aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-05-01 12:59:09 -0500
committerJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-05-01 12:59:09 -0500
commitc30991e90e33ac5f36f40f1f6c65dd91ac1a032d (patch)
treee64934828c4c80547ccee0f93e89c0669cc0ec30
parent2fa014cfc9196de99f3997090aec8128ec703dcc (diff)
Update graph decoration functor
-rw-r--r--DecorationFunctor/Graph.agda487
1 files changed, 206 insertions, 281 deletions
diff --git a/DecorationFunctor/Graph.agda b/DecorationFunctor/Graph.agda
index 7f05855..d8a0187 100644
--- a/DecorationFunctor/Graph.agda
+++ b/DecorationFunctor/Graph.agda
@@ -17,7 +17,7 @@ open import Categories.Category.Product using (_⁂_)
open import Categories.Functor using () renaming (_∘F_ to _∘′_)
open import Categories.Functor.Core using (Functor)
open import Categories.Functor.Monoidal.Symmetric using (module Lax)
-open import Categories.NaturalTransformation using (NaturalTransformation)
+open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)
open import Category.Instance.Setoids.SymmetricMonoidal using (Setoids-×)
@@ -27,7 +27,7 @@ open import Data.Empty using (⊥-elim)
open import Data.Fin using (#_)
open import Data.Fin.Base using (Fin; splitAt; join; zero; suc; _↑ˡ_; _↑ʳ_)
open import Data.Fin.Patterns using (0F; 1F)
-open import Data.Fin.Properties using (splitAt-join; join-splitAt)
+open import Data.Fin.Properties using (splitAt-join; join-splitAt; splitAt-↑ˡ; splitAt⁻¹-↑ˡ)
open import Data.Nat using (ℕ; _+_)
open import Data.Product.Base using (_,_)
open import Data.Product.Relation.Binary.Pointwise.NonDependent using (×-setoid)
@@ -164,37 +164,23 @@ Graph-Func f = record
F-resp-≈
: {f g : Fin n → Fin m}
→ (∀ (x : Fin n) → f x ≡ g x)
- → Graph-same G G′
- → Graph-same (map-nodes f G) (map-nodes g G′)
-F-resp-≈ {g = g} f≗g ≡G = record
- { ↔e = ↔e
- ; ≗s = λ { x → trans (f≗g (s x)) (cong g (≗s x)) }
- ; ≗t = λ { x → trans (f≗g (t x)) (cong g (≗t x)) }
+ → Graph-same (map-nodes f G) (map-nodes g G)
+F-resp-≈ {G = G} f≗g = record
+ { ↔e = ↔-id _
+ ; ≗s = f≗g ∘ s
+ ; ≗t = f≗g ∘ t
}
where
- open Graph-same ≡G
+ open Graph G
F : Functor Nat (Setoids 0ℓ 0ℓ)
F = record
{ F₀ = Graph-setoid
; F₁ = Graph-Func
- ; identity = id
- ; homomorphism = λ { {_} {_} {_} {f} {g} → homomorphism f g }
+ ; identity = Graph-same-refl
+ ; homomorphism = Graph-same-refl
; F-resp-≈ = λ f≗g → F-resp-≈ f≗g
}
- where
- homomorphism
- : (f : Fin n → Fin m)
- → (g : Fin m → Fin o)
- → Graph-same G G′
- → Graph-same (map-nodes (g ∘ f) G) (map-nodes g (map-nodes f G′))
- homomorphism f g ≡G = record
- { ↔e = ↔e
- ; ≗s = cong (g ∘ f) ∘ ≗s
- ; ≗t = cong (g ∘ f) ∘ ≗t
- }
- where
- open Graph-same ≡G
empty-graph : Graph 0
empty-graph = record
@@ -313,77 +299,67 @@ together-resp-same {n} {m} ≡G₁ ≡G₂ = record
commute
: ∀ {n n′ m m′}
- → {G₁ G₁′ : Graph n}
- → {G₂ G₂′ : Graph m}
+ → {G₁ : Graph n}
+ → {G₂ : Graph m}
→ (f : Fin n → Fin n′)
→ (g : Fin m → Fin m′)
- → Graph-same G₁ G₁′
- → Graph-same G₂ G₂′
