diff options
author | Jacques Comeaux <jacquesrcomeaux@protonmail.com> | 2025-08-12 23:38:06 -0500 |
---|---|---|
committer | Jacques Comeaux <jacquesrcomeaux@protonmail.com> | 2025-08-12 23:38:06 -0500 |
commit | 59833e52879a69ac73360161f42e110d6b45713b (patch) | |
tree | 22e954fbb6e1648a98297862d77cfb45761712e0 | |
parent | 9afa2120fb3ccdaba707c511000947960f932aae (diff) |
Add lattice of logical circuit values
-rw-r--r-- | Data/Circuit/Value.agda | 157 |
1 files changed, 157 insertions, 0 deletions
diff --git a/Data/Circuit/Value.agda b/Data/Circuit/Value.agda new file mode 100644 index 0000000..512a622 --- /dev/null +++ b/Data/Circuit/Value.agda @@ -0,0 +1,157 @@ +{-# OPTIONS --without-K --safe #-} + +module Data.Circuit.Value where + +open import Relation.Binary.Lattice.Bundles using (BoundedJoinSemilattice) +open import Data.Product.Base using (_×_; _,_) +open import Data.String.Base using (String) +open import Level using (0ℓ) +open import Relation.Binary.PropositionalEquality as ≡ using (_≡_) + +data Value : Set where + U T F X : Value + +data ≤-Value : Value → Value → Set where + v≤v : {v : Value} → ≤-Value v v + U≤T : ≤-Value U T + U≤F : ≤-Value U F + U≤X : ≤-Value U X + T≤X : ≤-Value T X + F≤X : ≤-Value F X + +≤-reflexive : {x y : Value} → x ≡ y → ≤-Value x y +≤-reflexive ≡.refl = v≤v + +≤-transitive : {i j k : Value} → ≤-Value i j → ≤-Value j k → ≤-Value i k +≤-transitive v≤v y = y +≤-transitive x v≤v = x +≤-transitive U≤T T≤X = U≤X +≤-transitive U≤F F≤X = U≤X + +≤-antisymmetric : {i j : Value} → ≤-Value i j → ≤-Value j i → i ≡ j +≤-antisymmetric v≤v _ = ≡.refl + +showValue : Value → String +showValue U = "U" +showValue T = "T" +showValue F = "F" +showValue X = "X" + +join : Value → Value → Value +join U y = y +join x U = x +join T T = T +join T F = X +join F T = X +join F F = F +join X _ = X +join _ X = X + +≤-supremum + : (x y : Value) + → ≤-Value x (join x y) + × ≤-Value y (join x y) + × ((z : Value) → ≤-Value x z → ≤-Value y z → ≤-Value (join x y) z) +≤-supremum U U = v≤v , v≤v , λ _ U≤z _ → U≤z +≤-supremum U T = U≤T , v≤v , λ { z x≤z y≤z → y≤z } +≤-supremum U F = U≤F , v≤v , λ { z x≤z y≤z → y≤z } +≤-supremum U X = U≤X , v≤v , λ { z x≤z y≤z → y≤z } +≤-supremum T U = v≤v , U≤T , λ { z x≤z y≤z → x≤z } +≤-supremum T T = v≤v , v≤v , λ { z x≤z y≤z → x≤z } +≤-supremum T F = T≤X , F≤X , λ { X x≤z y≤z → v≤v } +≤-supremum T X = T≤X , v≤v , λ { z x≤z y≤z → y≤z } +≤-supremum F U = v≤v , U≤F , λ { z x≤z y≤z → x≤z } +≤-supremum F T = F≤X , T≤X , λ { X x≤z y≤z → v≤v } +≤-supremum F F = v≤v , v≤v , λ { z x≤z y≤z → x≤z } +≤-supremum F X = F≤X , v≤v , λ { z x≤z y≤z → y≤z } +≤-supremum X U = v≤v , U≤X , λ { z x≤z y≤z → x≤z } +≤-supremum X T = v≤v , T≤X , λ { z x≤z y≤z → x≤z } +≤-supremum X F = v≤v , F≤X , λ { z x≤z y≤z → x≤z } +≤-supremum X X = v≤v , v≤v , λ { z x≤z y≤z → x≤z } + +join-comm : (x y : Value) → join x y ≡ join y x +join-comm U U = ≡.refl +join-comm U T = ≡.refl +join-comm U F = ≡.refl +join-comm U X = ≡.refl +join-comm T U = ≡.refl +join-comm T T = ≡.refl +join-comm T F = ≡.refl +join-comm T X = ≡.refl +join-comm F U = ≡.refl +join-comm F T = ≡.refl +join-comm F F = ≡.refl +join-comm F X = ≡.refl +join-comm X U = ≡.refl +join-comm X T = ≡.refl +join-comm X F = ≡.refl +join-comm X X = ≡.refl + +join-assoc : (x y z : Value) → join (join x y) z ≡ join x (join y z) +join-assoc U y z = ≡.refl +join-assoc T U z = ≡.refl +join-assoc T T U = ≡.refl +join-assoc T T T = ≡.refl +join-assoc T T F = ≡.refl +join-assoc T T X = ≡.refl +join-assoc T F U = ≡.refl +join-assoc T F T = ≡.refl +join-assoc T F F = ≡.refl +join-assoc T F X = ≡.refl +join-assoc T X U = ≡.refl +join-assoc T X T = ≡.refl +join-assoc T X F = ≡.refl +join-assoc T X X = ≡.refl +join-assoc F U z = ≡.refl +join-assoc F T U = ≡.refl +join-assoc F T T = ≡.refl +join-assoc F T F = ≡.refl +join-assoc F T X = ≡.refl +join-assoc F F U = ≡.refl +join-assoc F F T = ≡.refl +join-assoc F F F = ≡.refl +join-assoc F F X = ≡.refl +join-assoc F X U = ≡.refl +join-assoc F X T = ≡.refl +join-assoc F X F = ≡.refl +join-assoc F X X = ≡.refl +join-assoc X U z = ≡.refl +join-assoc X T U = ≡.refl +join-assoc X T T = ≡.refl +join-assoc X T F = ≡.refl +join-assoc X T X = ≡.refl +join-assoc X F U = ≡.refl +join-assoc X F T = ≡.refl +join-assoc X F F = ≡.refl +join-assoc X F X = ≡.refl +join-assoc X X U = ≡.refl +join-assoc X X T = ≡.refl +join-assoc X X F = ≡.refl +join-assoc X X X = ≡.refl + +ValueLattice : BoundedJoinSemilattice 0ℓ 0ℓ 0ℓ +ValueLattice = record + { Carrier = Value + ; _≈_ = _≡_ + ; _≤_ = ≤-Value + ; _∨_ = join + ; ⊥ = U + ; isBoundedJoinSemilattice = record + { isJoinSemilattice = record + { isPartialOrder = record + { isPreorder = record + { isEquivalence = ≡.isEquivalence + ; reflexive = ≤-reflexive + ; trans = ≤-transitive + } + ; antisym = ≤-antisymmetric + } + ; supremum = ≤-supremum + } + ; minimum = λ where + U → v≤v + T → U≤T + F → U≤F + X → U≤X + } + } |