properties using (++-cong)
+open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian)
+open import Categories.Category.BinaryProducts using (module BinaryProducts)
+open import Categories.Category.Cartesian using (Cartesian)
+open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using (products)
+open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)
+open import Categories.Category.Instance.Nat using (Nat-Cocartesian)
+open import Categories.Category.Cocartesian using (Cocartesian; module BinaryCoproducts)
+open import Categories.Category.Product using (_⁂_)
+open import Categories.Functor using () renaming (_∘F_ to _∘′_)
+open Cocartesian Nat-Cocartesian using (module Dual; i₁; i₂; -+-; _+₁_; +-assoc; +-assocʳ; +-assocˡ; +-comm; +-swap; +₁∘+-swap)
+open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
+open import Data.Nat.Base using (ℕ; _+_)
+open import Data.Fin.Base using (Fin)
+open import Data.Product.Base using (_,_; _×_; Σ)
+open import Data.Fin.Preimage using (preimage; preimage-⊥; preimage-cong₂)
+open import Functor.Monoidal.Instance.Nat.Preimage using (preimage-++)
+open import Data.Sum.Base using ([_,_]; [_,_]′; inj₁; inj₂)
+open import Data.Sum.Properties using ([,]-cong; [,-]-cong; [-,]-cong; [,]-∘; [,]-map)
+open import Data.Circuit.Merge using (merge-with; merge; merge-⊥; merge-[]; merge-cong₁; merge-cong₂; merge-suc; _when_; join-merge; merge-preimage-ρ; merge-⁅⁆)
+open import Data.Circuit.Value using (Value; join; join-comm; join-assoc)
+open import Data.Fin.Base using (splitAt; _↑ˡ_; _↑ʳ_) renaming (join to joinAt)
+open import Data.Fin.Properties using (splitAt-↑ˡ; splitAt-↑ʳ; splitAt⁻¹-↑ˡ; splitAt⁻¹-↑ʳ; ↑ˡ-injective; ↑ʳ-injective; _≟_; 2↔Bool)
+open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≢_; _≗_; module ≡-Reasoning)
+open BinaryProducts products using (-×-)
+open Value using (U)
+open Bool using (false)
+
+open import Function.Bundles using (Equivalence)
+open import Category.Monoidal.Instance.Nat using (Nat,+,0)
+open import Category.Instance.Setoids.SymmetricMonoidal {0ℓ} {0ℓ} using (Setoids-×)
