aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJacques Comeaux <jacquesrcomeaux@protonmail.com>2026-01-07 10:52:51 -0600
committerJacques Comeaux <jacquesrcomeaux@protonmail.com>2026-01-07 10:52:51 -0600
commitb2c2426959715260f57153b91ce11d12c7fdb298 (patch)
tree2c40fe1b8d79732dedb4a9ddce957559c67fe05e
parent8ec259bb32b4339b27560f5ea13afa81b9b8febc (diff)
Add strong variants of cats to preorders functors
-rw-r--r--Category/Instance/SymMonCat.agda174
-rw-r--r--Functor/Free/Instance/MonoidalPreorder/Strong.agda77
-rw-r--r--Functor/Free/Instance/SymmetricMonoidalPreorder/Lax.agda4
-rw-r--r--Functor/Free/Instance/SymmetricMonoidalPreorder/Strong.agda68
4 files changed, 265 insertions, 58 deletions
diff --git a/Category/Instance/SymMonCat.agda b/Category/Instance/SymMonCat.agda
index 814abeb..6693639 100644
--- a/Category/Instance/SymMonCat.agda
+++ b/Category/Instance/SymMonCat.agda
@@ -16,59 +16,121 @@ open import Relation.Binary.Core using (Rel)
open import Categories.Category using (Category; _[_,_]; _[_∘_])
open import Categories.Category.Helper using (categoryHelper)
open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory)
-open import Categories.Functor.Monoidal.Symmetric.Properties using (idF-SymmetricMonoidal; ∘-SymmetricMonoidal)
-
-open SMF.Lax using (SymmetricMonoidalFunctor)
-open SMNI.Lax using (SymmetricMonoidalNaturalIsomorphism; id; isEquivalence)
-
-assoc
- : {A B C D : SymmetricMonoidalCategory o ℓ e}
- {F : SymmetricMonoidalFunctor A B}
- {G : SymmetricMonoidalFunctor B C}
- {H : SymmetricMonoidalFunctor C D}
- → SymmetricMonoidalNaturalIsomorphism
- (∘-SymmetricMonoidal (∘-SymmetricMonoidal H G) F)
- (∘-SymmetricMonoidal H (∘-SymmetricMonoidal G F))
-assoc {A} {B} {C} {D} {F} {G} {H} = SMNI.Lax.associator {o} {ℓ} {e} {o} {ℓ} {e} {o} {ℓ} {e} {o} {ℓ} {e} {A} {B} {C} {D} {F} {G} {H}
-
-identityˡ
- : {A B : SymmetricMonoidalCategory o ℓ e}
- {F : SymmetricMonoidalFunctor A B}
- → SymmetricMonoidalNaturalIsomorphism (∘-SymmetricMonoidal (idF-SymmetricMonoidal B) F) F
-identityˡ {A} {B} {F} = SMNI.Lax.unitorˡ {o} {ℓ} {e} {o} {ℓ} {e} {A} {B} {F}
-
-identityʳ
- : {A B : SymmetricMonoidalCategory o ℓ e}
- {F : SymmetricMonoidalFunctor A B}
- → SymmetricMonoidalNaturalIsomorphism (∘-SymmetricMonoidal F (idF-SymmetricMonoidal A)) F
-identityʳ {A} {B} {F} = SMNI.Lax.unitorʳ {o} {ℓ} {e} {o} {ℓ} {e} {A} {B} {F}
-
-Compose
- : {A B C : SymmetricMonoidalCategory o ℓ e}
- → SymmetricMonoidalFunctor B C
- → SymmetricMonoidalFunctor A B
- → SymmetricMonoidalFunctor A C
-Compose {A} {B} {C} F G = ∘-SymmetricMonoidal {o} {ℓ} {e} {o} {ℓ} {e} {o} {ℓ} {e} {A} {B} {C} F G
-
-∘-resp-≈
- : {A B C : SymmetricMonoidalCategory o ℓ e}
- {f h : SymmetricMonoidalFunctor B C}
- {g i : SymmetricMonoidalFunctor A B}
- → SymmetricMonoidalNaturalIsomorphism f h