→ Graph-same
(together (map-nodes f G₁) (map-nodes g G₂))
- (map-nodes ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ splitAt n) (together G₁′ G₂′))
-commute {n} {n′} {m} {m′} f g ≡G₁ ≡G₂ = record
- { ↔e = +-resp-↔ ≡G₁.↔e ≡G₂.↔e
+ (map-nodes ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ splitAt n) (together G₁ G₂))
+commute {n} {n′} {m} {m′} {G₁} {G₂} f g = record
+ { ↔e = ↔e
; ≗s = source-commute
; ≗t = target-commute
}
where
- ≡fG₁ : Graph-same (map-nodes f _) (map-nodes f _)
- ≡fG₁ = F-resp-≈ (erefl ∘ f) ≡G₁
- ≡gG₂ : Graph-same (map-nodes g _) (map-nodes g _)
- ≡gG₂ = F-resp-≈ (erefl ∘ g) ≡G₂
- module ≡G₁ = Graph-same ≡G₁
- module ≡G₂ = Graph-same ≡G₂
- module ≡fG₁ = Graph-same ≡fG₁
- module ≡fG₂ = Graph-same ≡gG₂
- module ≡G₁+G₂ = Graph-same (together-resp-same ≡G₁ ≡G₂)
- module ≡fG₁+gG₂ = Graph-same (together-resp-same ≡fG₁ ≡gG₂)
+ open Graph-same (Graph-same-refl {_} {together G₁ G₂})
+ module G₁ = Graph G₁
+ module G₂ = Graph G₂
+ module fG₁ = Graph (map-nodes f G₁)
+ module gG₂ = Graph (map-nodes g G₂)
+ module G₁+G₂ = Graph (together G₁ G₂)
+ module fG₁+gG₂ = Graph (together (map-nodes f G₁) (map-nodes g G₂))
open ≡-Reasoning
source-commute
- : ≡fG₁+gG₂.s
+ : fG₁+gG₂.s
≗ [ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ splitAt n
- ∘ ≡G₁+G₂.s′
- ∘ ≡fG₁+gG₂.to
+ ∘ G₁+G₂.s
+ ∘ to
source-commute x = begin
- ≡fG₁+gG₂.s x
- ≡⟨ ≡fG₁+gG₂.≗s x ⟩
- (≡fG₁+gG₂.s′ ∘ ≡fG₁+gG₂.to) x
+ fG₁+gG₂.s x
≡⟨⟩
- (join n′ m′ ∘ map ≡fG₁.s′ ≡fG₂.s′ ∘ splitAt ≡G₁.e′ ∘ ≡fG₁+gG₂.to) x
- ≡⟨ cong (join n′ m′) (map-map ((splitAt ≡G₁.e′ ∘ ≡fG₁+gG₂.to) x)) ⟨
- (join n′ m′ ∘ map f g ∘ map ≡G₁.s′ ≡G₂.s′ ∘ splitAt ≡G₁.e′ ∘ ≡fG₁+gG₂.to) x
- ≡⟨ [,]-map ((map ≡G₁.s′ ≡G₂.s′ ∘ splitAt ≡G₁.e′ ∘ ≡fG₁+gG₂.to) x) ⟩
- ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ map ≡G₁.s′ ≡G₂.s′ ∘ splitAt ≡G₁.e′ ∘ ≡fG₁+gG₂.to) x
- ≡⟨ cong [ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] (splitAt-join n m (map ≡G₁.s′ ≡G₂.s′ (splitAt ≡G₁.e′ (≡fG₁+gG₂.to x)))) ⟨
- ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ splitAt n ∘ join n m ∘ map ≡G₁.s′ ≡G₂.s′ ∘ splitAt ≡G₁.e′ ∘ ≡fG₁+gG₂.to) x
+ (join n′ m′ ∘ map fG₁.s gG₂.s ∘ splitAt G₁.e ∘ to) x
+ ≡⟨ cong (join n′ m′) (map-map ((splitAt G₁.e ∘ to) x)) ⟨
+ (join n′ m′ ∘ map f g ∘ map G₁.s G₂.s ∘ splitAt fG₁.e ∘ to) x
+ ≡⟨ [,]-map ((map G₁.s G₂.s ∘ splitAt fG₁.e ∘ to) x) ⟩
+ ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ map G₁.s G₂.s ∘ splitAt fG₁.e ∘ to) x
+ ≡⟨ cong [ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] (splitAt-join n m (map G₁.s G₂.s (splitAt fG₁.e (to x)))) ⟨
+ ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ splitAt n ∘ join n m ∘ map G₁.s G₂.s ∘ splitAt fG₁.e ∘ to) x
≡⟨⟩
- ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ splitAt n ∘ ≡G₁+G₂.s′ ∘ ≡fG₁+gG₂.to) x ∎
+ ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ splitAt n ∘ G₁+G₂.s ∘ to) x ∎
target-commute
- : ≡fG₁+gG₂.t
+ : fG₁+gG₂.t
≗ [ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ splitAt n