+open import Categories.Functor.Monoidal.Symmetric Nat,+,0 Setoids-× using (module Lax)
+open Lax using (SymmetricMonoidalFunctor)
+open import Categories.Morphism Nat using (_≅_)
+open import Function.Bundles using (Inverse)
+open import Data.Fin.Permutation using (Permutation; _⟨$⟩ʳ_; _⟨$⟩ˡ_)
+open Dual.op-binaryProducts using () renaming (assocˡ∘⟨⟩ to []∘assocʳ; swap∘⟨⟩ to []∘swap)
+open import Relation.Nullary.Decidable using (does; does-⇔; dec-false)
+
+
+
+open Func
+Push-ε : SingletonSetoid {0ℓ} {0ℓ} ⟶ₛ Values 0
+to Push-ε x = []
+cong Push-ε x ()
+
+++ₛ : {n m : ℕ} → Values n ×ₛ Values m ⟶ₛ Values (n + m)
+to ++ₛ (xs , ys) = xs ++ ys
+cong ++ₛ (≗xs , ≗ys) = ++-cong _ _ ≗xs ≗ys
+
+∣_∣ : {c ℓ : Level} → Setoid c ℓ → Set c
+∣_∣ = Setoid.Carrier
+
+open ℕ
+merge-++
+ : {n m : ℕ}
+ (xs : ∣ Values n ∣)
+ (ys : ∣ Values m ∣)
+ (S₁ : Subset n)
+ (S₂ : Subset m)
+ → merge (xs ++ ys) (S₁ ++ S₂)
+ ≡ join (merge xs S₁) (merge ys S₂)
+merge-++ {zero} {m} xs ys S₁ S₂ = begin
+ merge (xs ++ ys) (S₁ ++ S₂) ≡⟨ merge-cong₂ (xs ++ ys) (λ _ → ≡.refl) ⟩
+ merge (xs ++ ys) S₂ ≡⟨ merge-cong₁ (λ _ → ≡.refl) S₂ ⟩
+ merge ys S₂ ≡⟨ ≡.cong (λ h → join h (merge ys S₂)) (merge-[] xs S₁) ⟨
+ join (merge xs S₁) (merge ys S₂) ∎
+ where
+ open ≡-Reasoning
+merge-++ {suc n} {m} xs ys S₁ S₂ = begin
+ merge (xs ++ ys) (S₁ ++ S₂) ≡⟨ merge-suc (xs ++ ys) (S₁ ++ S₂) ⟩
+ merge-with (head xs when head S₁) (tail (xs ++ ys)) (tail (S₁ ++ S₂)) ≡⟨ join-merge (head xs when head S₁) (tail (xs ++ ys)) (tail (S₁ ++ S₂)) ⟨
+ join (head xs when head S₁) (merge (tail (xs ++ ys)) (tail (S₁ ++ S₂)))
+ ≡⟨ ≡.cong (join (head xs when head S₁)) (merge-cong₁ ([,]-map ∘ splitAt n) (tail (S₁ ++ S₂))) ⟩
+ join (head xs when head S₁) (merge (tail xs ++ ys) (tail (S₁ ++ S₂)))
+ ≡⟨ ≡.cong (join (head xs when head S₁)) (merge-cong₂ (tail xs ++ ys) ([,]-map ∘ splitAt n)) ⟩
+ join (head xs when head S₁) (merge (tail xs ++ ys) (tail S₁ ++ S₂)) ≡⟨ ≡.cong (join (head xs when head S₁)) (merge-++ (tail xs) ys (tail S₁) S₂) ⟩