- → SymmetricMonoidalNaturalIsomorphism g i
- → SymmetricMonoidalNaturalIsomorphism (∘-SymmetricMonoidal f g) (∘-SymmetricMonoidal h i)
-∘-resp-≈ {A} {B} {C} {F} {F′} {G} {G′} F≃F′ G≃G′ = SMNI.Lax._ⓘₕ_ {o} {ℓ} {e} {o} {ℓ} {e} {o} {ℓ} {e} {A} {B} {C} {G} {G′} {F} {F′} F≃F′ G≃G′
-
-SymMonCat : Category (suc (o ⊔ ℓ ⊔ e)) (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e)
-SymMonCat = categoryHelper record
- { Obj = SymmetricMonoidalCategory o ℓ e
- ; _⇒_ = SymmetricMonoidalFunctor {o} {o} {ℓ} {ℓ} {e} {e}
- ; _≈_ = λ { {A} {B} → SymmetricMonoidalNaturalIsomorphism {o} {ℓ} {e} {o} {ℓ} {e} {A} {B} }
- ; id = λ { {X} → idF-SymmetricMonoidal X }
- ; _∘_ = λ { {A} {B} {C} F G → Compose {A} {B} {C} F G }
- ; assoc = λ { {A} {B} {C} {D} {F} {G} {H} → assoc {A} {B} {C} {D} {F} {G} {H} }
- ; identityˡ = λ { {A} {B} {F} → identityˡ {A} {B} {F} }
- ; identityʳ = λ { {A} {B} {F} → identityʳ {A} {B} {F} }
- ; equiv = isEquivalence
- ; ∘-resp-≈ = λ { {A} {B} {C} {f} {h} {g} {i} f≈h g≈i → ∘-resp-≈ {A} {B} {C} {f} {h} {g} {i} f≈h g≈i }
- }
+open import Categories.Functor.Monoidal.Symmetric.Properties using (idF-SymmetricMonoidal; idF-StrongSymmetricMonoidal; ∘-SymmetricMonoidal; ∘-StrongSymmetricMonoidal)
+
+
+-- Category of symmetric monoidal categories and lax symmetric monoidal functors
+
+module Lax where
+
+ open SMF.Lax using (SymmetricMonoidalFunctor)
+ open SMNI.Lax using (SymmetricMonoidalNaturalIsomorphism; id; isEquivalence)
+
+ assoc
+ : {A B C D : SymmetricMonoidalCategory o ℓ e}
+ {F : SymmetricMonoidalFunctor A B}
+ {G : SymmetricMonoidalFunctor B C}
+ {H : SymmetricMonoidalFunctor C D}
+ → SymmetricMonoidalNaturalIsomorphism
+ (∘-SymmetricMonoidal (∘-SymmetricMonoidal H G) F)
+ (∘-SymmetricMonoidal H (∘-SymmetricMonoidal G F))
+ assoc {A} {B} {C} {D} {F} {G} {H} = SMNI.Lax.associator {o} {ℓ} {e} {o} {ℓ} {e} {o} {ℓ} {e} {o} {ℓ} {e} {A} {B} {C} {D} {F} {G} {H}
+
+ identityˡ
+ : {A B : SymmetricMonoidalCategory o ℓ e}
+ {F : SymmetricMonoidalFunctor A B}
+ → SymmetricMonoidalNaturalIsomorphism (∘-SymmetricMonoidal (idF-SymmetricMonoidal B) F) F
+ identityˡ {A} {B} {F} = SMNI.Lax.unitorˡ {o} {ℓ} {e} {o} {ℓ} {e} {A} {B} {F}
+
+ identityʳ
+ : {A B : SymmetricMonoidalCategory o ℓ e}
+ {F : SymmetricMonoidalFunctor A B}
+ → SymmetricMonoidalNaturalIsomorphism (∘-SymmetricMonoidal F (idF-SymmetricMonoidal A)) F
+ identityʳ {A} {B} {F} = SMNI.Lax.unitorʳ {o} {ℓ} {e} {o} {ℓ} {e} {A} {B} {F}
+
+ Compose
+ : {A B C : SymmetricMonoidalCategory o ℓ e}
+ → SymmetricMonoidalFunctor B C
+ → SymmetricMonoidalFunctor A B
+ → SymmetricMonoidalFunctor A C
+ Compose {A} {B} {C} F G = ∘-SymmetricMonoidal {o} {ℓ} {e} {o} {ℓ} {e} {o} {ℓ} {e} {A} {B} {C} F G
+
+ ∘-resp-≈
+ : {A B C : SymmetricMonoidalCategory o ℓ e}
+ {f h : SymmetricMonoidalFunctor B C}