- ∘ ≡G₁+G₂.t′
- ∘ ≡fG₁+gG₂.to
+ ∘ G₁+G₂.t
+ ∘ to
target-commute x = begin
- ≡fG₁+gG₂.t x
- ≡⟨ ≡fG₁+gG₂.≗t x ⟩
- (≡fG₁+gG₂.t′ ∘ ≡fG₁+gG₂.to) x
+ fG₁+gG₂.t x
≡⟨⟩
- (join n′ m′ ∘ map ≡fG₁.t′ ≡fG₂.t′ ∘ splitAt ≡G₁.e′ ∘ ≡fG₁+gG₂.to) x
- ≡⟨ cong (join n′ m′) (map-map ((splitAt ≡G₁.e′ ∘ ≡fG₁+gG₂.to) x)) ⟨
- (join n′ m′ ∘ map f g ∘ map ≡G₁.t′ ≡G₂.t′ ∘ splitAt ≡G₁.e′ ∘ ≡fG₁+gG₂.to) x
- ≡⟨ [,]-map ((map ≡G₁.t′ ≡G₂.t′ ∘ splitAt ≡G₁.e′ ∘ ≡fG₁+gG₂.to) x) ⟩
- ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ map ≡G₁.t′ ≡G₂.t′ ∘ splitAt ≡G₁.e′ ∘ ≡fG₁+gG₂.to) x
- ≡⟨ cong [ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] (splitAt-join n m (map ≡G₁.t′ ≡G₂.t′ (splitAt ≡G₁.e′ (≡fG₁+gG₂.to x)))) ⟨
- ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ splitAt n ∘ join n m ∘ map ≡G₁.t′ ≡G₂.t′ ∘ splitAt ≡G₁.e′ ∘ ≡fG₁+gG₂.to) x
+ (join n′ m′ ∘ map fG₁.t gG₂.t ∘ splitAt G₁.e ∘ to) x
+ ≡⟨ cong (join n′ m′) (map-map ((splitAt G₁.e ∘ to) x)) ⟨
+ (join n′ m′ ∘ map f g ∘ map G₁.t G₂.t ∘ splitAt fG₁.e ∘ to) x
+ ≡⟨ [,]-map ((map G₁.t G₂.t ∘ splitAt fG₁.e ∘ to) x) ⟩
+ ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ map G₁.t G₂.t ∘ splitAt fG₁.e ∘ to) x
+ ≡⟨ cong [ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] (splitAt-join n m (map G₁.t G₂.t (splitAt fG₁.e (to x)))) ⟨
+ ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ splitAt n ∘ join n m ∘ map G₁.t G₂.t ∘ splitAt fG₁.e ∘ to) x
≡⟨⟩
- ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ splitAt n ∘ ≡G₁+G₂.t′ ∘ ≡fG₁+gG₂.to) x ∎
+ ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ splitAt n ∘ G₁+G₂.t ∘ to) x ∎
⊗-homomorphism : NaturalTransformation (-×- ∘′ (F ⁂ F)) (F ∘′ -+-)
-⊗-homomorphism = record
+⊗-homomorphism = ntHelper record
{ η = λ { (n , m) → η {n} {m} }
- ; commute = λ { (f , g) (≡G₁ , ≡G₂) → commute f g ≡G₁ ≡G₂ }
- ; sym-commute = λ { (f , g) (≡G₁ , ≡G₂) → Graph-same-sym (commute f g (Graph-same-sym ≡G₁) (Graph-same-sym ≡G₂)) }
+ ; commute = λ { (f , g) {G₁ , G₂} → commute {G₁ = G₁} {G₂ = G₂} f g }
}
where
η : Func (×-setoid (Graph-setoid n) (Graph-setoid m)) (Graph-setoid (n + m))
@@ -406,155 +382,150 @@ commute {n} {n′} {m} {m′} f g ≡G₁ ≡G₂ = record
associativity
: {X Y Z : ℕ}
- → {G₁ G₁′ : Graph X}
- → {G₂ G₂′ : Graph Y}
- → {G₃ G₃′ : Graph Z}
- → Graph-same G₁ G₁′
- → Graph-same G₂ G₂′
- → Graph-same G₃ G₃′
+ → (G₁ : Graph X)
+ → (G₂ : Graph Y)
+ → (G₃ : Graph Z)
→ Graph-same
(map-nodes (Inverse.to (+-assoc-↔ X Y Z)) (together (together G₁ G₂) G₃))
- (together G₁′ (together G₂′ G₃′))
-associativity {X} {Y} {Z} ≡G₁ ≡G₂ ≡G₃ = record
+ (together G₁ (together G₂ G₃))
+associativity {X} {Y} {Z} G₁ G₂ G₃ = record
{ ↔e = ↔e
; ≗s = ≗s
; ≗t = ≗t
}
where
- module ≡G₁ = Graph-same ≡G₁
- module ≡G₂ = Graph-same ≡G₂
- module ≡G₃ = Graph-same ≡G₃
- module ≡G₂+G₃ = Graph-same (together-resp-same ≡G₂ ≡G₃)
- module ≡G₁+[G₂+G₃] = Graph-same (together-resp-same ≡G₁ (together-resp-same ≡G₂ ≡G₃))
- module ≡G₁+G₂+G₃ = Graph-same (together-resp-same (together-resp-same ≡G₁ ≡G₂) ≡G₃)