+ join (head xs when head S₁) (join (merge (tail xs) (tail S₁)) (merge ys S₂)) ≡⟨ join-assoc (head xs when head S₁) (merge (tail xs) (tail S₁)) _ ⟨
+ join (join (head xs when head S₁) (merge (tail xs) (tail S₁))) (merge ys S₂)
+ ≡⟨ ≡.cong (λ h → join h (merge ys S₂)) (join-merge (head xs when head S₁) (tail xs) (tail S₁)) ⟩
+ join (merge-with (head xs when head S₁) (tail xs) (tail S₁)) (merge ys S₂) ≡⟨ ≡.cong (λ h → join h (merge ys S₂)) (merge-suc xs S₁) ⟨
+ join (merge xs S₁) (merge ys S₂) ∎
+ where
+ open ≡-Reasoning
+
+open Fin
+⁅⁆-≟ : {n : ℕ} (x y : Fin n) → ⁅ x ⁆ y ≡ does (x ≟ y)
+⁅⁆-≟ zero zero = ≡.refl
+⁅⁆-≟ zero (suc y) = ≡.refl
+⁅⁆-≟ (suc x) zero = ≡.refl
+⁅⁆-≟ (suc x) (suc y) = ⁅⁆-≟ x y
+
+Push-++
+ : {n n′ m m′ : ℕ}
+ (f : Fin n → Fin n′)
+ (g : Fin m → Fin m′)
+ (xs : ∣ Values n ∣)
+ (ys : ∣ Values m ∣)
+ → merge xs ∘ preimage f ∘ ⁅_⁆ ++ merge ys ∘ preimage g ∘ ⁅_⁆
+ ≗ merge (xs ++ ys) ∘ preimage (f +₁ g) ∘ ⁅_⁆
+Push-++ {n} {n′} {m} {m′} f g xs ys i = begin
+ ((merge xs ∘ preimage f ∘ ⁅_⁆) ++ (merge ys ∘ preimage g ∘ ⁅_⁆)) i ≡⟨⟩
+ [ merge xs ∘ preimage f ∘ ⁅_⁆ , merge ys ∘ preimage g ∘ ⁅_⁆ ]′ (splitAt n′ i)
+ ≡⟨ [,]-cong left right (splitAt n′ i) ⟩
+ [ (λ x → merge (xs ++ ys) _) , (λ x → merge (xs ++ ys) _) ]′ (splitAt n′ i)
+ ≡⟨ [,]-∘ (merge (xs ++ ys) ∘ (preimage (f +₁ g))) (splitAt n′ i) ⟨
+ merge (xs ++ ys) (preimage (f +₁ g) ([ ⁅⁆++⊥ , ⊥++⁅⁆ ]′ (splitAt n′ i))) ≡⟨⟩
+ merge (xs ++ ys) (preimage (f +₁ g) ((⁅⁆++⊥ ++ ⊥++⁅⁆) i)) ≡⟨ merge-cong₂ (xs ++ ys) (preimage-cong₂ (f +₁ g) (⁅⁆-++ i)) ⟩
+ merge (xs ++ ys) (preimage (f +₁ g) ⁅ i ⁆) ∎
+ where
+ open ≡-Reasoning
+ left : (x : Fin n′) → merge xs (preimage f ⁅ x ⁆) ≡ merge (xs ++ ys) (preimage (f +₁ g) (⁅ x ⁆ ++ ⊥))
+ left x = begin
+ merge xs (preimage f ⁅ x ⁆) ≡⟨ join-comm U (merge xs (preimage f ⁅ x ⁆)) ⟩
+ join (merge xs (preimage f ⁅ x ⁆)) U ≡⟨ ≡.cong (join (merge _ _)) (merge-⊥ ys) ⟨
+ join (merge xs (preimage f ⁅ x ⁆)) (merge ys ⊥) ≡⟨ ≡.cong (join (merge _ _)) (merge-cong₂ ys (preimage-⊥ g)) ⟨
+ join (merge xs (preimage f ⁅ x ⁆)) (merge ys (preimage g ⊥)) ≡⟨ merge-++ xs ys (preimage f ⁅ x ⁆) (preimage g ⊥) ⟨