+ {g i : SymmetricMonoidalFunctor A B}
+ → SymmetricMonoidalNaturalIsomorphism f h
+ → SymmetricMonoidalNaturalIsomorphism g i
+ → SymmetricMonoidalNaturalIsomorphism (∘-SymmetricMonoidal f g) (∘-SymmetricMonoidal h i)
+ ∘-resp-≈ {A} {B} {C} {F} {F′} {G} {G′} F≃F′ G≃G′ = SMNI.Lax._ⓘₕ_ {o} {ℓ} {e} {o} {ℓ} {e} {o} {ℓ} {e} {A} {B} {C} {G} {G′} {F} {F′} F≃F′ G≃G′
+
+ SymMonCat : Category (suc (o ⊔ ℓ ⊔ e)) (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e)
+ SymMonCat = categoryHelper record
+ { Obj = SymmetricMonoidalCategory o ℓ e
+ ; _⇒_ = SymmetricMonoidalFunctor {o} {o} {ℓ} {ℓ} {e} {e}
+ ; _≈_ = λ { {A} {B} → SymmetricMonoidalNaturalIsomorphism {o} {ℓ} {e} {o} {ℓ} {e} {A} {B} }
+ ; id = λ { {X} → idF-SymmetricMonoidal X }
+ ; _∘_ = λ { {A} {B} {C} F G → Compose {A} {B} {C} F G }
+ ; assoc = λ { {A} {B} {C} {D} {F} {G} {H} → assoc {A} {B} {C} {D} {F} {G} {H} }
+ ; identityˡ = λ { {A} {B} {F} → identityˡ {A} {B} {F} }
+ ; identityʳ = λ { {A} {B} {F} → identityʳ {A} {B} {F} }
+ ; equiv = isEquivalence
+ ; ∘-resp-≈ = λ { {A} {B} {C} {f} {h} {g} {i} f≈h g≈i → ∘-resp-≈ {A} {B} {C} {f} {h} {g} {i} f≈h g≈i }
+ }
+
+module Strong where
+
+ open SMF.Strong using (SymmetricMonoidalFunctor)
+ open SMNI.Strong using (SymmetricMonoidalNaturalIsomorphism; id; isEquivalence)
+
+ assoc
+ : {A B C D : SymmetricMonoidalCategory o ℓ e}
+ {F : SymmetricMonoidalFunctor A B}
+ {G : SymmetricMonoidalFunctor B C}
+ {H : SymmetricMonoidalFunctor C D}
+ → SymmetricMonoidalNaturalIsomorphism
+ (∘-StrongSymmetricMonoidal (∘-StrongSymmetricMonoidal H G) F)
+ (∘-StrongSymmetricMonoidal H (∘-StrongSymmetricMonoidal G F))
+ assoc {A} {B} {C} {D} {F} {G} {H} = SMNI.Strong.associator {o} {ℓ} {e} {o} {ℓ} {e} {o} {ℓ} {e} {o} {ℓ} {e} {A} {B} {C} {D} {F} {G} {H}
+
+ identityˡ
+ : {A B : SymmetricMonoidalCategory o ℓ e}
+ {F : SymmetricMonoidalFunctor A B}
+ → SymmetricMonoidalNaturalIsomorphism (∘-StrongSymmetricMonoidal (idF-StrongSymmetricMonoidal B) F) F
+ identityˡ {A} {B} {F} = SMNI.Strong.unitorˡ {o} {ℓ} {e} {o} {ℓ} {e} {A} {B} {F}
+
+ identityʳ
+ : {A B : SymmetricMonoidalCategory o ℓ e}
+ {F : SymmetricMonoidalFunctor A B}
+ → SymmetricMonoidalNaturalIsomorphism (∘-StrongSymmetricMonoidal F (idF-StrongSymmetricMonoidal A)) F
+ identityʳ {A} {B} {F} = SMNI.Strong.unitorʳ {o} {ℓ} {e} {o} {ℓ} {e} {A} {B} {F}
+
+ Compose
+ : {A B C : SymmetricMonoidalCategory o ℓ e}
+ → SymmetricMonoidalFunctor B C
+ → SymmetricMonoidalFunctor A B
+ → SymmetricMonoidalFunctor A C
+ Compose {A} {B} {C} F G = ∘-StrongSymmetricMonoidal {o} {ℓ} {e} {o} {ℓ} {e} {o} {ℓ} {e} {A} {B} {C} F G
+
+ ∘-resp-≈
+ : {A B C : SymmetricMonoidalCategory o ℓ e}
+ {f h : SymmetricMonoidalFunctor B C}
+ {g i : SymmetricMonoidalFunctor A B}
+ → SymmetricMonoidalNaturalIsomorphism f h