- ↔e : Fin (≡G₁.e + ≡G₂.e + ≡G₃.e) ↔ Fin (≡G₁.e′ + (≡G₂.e′ + ≡G₃.e′))
- ↔e = +-resp-↔ ≡G₁.↔e (+-resp-↔ ≡G₂.↔e ≡G₃.↔e) ↔-∘ (+-assoc-↔ ≡G₁.e ≡G₂.e ≡G₃.e)
+ module G₁ = Graph G₁
+ module G₂ = Graph G₂
+ module G₃ = Graph G₃
+ module G₂+G₃ = Graph (together G₂ G₃)
+ module G₁+[G₂+G₃] = Graph (together G₁ (together G₂ G₃))
+ module G₁+G₂+G₃ = Graph (together (together G₁ G₂) G₃)
+ ↔e : Fin (G₁.e + G₂.e + G₃.e) ↔ Fin (G₁.e + (G₂.e + G₃.e))
+ ↔e = +-assoc-↔ G₁.e G₂.e G₃.e
open ≡-Reasoning
open Inverse
- ≗s : to (+-assoc-↔ X Y Z) ∘ ≡G₁+G₂+G₃.s ≗ ≡G₁+[G₂+G₃].s′ ∘ ≡G₁+[G₂+G₃].to ∘ to (+-assoc-↔ ≡G₁.e ≡G₂.e ≡G₃.e)
+ ≗s : to (+-assoc-↔ X Y Z) ∘ G₁+G₂+G₃.s ≗ G₁+[G₂+G₃].s ∘ to ↔e
≗s x = begin
- (to (+-assoc-↔ X Y Z) ∘ ≡G₁+G₂+G₃.s) x ≡⟨⟩
- ([ [ join X (Y + Z) ∘ inj₁ , join X (Y + Z) ∘ inj₂ ∘ _ ] ∘ splitAt X , _ ] ∘ splitAt (X + Y) ∘ ≡G₁+G₂+G₃.s) x
- ≡⟨ [-,]-cong ([,]-∘ (join X (Y + Z)) ∘ splitAt X) (splitAt (X + Y) (≡G₁+G₂+G₃.s x)) ⟨
- ([ join X (Y + Z) ∘ map id _ ∘ splitAt X , join X (Y + Z) ∘ inj₂ ∘ _ ] ∘ splitAt (X + Y) ∘ ≡G₁+G₂+G₃.s) x
- ≡⟨ [,]-∘ (join X (Y + Z)) (splitAt (X + Y) (≡G₁+G₂+G₃.s x)) ⟨
- (join X (Y + Z) ∘ [ map id _ ∘ splitAt X , inj₂ ∘ join Y Z ∘ inj₂ ] ∘ splitAt (X + Y) ∘ ≡G₁+G₂+G₃.s) x ≡⟨⟩
- (join X (Y + Z) ∘ [ map id _ ∘ splitAt X , inj₂ ∘ join Y Z ∘ inj₂ ] ∘ splitAt (X + Y) ∘ join (X + Y) Z ∘ map _ ≡G₃.s ∘ splitAt _) x
+ (to (+-assoc-↔ X Y Z) ∘ G₁+G₂+G₃.s) x ≡⟨⟩
+ ([ [ join X (Y + Z) ∘ inj₁ , join X (Y + Z) ∘ inj₂ ∘ _ ] ∘ splitAt X , _ ] ∘ splitAt (X + Y) ∘ G₁+G₂+G₃.s) x
+ ≡⟨ [-,]-cong ([,]-∘ (join X (Y + Z)) ∘ splitAt X) (splitAt (X + Y) (G₁+G₂+G₃.s x)) ⟨
+ ([ join X (Y + Z) ∘ map id _ ∘ splitAt X , join X (Y + Z) ∘ inj₂ ∘ _ ] ∘ splitAt (X + Y) ∘ G₁+G₂+G₃.s) x
+ ≡⟨ [,]-∘ (join X (Y + Z)) (splitAt (X + Y) (G₁+G₂+G₃.s x)) ⟨
+ (join X (Y + Z) ∘ [ map id _ ∘ splitAt X , inj₂ ∘ join Y Z ∘ inj₂ ] ∘ splitAt (X + Y) ∘ G₁+G₂+G₃.s) x ≡⟨⟩
+ (join X (Y + Z) ∘ [ map id _ ∘ splitAt X , inj₂ ∘ join Y Z ∘ inj₂ ] ∘ splitAt (X + Y) ∘ join (X + Y) Z ∘ map _ G₃.s ∘ splitAt _) x
≡⟨ cong
(join X (Y + Z) ∘ [ map id _ ∘ splitAt X , inj₂ ∘ join Y Z ∘ inj₂ ])
- (splitAt-join (X + Y) Z (map _ ≡G₃.s (splitAt _ x))) ⟩
- (join X (Y + Z) ∘ [ map id _ ∘ splitAt X , inj₂ ∘ join Y Z ∘ inj₂ ] ∘ map _ ≡G₃.s ∘ splitAt _) x
- ≡⟨ cong (join X (Y + Z)) ([,]-map (splitAt (≡G₁.e + ≡G₂.e) x)) ⟩
- (join X (Y + Z) ∘ [ map id _ ∘ splitAt X ∘ join X Y ∘ map ≡G₁.s ≡G₂.s ∘ splitAt _ , inj₂ ∘ join Y Z ∘ inj₂ ∘ ≡G₃.s ] ∘ splitAt _) x
+ (splitAt-join (X + Y) Z (map _ G₃.s (splitAt _ x))) ⟩
+ (join X (Y + Z) ∘ [ map id _ ∘ splitAt X , inj₂ ∘ join Y Z ∘ inj₂ ] ∘ map _ G₃.s ∘ splitAt _) x
+ ≡⟨ cong (join X (Y + Z)) ([,]-map (splitAt (G₁.e + G₂.e) x)) ⟩
+ (join X (Y + Z) ∘ [ map id _ ∘ splitAt X ∘ join X Y ∘ map G₁.s G₂.s ∘ splitAt _ , inj₂ ∘ join Y Z ∘ inj₂ ∘ G₃.s ] ∘ splitAt _) x
≡⟨ cong
(join X (Y + Z))
([-,]-cong
- (cong (map id (_↑ˡ Z)) ∘ splitAt-join X Y ∘ map ≡G₁.s ≡G₂.s ∘ splitAt ≡G₁.e)
- (splitAt (≡G₁.e + ≡G₂.e) x)) ⟩