+ merge (xs ++ ys) ((preimage f ⁅ x ⁆) ++ (preimage g ⊥)) ≡⟨ merge-cong₂ (xs ++ ys) (preimage-++ f g) ⟩
+ merge (xs ++ ys) (preimage (f +₁ g) (⁅ x ⁆ ++ ⊥)) ∎
+ right : (x : Fin m′) → merge ys (preimage g ⁅ x ⁆) ≡ merge (xs ++ ys) (preimage (f +₁ g) (⊥ ++ ⁅ x ⁆))
+ right x = begin
+ merge ys (preimage g ⁅ x ⁆) ≡⟨⟩
+ join U (merge ys (preimage g ⁅ x ⁆)) ≡⟨ ≡.cong (λ h → join h (merge _ _)) (merge-⊥ xs) ⟨
+ join (merge xs ⊥) (merge ys (preimage g ⁅ x ⁆)) ≡⟨ ≡.cong (λ h → join h (merge _ _)) (merge-cong₂ xs (preimage-⊥ f)) ⟨
+ join (merge xs (preimage f ⊥)) (merge ys (preimage g ⁅ x ⁆)) ≡⟨ merge-++ xs ys (preimage f ⊥) (preimage g ⁅ x ⁆) ⟨
+ merge (xs ++ ys) ((preimage f ⊥) ++ (preimage g ⁅ x ⁆)) ≡⟨ merge-cong₂ (xs ++ ys) (preimage-++ f g) ⟩
+ merge (xs ++ ys) (preimage (f +₁ g) (⊥ ++ ⁅ x ⁆)) ∎
+ ⁅⁆++⊥ : Vector (Subset (n′ + m′)) n′
+ ⁅⁆++⊥ x = ⁅ x ⁆ ++ ⊥
+ ⊥++⁅⁆ : Vector (Subset (n′ + m′)) m′
+ ⊥++⁅⁆ x = ⊥ ++ ⁅ x ⁆
+
+ open ℕ
+
+ open Equivalence
+
+ ⁅⁆-++
+ : (i : Fin (n′ + m′))
+ → [ (λ x → ⁅ x ⁆ ++ ⊥) , (λ x → ⊥ ++ ⁅ x ⁆) ]′ (splitAt n′ i) ≗ ⁅ i ⁆
+ ⁅⁆-++ i x with splitAt n′ i in eq₁
+ ... | inj₁ i′ with splitAt n′ x in eq₂
+ ... | inj₁ x′ = begin
+ ⁅ i′ ⁆ x′ ≡⟨ ⁅⁆-≟ i′ x′ ⟩
+ does (i′ ≟ x′) ≡⟨ does-⇔ ⇔ (i′ ≟ x′) (i′ ↑ˡ m′ ≟ x′ ↑ˡ m′) ⟩
+ does (i′ ↑ˡ m′ ≟ x′ ↑ˡ m′) ≡⟨ ⁅⁆-≟ (i′ ↑ˡ m′) (x′ ↑ˡ m′) ⟨
+ ⁅ i′ ↑ˡ m′ ⁆ (x′ ↑ˡ m′) ≡⟨ ≡.cong₂ ⁅_⁆ (splitAt⁻¹-↑ˡ eq₁) (splitAt⁻¹-↑ˡ eq₂) ⟩
+ ⁅ i ⁆ x ∎
+ where
+ ⇔ : Equivalence (≡.setoid (i′ ≡ x′)) (≡.setoid (i′ ↑ˡ m′ ≡ x′ ↑ˡ m′))
+ ⇔ .to = ≡.cong (_↑ˡ m′)
+ ⇔ .from = ↑ˡ-injective m′ i′ x′
+ ⇔ .to-cong ≡.refl = ≡.refl
+ ⇔ .from-cong ≡.refl = ≡.refl
+ ... | inj₂ x′ = begin
+ false ≡⟨ dec-false (i′ ↑ˡ m′ ≟ n′ ↑ʳ x′) ↑ˡ≢↑ʳ ⟨
+ does (i′ ↑ˡ m′ ≟ n′ ↑ʳ x′) ≡⟨ ⁅⁆-≟ (i′ ↑ˡ m′) (n′ ↑ʳ x′) ⟨
+ ⁅ i′ ↑ˡ m′ ⁆ (n′ ↑ʳ x′) ≡⟨ ≡.cong₂ ⁅_⁆ (splitAt⁻¹-↑ˡ eq₁) (splitAt⁻¹-↑ʳ eq₂) ⟩
+ ⁅ i ⁆ x ∎
+ where
+ ↑ˡ≢↑ʳ : i′ ↑ˡ m′ ≢ n′ ↑ʳ x′
+ ↑ˡ≢↑ʳ ≡ = case ≡.trans (≡.sym (splitAt-↑ˡ n′ i′ m′)) (≡.trans (≡.cong (splitAt n′) ≡) (splitAt-↑ʳ n′ m′ x′)) of λ { () }
+ ⁅⁆-++ i x | inj₂ i′ with splitAt n′ x in eq₂
+ ⁅⁆-++ i x | inj₂ i′ | inj₁ x′ = ≡.trans (≡.cong ([ ⊥ , ⁅ i′ ⁆ ]′) eq₂) $ begin