+ → SymmetricMonoidalNaturalIsomorphism g i
+ → SymmetricMonoidalNaturalIsomorphism (∘-StrongSymmetricMonoidal f g) (∘-StrongSymmetricMonoidal h i)
+ ∘-resp-≈ {A} {B} {C} {F} {F′} {G} {G′} F≃F′ G≃G′ = SMNI.Strong._ⓘₕ_ {o} {ℓ} {e} {o} {ℓ} {e} {o} {ℓ} {e} {A} {B} {C} {G} {G′} {F} {F′} F≃F′ G≃G′
+
+ SymMonCat : Category (suc (o ⊔ ℓ ⊔ e)) (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e)
+ SymMonCat = categoryHelper record
+ { Obj = SymmetricMonoidalCategory o ℓ e
+ ; _⇒_ = SymmetricMonoidalFunctor {o} {o} {ℓ} {ℓ} {e} {e}
+ ; _≈_ = λ { {A} {B} → SymmetricMonoidalNaturalIsomorphism {o} {ℓ} {e} {o} {ℓ} {e} {A} {B} }
+ ; id = λ { {X} → idF-StrongSymmetricMonoidal X }
+ ; _∘_ = λ { {A} {B} {C} F G → Compose {A} {B} {C} F G }
+ ; assoc = λ { {A} {B} {C} {D} {F} {G} {H} → assoc {A} {B} {C} {D} {F} {G} {H} }
+ ; identityˡ = λ { {A} {B} {F} → identityˡ {A} {B} {F} }
+ ; identityʳ = λ { {A} {B} {F} → identityʳ {A} {B} {F} }
+ ; equiv = isEquivalence
+ ; ∘-resp-≈ = λ { {A} {B} {C} {f} {h} {g} {i} f≈h g≈i → ∘-resp-≈ {A} {B} {C} {f} {h} {g} {i} f≈h g≈i }
+ }
diff --git a/Functor/Free/Instance/MonoidalPreorder/Strong.agda b/Functor/Free/Instance/MonoidalPreorder/Strong.agda
new file mode 100644
index 0000000..612e91c
--- /dev/null
+++ b/Functor/Free/Instance/MonoidalPreorder/Strong.agda
@@ -0,0 +1,77 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Functor.Free.Instance.MonoidalPreorder.Strong where
+
+import Categories.Category.Monoidal.Utilities as ⊗-Util
+import Functor.Free.Instance.Preorder as Preorder
+
+open import Categories.Category using (Category)
+open import Categories.Category.Instance.Monoidals using (StrongMonoidals)
+open import Categories.Category.Monoidal using (MonoidalCategory)
+open import Categories.Functor using (Functor)
+open import Categories.Functor.Monoidal using (StrongMonoidalFunctor)
+open import Categories.Functor.Monoidal.Properties using (∘-StrongMonoidal)
+open import Categories.NaturalTransformation.NaturalIsomorphism.Monoidal using (module Strong)
+open import Category.Instance.Preorder.Primitive.Monoidals.Strong using (_≃_; module ≃) renaming (Monoidals to Monoidalsₚ)
+open import Data.Product using (_,_)
+open import Level using (Level)
+open import Preorder.Primitive using (module Isomorphism)
+open import Preorder.Primitive.MonotoneMap using (MonotoneMap)
+open import Preorder.Primitive.Monoidal using (MonoidalPreorder)
+open import Preorder.Primitive.MonotoneMap.Monoidal.Strong using (MonoidalMonotone)
+
+open Strong using (MonoidalNaturalIsomorphism)
+-- The free monoidal preorder of a monoidal category
+
+module _ {o ℓ e : Level} where
+
+ monoidalPreorder : MonoidalCategory o ℓ e → MonoidalPreorder o ℓ
+ monoidalPreorder C = record
+ { U = Preorder.Free.₀ U
+ ; monoidal = record
+ { unit = unit
