aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJacques Comeaux <jacquesrcomeaux@protonmail.com>2026-01-06 11:43:55 -0600
committerJacques Comeaux <jacquesrcomeaux@protonmail.com>2026-01-06 11:43:55 -0600
commit527d35a56ec025cb813024488dcf78ff002e320e (patch)
treeb461cfc4ab17fba1d09ad7257069f4d8940b042b
parente7f6b8c96b80eb33ad123748498734be0cdf785d (diff)
Add monoidal cats to monoidal preorders functor
-rw-r--r--Category/Instance/MonoidalPreorders/Primitive.agda86
-rw-r--r--Functor/Free/Instance/MonoidalPreorder.agda75
2 files changed, 161 insertions, 0 deletions
diff --git a/Category/Instance/MonoidalPreorders/Primitive.agda b/Category/Instance/MonoidalPreorders/Primitive.agda
new file mode 100644
index 0000000..d00e17a
--- /dev/null
+++ b/Category/Instance/MonoidalPreorders/Primitive.agda
@@ -0,0 +1,86 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Category.Instance.MonoidalPreorders.Primitive where
+
+import Preorder.Primitive.MonotoneMap as MonotoneMap using (_≃_; module ≃)
+
+open import Categories.Category using (Category)
+open import Categories.Category.Helper using (categoryHelper)
+open import Category.Instance.Preorders.Primitive using (Preorders)
+open import Level using (Level; suc; _⊔_)
+open import Preorder.Primitive.Monoidal using (MonoidalPreorder; MonoidalMonotone)
+open import Relation.Binary using (IsEquivalence)
+
+module _ {c₁ c₂ ℓ₁ ℓ₂ : Level} {A : MonoidalPreorder c₁ ℓ₁} {B : MonoidalPreorder c₂ ℓ₂} where
+
+ -- Pointwise equality of monoidal monotone maps
+
+ open MonoidalMonotone using (F)
+
+ _≃_ : (f g : MonoidalMonotone A B) → Set (c₁ ⊔ ℓ₂)
+ f ≃ g = F f MonotoneMap.≃ F g
+
+ infix 4 _≃_
+
+ ≃-isEquivalence : IsEquivalence _≃_
+ ≃-isEquivalence = let open MonotoneMap.≃ in record
+ { refl = λ {x} → refl {x = F x}
+ ; sym = λ {f g} → sym {x = F f} {y = F g}
+ ; trans = λ {f g h} → trans {i = F f} {j = F g} {k = F h}
+ }
+
+ module ≃ = IsEquivalence ≃-isEquivalence
+
+private
+
+ identity : {c ℓ : Level} (A : MonoidalPreorder c ℓ) → MonoidalMonotone A A
+ identity A = let open MonoidalPreorder A in record
+ { F = Category.id (Preorders _ _)
+ ; ε = refl
+ ; ⊗-homo = λ p₁ p₂ → refl {p₁ ⊗ p₂}
+ }
+
+ compose
+ : {c ℓ : Level}
+ {P Q R : MonoidalPreorder c ℓ}
+ → MonoidalMonotone Q R
+ → MonoidalMonotone P Q
+ → MonoidalMonotone P R
+ compose {R = R} G F = record
+ { F = let open Category (Preorders _ _) in G.F ∘ F.F
+ ; ε = trans G.ε (G.mono F.ε)
+ ; ⊗-homo = λ p₁ p₂ → trans (G.⊗-homo (F.map p₁) (F.map p₂)) (G.mono (F.⊗-homo p₁ p₂))
+ }
+ where
+ module F = MonoidalMonotone F
+ module G = MonoidalMonotone G
+ open MonoidalPreorder R
+
+ compose-resp-≃
+ : {c ℓ : Level}
+ {A B C : MonoidalPreorder c ℓ}
+ {f h : MonoidalMonotone B C}
+ {g i : MonoidalMonotone A B}
+ → f ≃ h
+ → g ≃ i
+ → compose f g ≃ compose h i
+ compose-resp-≃ {C = C} {f = f} {g} {h} {i} = ∘-resp-≈ {f = F f} {F g} {F h} {F i}
+ where
+ open Category (Preorders _ _)
+ open MonoidalMonotone using (F)
+
+MonoidalPreorders : (c ℓ : Level) → Category (suc (c ⊔ ℓ)) (c ⊔ ℓ) (c ⊔ ℓ)
+MonoidalPreorders c ℓ = categoryHelper record
+ { Obj = MonoidalPreorder c ℓ
+ ; _⇒_ = MonoidalMonotone