+ false ≡⟨ dec-false (n′ ↑ʳ i′ ≟ x′ ↑ˡ m′) ↑ʳ≢↑ˡ ⟨
+ does (n′ ↑ʳ i′ ≟ x′ ↑ˡ m′) ≡⟨ ⁅⁆-≟ (n′ ↑ʳ i′) (x′ ↑ˡ m′) ⟨
+ ⁅ n′ ↑ʳ i′ ⁆ (x′ ↑ˡ m′) ≡⟨ ≡.cong₂ ⁅_⁆ (splitAt⁻¹-↑ʳ eq₁) (splitAt⁻¹-↑ˡ eq₂) ⟩
+ ⁅ i ⁆ x ∎
+ where
+ ↑ʳ≢↑ˡ : n′ ↑ʳ i′ ≢ x′ ↑ˡ m′
+ ↑ʳ≢↑ˡ ≡ = case ≡.trans (≡.sym (splitAt-↑ʳ n′ m′ i′)) (≡.trans (≡.cong (splitAt n′) ≡) (splitAt-↑ˡ n′ x′ m′)) of λ { () }
+ ⁅⁆-++ i x | inj₂ i′ | inj₂ x′ = begin
+ [ ⊥ , ⁅ i′ ⁆ ] (splitAt n′ x) ≡⟨ ≡.cong ([ ⊥ , ⁅ i′ ⁆ ]) eq₂ ⟩
+ ⁅ i′ ⁆ x′ ≡⟨ ⁅⁆-≟ i′ x′ ⟩
+ does (i′ ≟ x′) ≡⟨ does-⇔ ⇔ (i′ ≟ x′) (n′ ↑ʳ i′ ≟ n′ ↑ʳ x′) ⟩
+ does (n′ ↑ʳ i′ ≟ n′ ↑ʳ x′) ≡⟨ ⁅⁆-≟ (n′ ↑ʳ i′) (n′ ↑ʳ x′) ⟨
+ ⁅ n′ ↑ʳ i′ ⁆ (n′ ↑ʳ x′) ≡⟨ ≡.cong₂ ⁅_⁆ (splitAt⁻¹-↑ʳ eq₁) (splitAt⁻¹-↑ʳ eq₂) ⟩
+ ⁅ i ⁆ x ∎
+ where
+ ⇔ : Equivalence (≡.setoid (i′ ≡ x′)) (≡.setoid (n′ ↑ʳ i′ ≡ n′ ↑ʳ x′))
+ ⇔ .to = ≡.cong (n′ ↑ʳ_)
+ ⇔ .from = ↑ʳ-injective n′ i′ x′
+ ⇔ .to-cong ≡.refl = ≡.refl
+ ⇔ .from-cong ≡.refl = ≡.refl
+
+⊗-homomorphism : NaturalTransformation (-×- ∘′ (Push ⁂ Push)) (Push ∘′ -+-)
+⊗-homomorphism = ntHelper record
+ { η = λ (n , m) → ++ₛ {n} {m}
+ ; commute = λ { {n , m} {n′ , m′} (f , g) {xs , ys} i → Push-++ f g xs ys i }
+ }
+
+++-↑ˡ
+ : {n m : ℕ}
+ (X : ∣ Values n ∣)
+ (Y : ∣ Values m ∣)
+ → (X ++ Y) ∘ i₁ ≗ X
+++-↑ˡ {n} {m} X Y i = ≡.cong [ X , Y ]′ (splitAt-↑ˡ n i m)
+
+++-↑ʳ
+ : {n m : ℕ}
+ (X : ∣ Values n ∣)
+ (Y : ∣ Values m ∣)
+ → (X ++ Y) ∘ i₂ ≗ Y
+++-↑ʳ {n} {m} X Y i = ≡.cong [ X , Y ]′ (splitAt-↑ʳ n m i)
+
+++-assoc
+ : {m n o : ℕ}
+ (X : ∣ Values m ∣)
+ (Y : ∣ Values n ∣)
+ (Z : ∣ Values o ∣)
+ → ((X ++ Y) ++ Z) ∘ +-assocʳ {m} ≗ X ++ (Y ++ Z)
+++-assoc {m} {n} {o} X Y Z i = begin
+ ((X ++ Y) ++ Z) (+-assocʳ {m} i) ≡⟨⟩
+ ((X ++ Y) ++ Z) ([ i₁ ∘ i₁ , _ ]′ (splitAt m i)) ≡⟨ [,]-∘ ((X ++ Y) ++ Z) (splitAt m i) ⟩
+ [ ((X ++ Y) ++ Z) ∘ i₁ ∘ i₁ , _ ]′ (splitAt m i) ≡⟨ [-,]-cong (++-↑ˡ (X ++ Y) Z ∘ i₁) (splitAt m i) ⟩
+ [ (X ++ Y) ∘ i₁ , _ ]′ (splitAt m i) ≡⟨ [-,]-cong (++-↑ˡ X Y) (splitAt m i) ⟩
+ [ X , ((X ++ Y) ++ Z) ∘ [ _ , _ ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,-]-cong ([,]-∘ ((X ++ Y) ++ Z) ∘ splitAt n) (splitAt m i) ⟩