+ ; tensor = Preorder.Free.₁ ⊗
+ ; unitaryˡ = Preorder.Free.F-resp-≈ unitorˡ-naturalIsomorphism
+ ; unitaryʳ = Preorder.Free.F-resp-≈ unitorʳ-naturalIsomorphism
+ ; associative = λ x y z → record
+ { from = associator.from {x} {y} {z}
+ ; to = associator.to {x} {y} {z}
+ }
+ }
+ }
+ where
+ open MonoidalCategory C
+ open ⊗-Util monoidal
+
+ module _ {A B : MonoidalCategory o ℓ e} where
+
+ monoidalMonotone : StrongMonoidalFunctor A B → MonoidalMonotone (monoidalPreorder A) (monoidalPreorder B)
+ monoidalMonotone F = record
+ { F = Preorder.Free.₁ F.F
+ ; ε = record { F.ε }
+ ; ⊗-homo = λ p₁ p₂ → Preorder.Free.F-resp-≈ F.⊗-homo (p₁ , p₂)
+ }
+ where
+ module F = StrongMonoidalFunctor F
+
+ open MonoidalNaturalIsomorphism using (U)
+
+ pointwiseIsomorphism
+ : {F G : StrongMonoidalFunctor A B}
+ → MonoidalNaturalIsomorphism F G
+ → monoidalMonotone F ≃ monoidalMonotone G
+ pointwiseIsomorphism F≃G = Preorder.Free.F-resp-≈ (U F≃G)
+
+Free : {o ℓ e : Level} → Functor (StrongMonoidals o ℓ e) (Monoidalsₚ o ℓ)
+Free = record
+ { F₀ = monoidalPreorder
+ ; F₁ = monoidalMonotone
+ ; identity = λ {A} → ≃.refl {A = monoidalPreorder A} {x = id}
+ ; homomorphism = λ {f = f} {h} → ≃.refl {x = monoidalMonotone (∘-StrongMonoidal h f)}
+ ; F-resp-≈ = pointwiseIsomorphism
+ }
+ where
+ open Category (Monoidalsₚ _ _) using (id)
+
+module Free {o ℓ e} = Functor (Free {o} {ℓ} {e})
diff --git a/Functor/Free/Instance/SymmetricMonoidalPreorder/Lax.agda b/Functor/Free/Instance/SymmetricMonoidalPreorder/Lax.agda
index 8bf567d..ebb3dc0 100644
--- a/Functor/Free/Instance/SymmetricMonoidalPreorder/Lax.agda
+++ b/Functor/Free/Instance/SymmetricMonoidalPreorder/Lax.agda
@@ -5,7 +5,7 @@ module Functor.Free.Instance.SymmetricMonoidalPreorder.Lax where
import Functor.Free.Instance.MonoidalPreorder.Lax as MP
open import Categories.Category using (Category)
-open import Category.Instance.SymMonCat using (SymMonCat)
+open import Category.Instance.SymMonCat using (module Lax)
open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory)
open import Categories.Functor using (Functor)
open import Categories.Functor.Monoidal.Symmetric using () renaming (module Lax to Lax₁)
@@ -54,7 +54,7 @@ module _ {o ℓ e : Level} where
→ symmetricMonoidalMonotone F ≃ symmetricMonoidalMonotone G
pointwiseIsomorphism F≃G = MP.Free.F-resp-≈ ⌊ F≃G ⌋
-Free : {o ℓ e : Level} → Functor (SymMonCat {o} {ℓ} {e}) (SymMonPre o ℓ)
+Free : {o ℓ e : Level} → Functor (Lax.SymMonCat {o} {ℓ} {e}) (SymMonPre o ℓ)
Free = record
{ F₀ = symmetricMonoidalPreorder
; F₁ = symmetricMonoidalMonotone
diff --git a/Functor/Free/Instance/SymmetricMonoidalPreorder/Strong.agda b/Functor/Free/Instance/SymmetricMonoidalPreorder/Strong.agda
new file mode 100644
index 0000000..f759f17
--- /dev/null
+++ b/Functor/Free/Instance/SymmetricMonoidalPreorder/Strong.agda
