aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJacques Comeaux <jacquesrcomeaux@protonmail.com>2024-02-28 12:42:37 -0600
committerJacques Comeaux <jacquesrcomeaux@protonmail.com>2024-02-28 12:42:37 -0600
commit1fae89c1c06a9a4d6143cafa1afb932b94cc4b71 (patch)
tree31661af5b2cb9e474e6bc84f0d3a9dec1271be12
parentd65d60fe31f0c25c7e845d66e37c47e4f22924e1 (diff)
Add coequalizer theorem
-rw-r--r--Coeq.agda79
-rw-r--r--Util.agda1
2 files changed, 80 insertions, 0 deletions
diff --git a/Coeq.agda b/Coeq.agda
new file mode 100644
index 0000000..ad21587
--- /dev/null
+++ b/Coeq.agda
@@ -0,0 +1,79 @@
+{-# OPTIONS --without-K --safe #-}
+module Coeq where
+
+open import Categories.Category.Core using (Category)
+open import Categories.Category.Instance.Nat using (Nat)
+open import Categories.Diagram.Coequalizer Nat using (IsCoequalizer)
+open import Categories.Object.Coproduct Nat using (Coproduct; IsCoproduct; IsCoproduct⇒Coproduct)
+
+
+open Category Nat
+
+-- TODO: any category
+≈-i₁-i₂
+ : {A B A+B C : Obj}
+ → {i₁ : A ⇒ A+B}
+ → {i₂ : B ⇒ A+B}
+ → (f g : A+B ⇒ C)
+ → IsCoproduct i₁ i₂
+ → f ∘ i₁ ≈ g ∘ i₁
+ → f ∘ i₂ ≈ g ∘ i₂
+ → f ≈ g
+≈-i₁-i₂ f g coprod ≈₁ ≈₂ = begin
+ f ≈⟨ Equiv.sym g-η ⟩
+ [ f ∘ i₁ , f ∘ i₂ ] ≈⟨ []-cong₂ ≈₁ ≈₂ ⟩
+ [ g ∘ i₁ , g ∘ i₂ ] ≈⟨ g-η ⟩
+ g ∎
+ where
+ open Coproduct (IsCoproduct⇒Coproduct coprod)
+ open HomReasoning
+
+iterated-coequalizer
+ : {A B A+B C Q₁ Q₂ : Obj}
+ → (i₁ : A ⇒ A+B)
+ → (i₂ : B ⇒ A+B)
+ → (f g : A+B ⇒ C)
+ → (q₁ : C ⇒ Q₁)
+ → (q₂ : Q₁ ⇒ Q₂)
+ → IsCoproduct i₁ i₂
+ → IsCoequalizer (f ∘ i₁) (g ∘ i₁) q₁
+ → IsCoequalizer (q₁ ∘ f ∘ i₂) (q₁ ∘ g ∘ i₂) q₂
+ → IsCoequalizer f g (q₂ ∘ q₁)
+iterated-coequalizer {C = C} {Q₁} {Q₂} i₁ i₂ f g q₁ q₂ coprod coeq₁ coeq₂ = record
+ { equality = ≈-i₁-i₂
+ (q₂ ∘ q₁ ∘ f)
+ (q₂ ∘ q₁ ∘ g)
+ coprod
+ (∘-resp-≈ʳ {g = q₂} X₁.equality)
+ X₂.equality
+ ; coequalize = λ {Q} {q} q∘f≈q∘g → let module X = Cocone {Q} {q} q∘f≈q∘g in X.u₂
+ ; universal = λ {Q} {q} {q∘f≈q∘g} → let module X = Cocone {Q} {q} q∘f≈q∘g in X.q≈u₂∘q₂∘q₁
+ ; unique = λ {Q} {q} {i} {q∘f≈q∘g} q≈i∘q₂∘q₁ →
+ let module X = Cocone {Q} {q} q∘f≈q∘g in X.q≈i∘q₂∘q₁⇒i≈u₂ q≈i∘q₂∘q₁
+ }
+ where
+ module X₁ = IsCoequalizer coeq₁
+ module X₂ = IsCoequalizer coeq₂
+ module Cocone {Q : Obj} {q : C ⇒ Q} (q∘f≈q∘g : q ∘ f ≈ q ∘ g) where
+ open HomReasoning
+ u₁ : Q₁ ⇒ Q
+ u₁ = X₁.coequalize (∘-resp-≈ˡ q∘f≈q∘g)
+ q≈u₁∘q₁ : q ≈ u₁ ∘ q₁
+ q≈u₁∘q₁ = X₁.universal
+ u₁∘q₁∘f∘i₂≈u₁∘q₁∘g∘i₂ : u₁ ∘ q₁ ∘ f ∘ i₂ ≈ u₁ ∘ q₁ ∘ g ∘ i₂
+ u₁∘q₁∘f∘i₂≈u₁∘q₁∘g∘i₂ = begin
+ u₁ ∘ q₁ ∘ f ∘ i₂ ≈⟨ ∘-resp-≈ˡ (Equiv.sym q≈u₁∘q₁) ⟩
+ q ∘ f ∘ i₂ ≈⟨ ∘-resp-≈ˡ q∘f≈q∘g ⟩
+ q ∘ g ∘ i₂ ≈⟨ ∘-resp-≈ˡ q≈u₁∘q₁ ⟩
+ u₁ ∘ q₁ ∘ g ∘ i₂ ∎
+ u₂ : Q₂ ⇒ Q
+ u₂ = X₂.coequalize u₁∘q₁∘f∘i₂≈u₁∘q₁∘g∘i₂
+ u₁≈u₂∘q₂ : u₁ ≈ u₂ ∘ q₂
+ u₁≈u₂∘q₂ = X₂.universal
+ q≈u₂∘q₂∘q₁ : q ≈ u₂ ∘ q₂ ∘ q₁
+ q≈u₂∘q₂∘q₁ = begin
+ q  ≈⟨ q≈u₁∘q₁ ⟩
+ u₁ ∘ q₁ ≈⟨ ∘-resp-≈ˡ u₁≈u₂∘q₂ ⟩
+ u₂ ∘ q₂ ∘ q₁ ∎
+ q≈i∘q₂∘q₁⇒i≈u₂ : {i : Q₂ ⇒ Q} → q ≈ i ∘ q₂ ∘ q₁ → i ≈ u₂
+ q≈i∘q₂∘q₁⇒i≈u₂ q≈i∘q₂∘q₁ = X₂.unique (Equiv.sym (X₁.unique q≈i∘q₂∘q₁))
diff --git a/Util.agda b/Util.agda
index b30aeb5..0c79b17 100644
--- a/Util.agda
+++ b/Util.agda
@@ -1,3 +1,4 @@
+{-# OPTIONS --without-K --safe #-}
module Util where
open import Data.Fin using (Fin; toℕ)