+ ; _≈_ = _≃_
+ ; id = λ {A} → identity A
+ ; _∘_ = compose
+ ; assoc = λ {f = f} {g h} → ≃.refl {x = compose (compose h g) f}
+ ; identityˡ = λ {f = f} → ≃.refl {x = f}
+ ; identityʳ = λ {f = f} → ≃.refl {x = f}
+ ; equiv = ≃-isEquivalence
+ ; ∘-resp-≈ = λ {f = f} {g h i} → compose-resp-≃ {f = f} {g} {h} {i}
+ }
+ where
+ open MonoidalMonotone using (F)
diff --git a/Functor/Free/Instance/MonoidalPreorder.agda b/Functor/Free/Instance/MonoidalPreorder.agda
new file mode 100644
index 0000000..ca03786
--- /dev/null
+++ b/Functor/Free/Instance/MonoidalPreorder.agda
@@ -0,0 +1,75 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Functor.Free.Instance.MonoidalPreorder where
+
+import Categories.Category.Monoidal.Utilities as ⊗-Util
+
+open import Categories.Category using (Category)
+open import Categories.Category.Instance.Monoidals using (Monoidals)
+open import Categories.Category.Monoidal using (MonoidalCategory)
+open import Categories.Functor using (Functor)
+open import Categories.Functor.Monoidal using (MonoidalFunctor)
+open import Categories.Functor.Monoidal.Properties using (∘-Monoidal)
+open import Categories.NaturalTransformation.NaturalIsomorphism.Monoidal using (module Lax)
+open import Category.Instance.MonoidalPreorders.Primitive using (MonoidalPreorders; _≃_; module ≃)
+open import Data.Product using (_,_)
+open import Level using (Level)
+open import Preorder.Primitive.Monoidal using (MonoidalPreorder; MonoidalMonotone)
+
+open Lax using (MonoidalNaturalIsomorphism)
+-- The free monoidal preorder of a monoidal category
+
+import Functor.Free.Instance.Preorder as Preorder
+
+module _ {o ℓ e : Level} where
+
+ monoidalPreorder : MonoidalCategory o ℓ e → MonoidalPreorder o ℓ
+ monoidalPreorder C = record
+ { U = Preorder.Free.₀ U
+ ; monoidal = record
+ { unit = unit
+ ; tensor = Preorder.Free.₁ ⊗
+ ; unitaryˡ = Preorder.Free.F-resp-≈ unitorˡ-naturalIsomorphism
+ ; unitaryʳ = Preorder.Free.F-resp-≈ unitorʳ-naturalIsomorphism
+ ; associative = λ x y z → record
+ { from = associator.from {x} {y} {z}
+ ; to = associator.to {x} {y} {z}
+ }
+ }
+ }
+ where
+ open MonoidalCategory C
+ open ⊗-Util monoidal
+
+ module _ {A B : MonoidalCategory o ℓ e} where
+
+ monoidalMonotone : MonoidalFunctor A B → MonoidalMonotone (monoidalPreorder A) (monoidalPreorder B)
+ monoidalMonotone F = record
+ { F = Preorder.Free.₁ F.F
+ ; ε = F.ε
+ ; ⊗-homo = λ p₁ p₂ → F.⊗-homo.η (p₁ , p₂)
+ }
+ where
+ module F = MonoidalFunctor F
+
+ open MonoidalNaturalIsomorphism using (U)
+
+ pointwiseIsomorphism
+ : {F G : MonoidalFunctor A B}
+ → MonoidalNaturalIsomorphism F G
+ → monoidalMonotone F ≃ monoidalMonotone G
+ pointwiseIsomorphism F≃G = Preorder.Free.F-resp-≈ (U F≃G)
+
+Free : {o ℓ e : Level} → Functor (Monoidals o ℓ e) (MonoidalPreorders o ℓ)
+Free = record
+ { F₀ = monoidalPreorder
+ ; F₁ = monoidalMonotone
+ ; identity = λ {A} → ≃.refl {A = monoidalPreorder A} {x = id}
+ ; homomorphism = λ {f = f} {h} → ≃.refl {x = monoidalMonotone (∘-Monoidal h f)}
+ ; F-resp-≈ = pointwiseIsomorphism
+ }
+ where
+ open Category (MonoidalPreorders _ _) using (id)
+
+module Free {o ℓ e} = Functor (Free {o} {ℓ} {e})