@@ -0,0 +1,68 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Functor.Free.Instance.SymmetricMonoidalPreorder.Strong where
+
+import Functor.Free.Instance.MonoidalPreorder.Strong as MP
+
+open import Categories.Category using (Category)
+open import Category.Instance.SymMonCat using (module Strong)
+open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory)
+open import Categories.Functor using (Functor)
+open import Categories.Functor.Monoidal.Symmetric using () renaming (module Strong to Strong₁)
+open import Categories.Functor.Monoidal.Symmetric.Properties using (∘-StrongSymmetricMonoidal)
+open import Categories.NaturalTransformation.NaturalIsomorphism.Monoidal.Symmetric using () renaming (module Strong to Strong₂)
+open import Category.Instance.Preorder.Primitive.Monoidals.Symmetric.Strong using (SymMonPre; _≃_; module ≃)
+open import Data.Product using (_,_)
+open import Level using (Level)
+open import Preorder.Primitive.Monoidal using (MonoidalPreorder; SymmetricMonoidalPreorder)
+open import Preorder.Primitive.MonotoneMap.Monoidal.Strong using (SymmetricMonoidalMonotone)
+
+open Strong₁ using (SymmetricMonoidalFunctor)
+open Strong₂ using (SymmetricMonoidalNaturalIsomorphism)
+-- The free symmetric monoidal preorder of a symmetric monoidal category
+
+module _ {o ℓ e : Level} where
+
+ symmetricMonoidalPreorder : SymmetricMonoidalCategory o ℓ e → SymmetricMonoidalPreorder o ℓ
+ symmetricMonoidalPreorder C = record
+ { M
+ ; symmetric = record
+ { symmetric = λ x y → braiding.⇒.η (x , y)
+ }
+ }
+ where
+ open SymmetricMonoidalCategory C
+ module M = MonoidalPreorder (MP.Free.₀ monoidalCategory)
+
+ module _ {A B : SymmetricMonoidalCategory o ℓ e} where
+
+ symmetricMonoidalMonotone
+ : SymmetricMonoidalFunctor A B
+ → SymmetricMonoidalMonotone (symmetricMonoidalPreorder A) (symmetricMonoidalPreorder B)
+ symmetricMonoidalMonotone F = record
+ { monoidalMonotone = MP.Free.₁ F.monoidalFunctor
+ }
+ where
+ module F = SymmetricMonoidalFunctor F
+
+ open SymmetricMonoidalNaturalIsomorphism using (⌊_⌋)
+
+ pointwiseIsomorphism
+ : {F G : SymmetricMonoidalFunctor A B}
+ → SymmetricMonoidalNaturalIsomorphism F G
+ → symmetricMonoidalMonotone F ≃ symmetricMonoidalMonotone G
+ pointwiseIsomorphism F≃G = MP.Free.F-resp-≈ ⌊ F≃G ⌋
+
+Free : {o ℓ e : Level} → Functor (Strong.SymMonCat {o} {ℓ} {e}) (SymMonPre o ℓ)
+Free = record
+ { F₀ = symmetricMonoidalPreorder
+ ; F₁ = symmetricMonoidalMonotone
+ ; identity = λ {A} → ≃.refl {A = symmetricMonoidalPreorder A} {x = id}
+ ; homomorphism = λ {f = f} {h} → ≃.refl {x = symmetricMonoidalMonotone (∘-StrongSymmetricMonoidal h f)}
+ ; F-resp-≈ = pointwiseIsomorphism
+ }
+ where
+ open Category (SymMonPre _ _) using (id)
+
+module Free {o ℓ e} = Functor (Free {o} {ℓ} {e})