- (join X (Y + Z) ∘ [ map id _ ∘ map ≡G₁.s ≡G₂.s ∘ splitAt _ , inj₂ ∘ join Y Z ∘ inj₂ ∘ ≡G₃.s ] ∘ splitAt _) x
- ≡⟨ cong (join X (Y + Z)) ([-,]-cong (map-map ∘ splitAt ≡G₁.e) (splitAt _ x)) ⟩
- (join X (Y + Z) ∘ [ map ≡G₁.s (join Y Z ∘ inj₁ ∘ ≡G₂.s) ∘ splitAt _ , inj₂ ∘ _ ] ∘ splitAt _) x ≡⟨⟩
- (join X (Y + Z) ∘ [ map ≡G₁.s (join Y Z ∘ map ≡G₂.s ≡G₃.s ∘ inj₁) ∘ splitAt _ , _ ] ∘ splitAt _) x
+ (cong (map id (_↑ˡ Z)) ∘ splitAt-join X Y ∘ map G₁.s G₂.s ∘ splitAt G₁.e)
+ (splitAt (G₁.e + G₂.e) x)) ⟩
+ (join X (Y + Z) ∘ [ map id _ ∘ map G₁.s G₂.s ∘ splitAt _ , inj₂ ∘ join Y Z ∘ inj₂ ∘ G₃.s ] ∘ splitAt _) x
+ ≡⟨ cong (join X (Y + Z)) ([-,]-cong (map-map ∘ splitAt G₁.e) (splitAt _ x)) ⟩
+ (join X (Y + Z) ∘ [ map G₁.s (join Y Z ∘ inj₁ ∘ G₂.s) ∘ splitAt _ , inj₂ ∘ _ ] ∘ splitAt _) x ≡⟨⟩
+ (join X (Y + Z) ∘ [ map G₁.s (join Y Z ∘ map G₂.s G₃.s ∘ inj₁) ∘ splitAt _ , _ ] ∘ splitAt _) x
≡⟨ cong
(join X (Y + Z))
([-,]-cong
- (map-cong (cong ≡G₁.s ∘ erefl) (cong (join Y Z ∘ map ≡G₂.s ≡G₃.s) ∘ splitAt-join ≡G₂.e ≡G₃.e ∘ inj₁) ∘ splitAt _)
- (splitAt (≡G₁.e + ≡G₂.e) x)) ⟨
- (join X (Y + Z) ∘ [ map ≡G₁.s (join Y Z ∘ map ≡G₂.s ≡G₃.s ∘ splitAt ≡G₂.e ∘ _) ∘ splitAt _ , _ ] ∘ splitAt _) x ≡⟨⟩
- (join X (Y + Z) ∘ [ map ≡G₁.s (≡G₂+G₃.s ∘ _) ∘ splitAt _ , inj₂ ∘ join Y Z ∘ inj₂ ∘ ≡G₃.s ] ∘ splitAt _) x ≡⟨⟩
- (join X (Y + Z) ∘ [ map ≡G₁.s (≡G₂+G₃.s ∘ _) ∘ splitAt _ , inj₂ ∘ join Y Z ∘ map ≡G₂.s ≡G₃.s ∘ inj₂ ] ∘ splitAt _) x
+ (map-cong (cong G₁.s ∘ erefl) (cong (join Y Z ∘ map G₂.s G₃.s) ∘ splitAt-join G₂.e G₃.e ∘ inj₁) ∘ splitAt _)
+ (splitAt (G₁.e + G₂.e) x)) ⟨
+ (join X (Y + Z) ∘ [ map G₁.s (join Y Z ∘ map G₂.s G₃.s ∘ splitAt G₂.e ∘ _) ∘ splitAt _ , _ ] ∘ splitAt _) x ≡⟨⟩
+ (join X (Y + Z) ∘ [ map G₁.s (G₂+G₃.s ∘ _) ∘ splitAt _ , inj₂ ∘ join Y Z ∘ inj₂ ∘ G₃.s ] ∘ splitAt _) x ≡⟨⟩
+ (join X (Y + Z) ∘ [ map G₁.s (G₂+G₃.s ∘ _) ∘ splitAt _ , inj₂ ∘ join Y Z ∘ map G₂.s G₃.s ∘ inj₂ ] ∘ splitAt _) x
≡⟨ cong
(join X (Y + Z))
([,-]-cong
- (cong (inj₂ ∘ join Y Z ∘ map ≡G₂.s ≡G₃.s) ∘ splitAt-join ≡G₂.e ≡G₃.e ∘ inj₂)
- (splitAt (≡G₁.e + ≡G₂.e) x)) ⟨
- (join X (Y + Z) ∘ [ map ≡G₁.s _ ∘ splitAt _ , inj₂ ∘ join Y Z ∘ map ≡G₂.s ≡G₃.s ∘ splitAt ≡G₂.e ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x ≡⟨⟩
- (join X (Y + Z) ∘ [ map ≡G₁.s _ ∘ splitAt _ , inj₂ ∘ ≡G₂+G₃.s ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x ≡⟨⟩
- (join X (Y + Z) ∘ [ map ≡G₁.s _ ∘ splitAt _ , map ≡G₁.s ≡G₂+G₃.s ∘ inj₂ ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x
+ (cong (inj₂ ∘ join Y Z ∘ map G₂.s G₃.s) ∘ splitAt-join G₂.e G₃.e ∘ inj₂)
+ (splitAt (G₁.e + G₂.e) x)) ⟨
+ (join X (Y + Z) ∘ [ map G₁.s _ ∘ splitAt _ , inj₂ ∘ join Y Z ∘ map G₂.s G₃.s ∘ splitAt G₂.e ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x ≡⟨⟩
+ (join X (Y + Z) ∘ [ map G₁.s _ ∘ splitAt _ , inj₂ ∘ G₂+G₃.s ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x ≡⟨⟩
+ (join X (Y + Z) ∘ [ map G₁.s _ ∘ splitAt _ , map G₁.s G₂+G₃.s ∘ inj₂ ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x
≡⟨ cong
