aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJacques Comeaux <jacquesrcomeaux@protonmail.com>2024-11-18 09:13:29 -0600
committerJacques Comeaux <jacquesrcomeaux@protonmail.com>2024-11-18 09:13:29 -0600
commit2397ab56c95f1ebb161b578caea2ba07b09248ea (patch)
tree86584dd1e1a66861ef34b6d5a3d4646ea52f9d41
parent69670cde145b18f5aa2a685f0dff8076e75542da (diff)
Improve naming
-rw-r--r--DecorationFunctor/Graph.agda22
1 files changed, 11 insertions, 11 deletions
diff --git a/DecorationFunctor/Graph.agda b/DecorationFunctor/Graph.agda
index b92ed05..7f05855 100644
--- a/DecorationFunctor/Graph.agda
+++ b/DecorationFunctor/Graph.agda
@@ -595,15 +595,15 @@ unitaryʳ {n} {G} {G′} ≡G = record
e+0↔e′ = ↔e ↔-∘ n+0↔0 e
module e+0↔e′ = Inverse e+0↔e′
open Inverse
- bruh : ∀ e → (x : Fin e) → x ≡ to (n+0↔0 e) (x ↑ˡ 0)
- bruh (ℕ.suc ℕ.zero) zero = refl
- bruh (ℕ.suc (ℕ.suc e)) zero = refl
- bruh (ℕ.suc (ℕ.suc e)) (suc x) = cong suc (bruh (ℕ.suc e) x)
+ ↑ˡ-0 : ∀ e → (x : Fin e) → x ≡ to (n+0↔0 e) (x ↑ˡ 0)
+ ↑ˡ-0 (ℕ.suc ℕ.zero) zero = refl
+ ↑ˡ-0 (ℕ.suc (ℕ.suc e)) zero = refl
+ ↑ˡ-0 (ℕ.suc (ℕ.suc e)) (suc x) = cong suc (↑ˡ-0 (ℕ.suc e) x)
≗s+0 : [ id , (λ ()) ] ∘ splitAt n ∘ join n 0 ∘ map s (λ ()) ∘ splitAt e ≗ s′ ∘ e+0↔e′.to
≗s+0 x+0 with splitAt e x+0 in eq
... | inj₁ x = begin
[ id , (λ ()) ] (splitAt n (join n 0 (inj₁ (s x)))) ≡⟨ cong [ id , (λ ()) ] (splitAt-join n 0 (inj₁ (s x))) ⟩
- s x ≡⟨ cong s (bruh e x) ⟩
+ s x ≡⟨ cong s (↑ˡ-0 e x) ⟩
s (to (n+0↔0 e) (x ↑ˡ 0)) ≡⟨⟩
s (to (n+0↔0 e) (join e 0 (inj₁ x))) ≡⟨ cong (s ∘ to (n+0↔0 e) ∘ join e 0) eq ⟨
s (to (n+0↔0 e) (join e 0 (splitAt e x+0))) ≡⟨ cong (s ∘ to (n+0↔0 e)) (join-splitAt e 0 x+0) ⟩
@@ -613,7 +613,7 @@ unitaryʳ {n} {G} {G′} ≡G = record
≗t+0 x+0 with splitAt e x+0 in eq
... | inj₁ x = begin
[ id , (λ ()) ] (splitAt n (join n 0 (inj₁ (t x)))) ≡⟨ cong [ id , (λ ()) ] (splitAt-join n 0 (inj₁ (t x))) ⟩
- t x ≡⟨ cong t (bruh e x) ⟩
+ t x ≡⟨ cong t (↑ˡ-0 e x) ⟩
t (to (n+0↔0 e) (x ↑ˡ 0)) ≡⟨⟩
t (to (n+0↔0 e) (join e 0 (inj₁ x))) ≡⟨ cong (t ∘ to (n+0↔0 e) ∘ join e 0) eq ⟨
t (to (n+0↔0 e) (join e 0 (splitAt e x+0))) ≡⟨ cong (t ∘ to (n+0↔0 e)) (join-splitAt e 0 x+0) ⟩
@@ -650,9 +650,9 @@ swap-map
swap-map (inj₁ _) = refl
swap-map (inj₂ _) = refl
-final-lemma : ∀ {x y : ℕ} → [ x ↑ʳ_ , _↑ˡ y ] ≗ join x y ∘ swap
-final-lemma (inj₁ x) = refl
-final-lemma (inj₂ y) = refl
+join-swap : ∀ {x y : ℕ} → join x y ∘ swap ≗ [ x ↑ʳ_ , _↑ˡ y ]
+join-swap (inj₁ x) = refl
+join-swap (inj₂ y) = refl
braiding
: {G₁ G₁′ : Graph n}
@@ -676,7 +676,7 @@ braiding {n} {m} ≡G₁ ≡G₂ = record
∘ join ≡G₁.e′ ≡G₂.e′ ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e
≗s x = begin
([ m ↑ʳ_ , _↑ˡ n ] ∘ splitAt n ∘ join n m ∘ map ≡G₁.s ≡G₂.s ∘ splitAt ≡G₁.e) x
- ≡⟨ (final-lemma ∘ splitAt n ∘ join n m ∘ map ≡G₁.s ≡G₂.s ∘ splitAt ≡G₁.e) x ⟩
+ ≡⟨ (join-swap ∘ splitAt n ∘ join n m ∘ map ≡G₁.s ≡G₂.s ∘ splitAt ≡G₁.e) x ⟨
(join m n ∘ swap ∘ splitAt n ∘ join n m ∘ map ≡G₁.s ≡G₂.s ∘ splitAt ≡G₁.e) x
≡⟨ (cong (join m n ∘ swap) ∘ splitAt-join n m ∘ map ≡G₁.s ≡G₂.s ∘ splitAt ≡G₁.e) x ⟩
(join m n ∘ swap ∘ map ≡G₁.s ≡G₂.s ∘ splitAt ≡G₁.e) x
@@ -697,7 +697,7 @@ braiding {n} {m} ≡G₁ ≡G₂ = record
∘ join ≡G₁.e′ ≡G₂.e′ ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e
≗t x = begin
([ m ↑ʳ_ , _↑ˡ n ] ∘ splitAt n ∘ join n m ∘ map ≡G₁.t ≡G₂.t ∘ splitAt ≡G₁.e) x
- ≡⟨ (final-lemma ∘ splitAt n ∘ join n m ∘ map ≡G₁.t ≡G₂.t ∘ splitAt ≡G₁.e) x ⟩
+ ≡⟨ (join-swap ∘ splitAt n ∘ join n m ∘ map ≡G₁.t ≡G₂.t ∘ splitAt ≡G₁.e) x ⟨
(join m n ∘ swap ∘ splitAt n ∘ join n m ∘ map ≡G₁.t ≡G₂.t ∘ splitAt ≡G₁.e) x
≡⟨ (cong (join m n ∘ swap) ∘ splitAt-join n m ∘ map ≡G₁.t ≡G₂.t ∘ splitAt ≡G₁.e) x ⟩
(join m n ∘ swap ∘ map ≡G₁.t ≡G₂.t ∘ splitAt ≡G₁.e) x