diff options
| author | Jacques Comeaux <jacquesrcomeaux@protonmail.com> | 2024-11-18 09:13:29 -0600 | 
|---|---|---|
| committer | Jacques Comeaux <jacquesrcomeaux@protonmail.com> | 2024-11-18 09:13:29 -0600 | 
| commit | 2397ab56c95f1ebb161b578caea2ba07b09248ea (patch) | |
| tree | 86584dd1e1a66861ef34b6d5a3d4646ea52f9d41 | |
| parent | 69670cde145b18f5aa2a685f0dff8076e75542da (diff) | |
Improve naming
| -rw-r--r-- | DecorationFunctor/Graph.agda | 22 | 
1 files changed, 11 insertions, 11 deletions
| diff --git a/DecorationFunctor/Graph.agda b/DecorationFunctor/Graph.agda index b92ed05..7f05855 100644 --- a/DecorationFunctor/Graph.agda +++ b/DecorationFunctor/Graph.agda @@ -595,15 +595,15 @@ unitaryʳ {n} {G} {G′} ≡G = record      e+0↔e′ = ↔e ↔-∘ n+0↔0 e      module e+0↔e′ = Inverse e+0↔e′      open Inverse -    bruh : ∀ e → (x : Fin e) → x ≡ to (n+0↔0 e) (x ↑ˡ 0) -    bruh (ℕ.suc ℕ.zero) zero = refl -    bruh (ℕ.suc (ℕ.suc e)) zero = refl -    bruh (ℕ.suc (ℕ.suc e)) (suc x) = cong suc (bruh (ℕ.suc e) x) +    ↑ˡ-0 : ∀ e → (x : Fin e) → x ≡ to (n+0↔0 e) (x ↑ˡ 0) +    ↑ˡ-0 (ℕ.suc ℕ.zero) zero = refl +    ↑ˡ-0 (ℕ.suc (ℕ.suc e)) zero = refl +    ↑ˡ-0 (ℕ.suc (ℕ.suc e)) (suc x) = cong suc (↑ˡ-0 (ℕ.suc e) x)      ≗s+0 : [ id , (λ ()) ] ∘ splitAt n ∘ join n 0 ∘ map s (λ ()) ∘ splitAt e ≗ s′ ∘ e+0↔e′.to      ≗s+0 x+0 with splitAt e x+0 in eq      ... | inj₁ x = begin              [ id , (λ ()) ] (splitAt n (join n 0 (inj₁ (s x))))   ≡⟨ cong [ id , (λ ()) ] (splitAt-join n 0 (inj₁ (s x))) ⟩ -            s x                                                   ≡⟨ cong s (bruh e x) ⟩ +            s x                                                   ≡⟨ cong s (↑ˡ-0 e x) ⟩              s (to (n+0↔0 e) (x ↑ˡ 0))                             ≡⟨⟩              s (to (n+0↔0 e) (join e 0 (inj₁ x)))                  ≡⟨ cong (s ∘ to (n+0↔0 e) ∘ join e 0) eq ⟨              s (to (n+0↔0 e) (join e 0 (splitAt e x+0)))           ≡⟨ cong (s ∘ to (n+0↔0 e)) (join-splitAt e 0 x+0) ⟩ @@ -613,7 +613,7 @@ unitaryʳ {n} {G} {G′} ≡G = record      ≗t+0 x+0 with splitAt e x+0 in eq      ... | inj₁ x = begin              [ id , (λ ()) ] (splitAt n (join n 0 (inj₁ (t x))))   ≡⟨ cong [ id , (λ ()) ] (splitAt-join n 0 (inj₁ (t x))) ⟩ -            t x                                                   ≡⟨ cong t (bruh e x) ⟩ +            t x                                                   ≡⟨ cong t (↑ˡ-0 e x) ⟩              t (to (n+0↔0 e) (x ↑ˡ 0))                             ≡⟨⟩              t (to (n+0↔0 e) (join e 0 (inj₁ x)))                  ≡⟨ cong (t ∘ to (n+0↔0 e) ∘ join e 0) eq ⟨              t (to (n+0↔0 e) (join e 0 (splitAt e x+0)))           ≡⟨ cong (t ∘ to (n+0↔0 e)) (join-splitAt e 0 x+0) ⟩ @@ -650,9 +650,9 @@ swap-map  swap-map (inj₁ _) = refl  swap-map (inj₂ _) = refl -final-lemma : ∀ {x y : ℕ} → [ x ↑ʳ_  , _↑ˡ y ] ≗ join x y ∘ swap -final-lemma (inj₁ x) = refl -final-lemma (inj₂ y) = refl +join-swap : ∀ {x y : ℕ} →  join x y ∘ swap ≗ [ x ↑ʳ_  , _↑ˡ y ] +join-swap (inj₁ x) = refl +join-swap (inj₂ y) = refl  braiding      : {G₁ G₁′ : Graph n} @@ -676,7 +676,7 @@ braiding {n} {m} ≡G₁ ≡G₂ = record          ∘ join ≡G₁.e′ ≡G₂.e′ ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e      ≗s x = begin          ([ m ↑ʳ_  , _↑ˡ n ] ∘ splitAt n ∘ join n m ∘ map ≡G₁.s ≡G₂.s ∘ splitAt ≡G₁.e) x -            ≡⟨ (final-lemma ∘ splitAt n ∘ join n m ∘ map ≡G₁.s ≡G₂.s ∘ splitAt ≡G₁.e) x ⟩ +            ≡⟨ (join-swap ∘ splitAt n ∘ join n m ∘ map ≡G₁.s ≡G₂.s ∘ splitAt ≡G₁.e) x ⟨          (join m n ∘ swap ∘ splitAt n ∘ join n m ∘ map ≡G₁.s ≡G₂.s ∘ splitAt ≡G₁.e) x              ≡⟨ (cong (join m n ∘ swap) ∘ splitAt-join n m ∘ map ≡G₁.s ≡G₂.s ∘ splitAt ≡G₁.e) x ⟩          (join m n ∘ swap ∘ map ≡G₁.s ≡G₂.s ∘ splitAt ≡G₁.e) x @@ -697,7 +697,7 @@ braiding {n} {m} ≡G₁ ≡G₂ = record          ∘ join ≡G₁.e′ ≡G₂.e′ ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e      ≗t x = begin          ([ m ↑ʳ_  , _↑ˡ n ] ∘ splitAt n ∘ join n m ∘ map ≡G₁.t ≡G₂.t ∘ splitAt ≡G₁.e) x -            ≡⟨ (final-lemma ∘ splitAt n ∘ join n m ∘ map ≡G₁.t ≡G₂.t ∘ splitAt ≡G₁.e) x ⟩ +            ≡⟨ (join-swap ∘ splitAt n ∘ join n m ∘ map ≡G₁.t ≡G₂.t ∘ splitAt ≡G₁.e) x ⟨          (join m n ∘ swap ∘ splitAt n ∘ join n m ∘ map ≡G₁.t ≡G₂.t ∘ splitAt ≡G₁.e) x              ≡⟨ (cong (join m n ∘ swap) ∘ splitAt-join n m ∘ map ≡G₁.t ≡G₂.t ∘ splitAt ≡G₁.e) x ⟩          (join m n ∘ swap ∘ map ≡G₁.t ≡G₂.t ∘ splitAt ≡G₁.e) x | 