(join X (Y + Z))
([-,]-cong
- (map-map ∘ splitAt ≡G₁.e)
- (splitAt (≡G₁.e + ≡G₂.e) x)) ⟨
- (join X (Y + Z) ∘ [ map ≡G₁.s ≡G₂+G₃.s ∘ map id (_↑ˡ ≡G₃.e) ∘ splitAt _ , map ≡G₁.s ≡G₂+G₃.s ∘ inj₂ ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x
- ≡⟨ cong (join X (Y + Z)) ([,]-∘ (map ≡G₁.s ≡G₂+G₃.s) (splitAt (≡G₁.e + ≡G₂.e) x)) ⟨
- (join X (Y + Z) ∘ map ≡G₁.s ≡G₂+G₃.s ∘ [ map id (_↑ˡ ≡G₃.e) ∘ splitAt _ , inj₂ ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x
+ (map-map ∘ splitAt G₁.e)
+ (splitAt (G₁.e + G₂.e) x)) ⟨
+ (join X (Y + Z) ∘ [ map G₁.s G₂+G₃.s ∘ map id (_↑ˡ G₃.e) ∘ splitAt _ , map G₁.s G₂+G₃.s ∘ inj₂ ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x
+ ≡⟨ cong (join X (Y + Z)) ([,]-∘ (map G₁.s G₂+G₃.s) (splitAt (G₁.e + G₂.e) x)) ⟨
+ (join X (Y + Z) ∘ map G₁.s G₂+G₃.s ∘ [ map id (_↑ˡ G₃.e) ∘ splitAt _ , inj₂ ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x
≡⟨ cong
- (join X (Y + Z) ∘ map ≡G₁.s ≡G₂+G₃.s)
- (splitAt-join ≡G₁.e ≡G₂+G₃.e (([ map id _ ∘ splitAt _ , inj₂ ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x)) ⟨
- (join X (Y + Z) ∘ map ≡G₁.s ≡G₂+G₃.s ∘ splitAt ≡G₁.e ∘ join ≡G₁.e ≡G₂+G₃.e ∘ [ map id _ ∘ splitAt _ , inj₂ ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x ≡⟨⟩
- (≡G₁+[G₂+G₃].s ∘ join ≡G₁.e ≡G₂+G₃.e ∘ [ map id _ ∘ splitAt _ , inj₂ ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x
- ≡⟨ cong ≡G₁+[G₂+G₃].s ([,]-∘ (join ≡G₁.e ≡G₂+G₃.e) (splitAt (≡G₁.e + ≡G₂.e) x)) ⟩
- (≡G₁+[G₂+G₃].s ∘ [ join ≡G₁.e ≡G₂+G₃.e ∘ map id (_↑ˡ ≡G₃.e) ∘ splitAt _ , join ≡G₁.e ≡G₂+G₃.e ∘ inj₂ ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x
- ≡⟨ cong ≡G₁+[G₂+G₃].s ([-,]-cong ([,]-map ∘ splitAt ≡G₁.e) (splitAt (≡G₁.e + ≡G₂.e) x)) ⟩
- (≡G₁+[G₂+G₃].s ∘ [ [ _↑ˡ ≡G₂.e + ≡G₃.e , (≡G₁.e ↑ʳ_) ∘ (_↑ˡ ≡G₃.e) ] ∘ splitAt ≡G₁.e , (≡G₁.e ↑ʳ_) ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x ≡⟨⟩
- (≡G₁+[G₂+G₃].s ∘ to (+-assoc-↔ ≡G₁.e ≡G₂.e ≡G₃.e)) x ≡⟨ ≡G₁+[G₂+G₃].≗s (to (+-assoc-↔ ≡G₁.e ≡G₂.e ≡G₃.e) x) ⟩
- (≡G₁+[G₂+G₃].s′ ∘ ≡G₁+[G₂+G₃].to ∘ to (+-assoc-↔ ≡G₁.e ≡G₂.e ≡G₃.e)) x ∎
- ≗t : to (+-assoc-↔ X Y Z) ∘ ≡G₁+G₂+G₃.t ≗ ≡G₁+[G₂+G₃].t′ ∘ ≡G₁+[G₂+G₃].to ∘ to (+-assoc-↔ ≡G₁.e ≡G₂.e ≡G₃.e)
+ (join X (Y + Z) ∘ map G₁.s G₂+G₃.s)
+ (splitAt-join G₁.e G₂+G₃.e (([ map id _ ∘ splitAt _ , inj₂ ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x)) ⟨
+ (join X (Y + Z) ∘ map G₁.s G₂+G₃.s ∘ splitAt G₁.e ∘ join G₁.e G₂+G₃.e ∘ [ map id _ ∘ splitAt _ , inj₂ ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x ≡⟨⟩
+ (G₁+[G₂+G₃].s ∘ join G₁.e G₂+G₃.e ∘ [ map id _ ∘ splitAt _ , inj₂ ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x
+ ≡⟨ cong G₁+[G₂+G₃].s ([,]-∘ (join G₁.e G₂+G₃.e) (splitAt (G₁.e + G₂.e) x)) ⟩
+ (G₁+[G₂+G₃].s ∘ [ join G₁.e G₂+G₃.e ∘ map id (_↑ˡ G₃.e) ∘ splitAt _ , join G₁.e G₂+G₃.e ∘ inj₂ ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x
+ ≡⟨ cong G₁+[G₂+G₃].s ([-,]-cong ([,]-map ∘ splitAt G₁.e) (splitAt (G₁.e + G₂.e) x)) ⟩