+ [ X , [ (_ ++ Z) ∘ i₁ ∘ i₂ {m} , _ ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,-]-cong ([-,]-cong (++-↑ˡ (X ++ Y) Z ∘ i₂) ∘ splitAt n) (splitAt m i) ⟩
+ [ X , [ (X ++ Y) ∘ i₂ , _ ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,-]-cong ([-,]-cong (++-↑ʳ X Y) ∘ splitAt n) (splitAt m i) ⟩
+ [ X , [ Y , ((X ++ Y) ++ Z) ∘ i₂ ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,-]-cong ([,-]-cong (++-↑ʳ (X ++ Y) Z) ∘ splitAt n) (splitAt m i) ⟩
+ [ X , [ Y , Z ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨⟩
+ (X ++ (Y ++ Z)) i ∎
+ where
+ open Bool
+ open Fin
+ open ≡-Reasoning
+
+Preimage-unitaryˡ
+ : {n : ℕ}
+ (X : Subset n)
+ → (X ++ []) ∘ (_↑ˡ 0) ≗ X
+Preimage-unitaryˡ {n} X i = begin
+ [ X , [] ]′ (splitAt _ (i ↑ˡ 0)) ≡⟨ ≡.cong ([ X , [] ]′) (splitAt-↑ˡ n i 0) ⟩
+ [ X , [] ]′ (inj₁ i) ≡⟨⟩
+ X i ∎
+ where
+ open ≡-Reasoning
+
+Push-assoc
+ : {m n o : ℕ}
+ (X : ∣ Values m ∣)
+ (Y : ∣ Values n ∣)
+ (Z : ∣ Values o ∣)
+ → merge ((X ++ Y) ++ Z) ∘ preimage (+-assocˡ {m}) ∘ ⁅_⁆
+ ≗ X ++ (Y ++ Z)
+Push-assoc {m} {n} {o} X Y Z i = begin
+ merge ((X ++ Y) ++ Z) (preimage (+-assocˡ {m}) ⁅ i ⁆) ≡⟨ merge-preimage-ρ ↔-mno ((X ++ Y) ++ Z) ⁅ i ⁆ ⟩
+ merge (((X ++ Y) ++ Z) ∘ (+-assocʳ {m})) (⁅ i ⁆) ≡⟨⟩
+ merge (((X ++ Y) ++ Z) ∘ (+-assocʳ {m})) (preimage id ⁅ i ⁆) ≡⟨ merge-cong₁ (++-assoc X Y Z) (preimage id ⁅ i ⁆) ⟩
+ merge (X ++ (Y ++ Z)) (preimage id ⁅ i ⁆) ≡⟨ Push-identity i ⟩
+ (X ++ (Y ++ Z)) i ∎
+ where
+ open Inverse
+ module +-assoc = _≅_ (+-assoc {m} {n} {o})
+ ↔-mno : Permutation ((m + n) + o) (m + (n + o))
+ ↔-mno .to = +-assocˡ {m}
+ ↔-mno .from = +-assocʳ {m}
+ ↔-mno .to-cong ≡.refl = ≡.refl
+ ↔-mno .from-cong ≡.refl = ≡.refl
+ ↔-mno .inverse = (λ { ≡.refl → +-assoc.isoˡ _ }) , λ { ≡.refl → +-assoc.isoʳ _ }
+ open ≡-Reasoning
+
+preimage-++′
+ : {n m o : ℕ}
+ (f : Vector (Fin o) n)
+ (g : Vector (Fin o) m)
+ (S : Subset o)
+ → preimage (f ++ g) S ≗ preimage f S ++ preimage g S
+preimage-++′ {n} f g S = [,]-∘ S ∘ splitAt n
+
+Push-unitaryʳ
+ : {n : ℕ}
+ (X : ∣ Values n ∣)