+ (G₁+[G₂+G₃].s ∘ [ [ _↑ˡ G₂.e + G₃.e , (G₁.e ↑ʳ_) ∘ (_↑ˡ G₃.e) ] ∘ splitAt G₁.e , (G₁.e ↑ʳ_) ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x ≡⟨⟩
+ (G₁+[G₂+G₃].s ∘ to (+-assoc-↔ G₁.e G₂.e G₃.e)) x ∎
+ ≗t : to (+-assoc-↔ X Y Z) ∘ G₁+G₂+G₃.t ≗ G₁+[G₂+G₃].t ∘ to ↔e
≗t x = begin
- (to (+-assoc-↔ X Y Z) ∘ ≡G₁+G₂+G₃.t) x ≡⟨⟩
- ([ [ join X (Y + Z) ∘ inj₁ , join X (Y + Z) ∘ inj₂ ∘ _ ] ∘ splitAt X , _ ] ∘ splitAt (X + Y) ∘ ≡G₁+G₂+G₃.t) x
- ≡⟨ [-,]-cong ([,]-∘ (join X (Y + Z)) ∘ splitAt X) (splitAt (X + Y) (≡G₁+G₂+G₃.t x)) ⟨
- ([ join X (Y + Z) ∘ map id _ ∘ splitAt X , join X (Y + Z) ∘ inj₂ ∘ _ ] ∘ splitAt (X + Y) ∘ ≡G₁+G₂+G₃.t) x
- ≡⟨ [,]-∘ (join X (Y + Z)) (splitAt (X + Y) (≡G₁+G₂+G₃.t x)) ⟨
- (join X (Y + Z) ∘ [ map id _ ∘ splitAt X , inj₂ ∘ join Y Z ∘ inj₂ ] ∘ splitAt (X + Y) ∘ ≡G₁+G₂+G₃.t) x ≡⟨⟩
- (join X (Y + Z) ∘ [ map id _ ∘ splitAt X , inj₂ ∘ join Y Z ∘ inj₂ ] ∘ splitAt (X + Y) ∘ join (X + Y) Z ∘ map _ ≡G₃.t ∘ splitAt _) x
+ (to (+-assoc-↔ X Y Z) ∘ G₁+G₂+G₃.t) x ≡⟨⟩
+ ([ [ join X (Y + Z) ∘ inj₁ , join X (Y + Z) ∘ inj₂ ∘ _ ] ∘ splitAt X , _ ] ∘ splitAt (X + Y) ∘ G₁+G₂+G₃.t) x
+ ≡⟨ [-,]-cong ([,]-∘ (join X (Y + Z)) ∘ splitAt X) (splitAt (X + Y) (G₁+G₂+G₃.t x)) ⟨
+ ([ join X (Y + Z) ∘ map id _ ∘ splitAt X , join X (Y + Z) ∘ inj₂ ∘ _ ] ∘ splitAt (X + Y) ∘ G₁+G₂+G₃.t) x
+ ≡⟨ [,]-∘ (join X (Y + Z)) (splitAt (X + Y) (G₁+G₂+G₃.t x)) ⟨
+ (join X (Y + Z) ∘ [ map id _ ∘ splitAt X , inj₂ ∘ join Y Z ∘ inj₂ ] ∘ splitAt (X + Y) ∘ G₁+G₂+G₃.t) x ≡⟨⟩
+ (join X (Y + Z) ∘ [ map id _ ∘ splitAt X , inj₂ ∘ join Y Z ∘ inj₂ ] ∘ splitAt (X + Y) ∘ join (X + Y) Z ∘ map _ G₃.t ∘ splitAt _) x
≡⟨ cong
(join X (Y + Z) ∘ [ map id _ ∘ splitAt X , inj₂ ∘ join Y Z ∘ inj₂ ])
- (splitAt-join (X + Y) Z (map _ ≡G₃.t (splitAt _ x))) ⟩
- (join X (Y + Z) ∘ [ map id _ ∘ splitAt X , inj₂ ∘ join Y Z ∘ inj₂ ] ∘ map _ ≡G₃.t ∘ splitAt _) x
- ≡⟨ cong (join X (Y + Z)) ([,]-map (splitAt (≡G₁.e + ≡G₂.e) x)) ⟩
- (join X (Y + Z) ∘ [ map id _ ∘ splitAt X ∘ join X Y ∘ map ≡G₁.t ≡G₂.t ∘ splitAt _ , inj₂ ∘ join Y Z ∘ inj₂ ∘ ≡G₃.t ] ∘ splitAt _) x
+ (splitAt-join (X + Y) Z (map _ G₃.t (splitAt _ x))) ⟩
+ (join X (Y + Z) ∘ [ map id _ ∘ splitAt X , inj₂ ∘ join Y Z ∘ inj₂ ] ∘ map _ G₃.t ∘ splitAt _) x
+ ≡⟨ cong (join X (Y + Z)) ([,]-map (splitAt (G₁.e + G₂.e) x)) ⟩
+ (join X (Y + Z) ∘ [ map id _ ∘ splitAt X ∘ join X Y ∘ map G₁.t G₂.t ∘ splitAt _ , inj₂ ∘ join Y Z ∘ inj₂ ∘ G₃.t ] ∘ splitAt _) x
≡⟨ cong
(join X (Y + Z))
([-,]-cong
- (cong (map id (_↑ˡ Z)) ∘ splitAt-join X Y ∘ map ≡G₁.t ≡G₂.t ∘ splitAt ≡G₁.e)
- (splitAt (≡G₁.e + ≡G₂.e) x)) ⟩
- (join X (Y + Z) ∘ [ map id _ ∘ map ≡G₁.t ≡G₂.t ∘ splitAt _ , inj₂ ∘ join Y Z ∘ inj₂ ∘ ≡G₃.t ] ∘ splitAt _) x
- ≡⟨ cong (join X (Y + Z)) ([-,]-cong (map-map ∘ splitAt ≡G₁.e) (splitAt _ x)) ⟩
- (join X (Y + Z) ∘ [ map ≡G₁.t (join Y Z ∘ inj₁ ∘ ≡G₂.t) ∘ splitAt _ , inj₂ ∘ _ ] ∘ splitAt _) x ≡⟨⟩
- (join X (Y + Z) ∘ [ map ≡G₁.t (join Y Z ∘ map ≡G₂.t ≡G₃.t ∘ inj₁) ∘ splitAt _ , _ ] ∘ splitAt _) x
+ (cong (map id (_↑ˡ Z)) ∘ splitAt-join X Y ∘ map G₁.t G₂.t ∘ splitAt G₁.e)
+ (splitAt (G₁.e + G₂.e) x)) ⟩