+ (i : Fin n)
+ → merge (X ++ []) (preimage (id ++ (λ ())) ⁅ i ⁆) ≡ X i
+Push-unitaryʳ {n} X i = begin
+ merge (X ++ []) (preimage (id ++ (λ ())) ⁅ i ⁆) ≡⟨ merge-cong₂ (X ++ []) (preimage-++′ id (λ ()) ⁅ i ⁆) ⟩
+ merge (X ++ []) (preimage id ⁅ i ⁆ ++ preimage (λ ()) ⁅ i ⁆) ≡⟨⟩
+ merge (X ++ []) (⁅ i ⁆ ++ preimage (λ ()) ⁅ i ⁆) ≡⟨ merge-++ X [] ⁅ i ⁆ (preimage (λ ()) ⁅ i ⁆) ⟩
+ join (merge X ⁅ i ⁆) (merge [] (preimage (λ ()) ⁅ i ⁆)) ≡⟨ ≡.cong (join (merge X ⁅ i ⁆)) (merge-[] [] (preimage (λ ()) ⁅ i ⁆)) ⟩
+ join (merge X ⁅ i ⁆) U ≡⟨ join-comm (merge X ⁅ i ⁆) U ⟩
+ merge X ⁅ i ⁆ ≡⟨ merge-⁅⁆ X i ⟩
+ X i ∎
+ where
+ open ≡-Reasoning
+ t : Fin (n + 0) → Fin n
+ t = id ++ (λ ())
+
+Push-swap
+ : {n m : ℕ}
+ (X : ∣ Values n ∣)
+ (Y : ∣ Values m ∣)
+ → merge (X ++ Y) ∘ preimage (+-swap {m}) ∘ ⁅_⁆ ≗ Y ++ X
+Push-swap {n} {m} X Y i = begin
+ merge (X ++ Y) (preimage (+-swap {m}) ⁅ i ⁆) ≡⟨ merge-preimage-ρ n+m↔m+n (X ++ Y) ⁅ i ⁆ ⟩
+ merge ((X ++ Y) ∘ +-swap {n}) ⁅ i ⁆ ≡⟨ merge-⁅⁆ ((X ++ Y) ∘ (+-swap {n})) i ⟩
+ ((X ++ Y) ∘ +-swap {n}) i ≡⟨ [,]-∘ (X ++ Y) (splitAt m i) ⟩
+ [ (X ++ Y) ∘ i₂ , (X ++ Y) ∘ i₁ ]′ (splitAt m i) ≡⟨ [-,]-cong (++-↑ʳ X Y) (splitAt m i) ⟩
+ [ Y , (X ++ Y) ∘ i₁ ]′ (splitAt m i) ≡⟨ [,-]-cong (++-↑ˡ X Y) (splitAt m i) ⟩
+ [ Y , X ]′ (splitAt m i) ≡⟨⟩
+ (Y ++ X) i ∎
+ where
+ open ≡-Reasoning
+ open Inverse
+ module +-swap = _≅_ (+-comm {m} {n})
+ n+m↔m+n : Permutation (n + m) (m + n)
+ n+m↔m+n .to = +-swap.to
+ n+m↔m+n .from = +-swap.from
+ n+m↔m+n .to-cong ≡.refl = ≡.refl
+ n+m↔m+n .from-cong ≡.refl = ≡.refl
+ n+m↔m+n .inverse = (λ { ≡.refl → +-swap.isoˡ _ }) , (λ { ≡.refl → +-swap.isoʳ _ })
+
+open SymmetricMonoidalFunctor
+Push,++,[] : SymmetricMonoidalFunctor
+Push,++,[] .F = Push
+Push,++,[] .isBraidedMonoidal = record
+ { isMonoidal = record
+ { ε = Push-ε
+ ; ⊗-homo = ⊗-homomorphism
+ ; associativity = λ { {m} {n} {o} {(X , Y) , Z} i → Push-assoc X Y Z i }
+ ; unitaryˡ = λ { {n} {_ , X} i → merge-⁅⁆ X i }
+ ; unitaryʳ = λ { {n} {X , _} i → Push-unitaryʳ X i }
+ }
+ ; braiding-compat = λ { {n} {m} {X , Y} i → Push-swap X Y i }
+ }