+ (join X (Y + Z) ∘ [ map id _ ∘ map G₁.t G₂.t ∘ splitAt _ , inj₂ ∘ join Y Z ∘ inj₂ ∘ G₃.t ] ∘ splitAt _) x
+ ≡⟨ cong (join X (Y + Z)) ([-,]-cong (map-map ∘ splitAt G₁.e) (splitAt _ x)) ⟩
+ (join X (Y + Z) ∘ [ map G₁.t (join Y Z ∘ inj₁ ∘ G₂.t) ∘ splitAt _ , inj₂ ∘ _ ] ∘ splitAt _) x ≡⟨⟩
+ (join X (Y + Z) ∘ [ map G₁.t (join Y Z ∘ map G₂.t G₃.t ∘ inj₁) ∘ splitAt _ , _ ] ∘ splitAt _) x
≡⟨ cong
(join X (Y + Z))
([-,]-cong
- (map-cong (cong ≡G₁.t ∘ erefl) (cong (join Y Z ∘ map ≡G₂.t ≡G₃.t) ∘ splitAt-join ≡G₂.e ≡G₃.e ∘ inj₁) ∘ splitAt _)
- (splitAt (≡G₁.e + ≡G₂.e) x)) ⟨
- (join X (Y + Z) ∘ [ map ≡G₁.t (join Y Z ∘ map ≡G₂.t ≡G₃.t ∘ splitAt ≡G₂.e ∘ _) ∘ splitAt _ , _ ] ∘ splitAt _) x ≡⟨⟩
- (join X (Y + Z) ∘ [ map ≡G₁.t (≡G₂+G₃.t ∘ _) ∘ splitAt _ , inj₂ ∘ join Y Z ∘ inj₂ ∘ ≡G₃.t ] ∘ splitAt _) x ≡⟨⟩
- (join X (Y + Z) ∘ [ map ≡G₁.t (≡G₂+G₃.t ∘ _) ∘ splitAt _ , inj₂ ∘ join Y Z ∘ map ≡G₂.t ≡G₃.t ∘ inj₂ ] ∘ splitAt _) x
+ (map-cong (cong G₁.t ∘ erefl) (cong (join Y Z ∘ map G₂.t G₃.t) ∘ splitAt-join G₂.e G₃.e ∘ inj₁) ∘ splitAt _)
+ (splitAt (G₁.e + G₂.e) x)) ⟨
+ (join X (Y + Z) ∘ [ map G₁.t (join Y Z ∘ map G₂.t G₃.t ∘ splitAt G₂.e ∘ _) ∘ splitAt _ , _ ] ∘ splitAt _) x ≡⟨⟩
+ (join X (Y + Z) ∘ [ map G₁.t (G₂+G₃.t ∘ _) ∘ splitAt _ , inj₂ ∘ join Y Z ∘ inj₂ ∘ G₃.t ] ∘ splitAt _) x ≡⟨⟩
+ (join X (Y + Z) ∘ [ map G₁.t (G₂+G₃.t ∘ _) ∘ splitAt _ , inj₂ ∘ join Y Z ∘ map G₂.t G₃.t ∘ inj₂ ] ∘ splitAt _) x
≡⟨ cong
(join X (Y + Z))
([,-]-cong
- (cong (inj₂ ∘ join Y Z ∘ map ≡G₂.t ≡G₃.t) ∘ splitAt-join ≡G₂.e ≡G₃.e ∘ inj₂)
- (splitAt (≡G₁.e + ≡G₂.e) x)) ⟨
- (join X (Y + Z) ∘ [ map ≡G₁.t _ ∘ splitAt _ , inj₂ ∘ join Y Z ∘ map ≡G₂.t ≡G₃.t ∘ splitAt ≡G₂.e ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x ≡⟨⟩
- (join X (Y + Z) ∘ [ map ≡G₁.t _ ∘ splitAt _ , inj₂ ∘ ≡G₂+G₃.t ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x ≡⟨⟩
- (join X (Y + Z) ∘ [ map ≡G₁.t _ ∘ splitAt _ , map ≡G₁.t ≡G₂+G₃.t ∘ inj₂ ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x
+ (cong (inj₂ ∘ join Y Z ∘ map G₂.t G₃.t) ∘ splitAt-join G₂.e G₃.e ∘ inj₂)
+ (splitAt (G₁.e + G₂.e) x)) ⟨
+ (join X (Y + Z) ∘ [ map G₁.t _ ∘ splitAt _ , inj₂ ∘ join Y Z ∘ map G₂.t G₃.t ∘ splitAt G₂.e ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x ≡⟨⟩
+ (join X (Y + Z) ∘ [ map G₁.t _ ∘ splitAt _ , inj₂ ∘ G₂+G₃.t ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x ≡⟨⟩
+ (join X (Y + Z) ∘ [ map G₁.t _ ∘ splitAt _ , map G₁.t G₂+G₃.t ∘ inj₂ ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x
≡⟨ cong
(join X (Y + Z))
([-,]-cong
- (map-map ∘ splitAt ≡G₁.e)
- (splitAt (≡G₁.e + ≡G₂.e) x)) ⟨
- (join X (Y + Z) ∘ [ map ≡G₁.t ≡G₂+G₃.t ∘ map id (_↑ˡ ≡G₃.e) ∘ splitAt _ , map ≡G₁.t ≡G₂+G₃.t ∘ inj₂ ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x
- ≡⟨ cong (join X (Y + Z)) ([,]-∘ (map ≡G₁.t ≡G₂+G₃.t) (splitAt (≡G₁.e + ≡G₂.e) x)) ⟨
- (join X (Y + Z) ∘ map ≡G₁.t ≡G₂+G₃.t ∘ [ map id (_↑ˡ ≡G₃.e) ∘ splitAt _ , inj₂ ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x
+ (map-map ∘ splitAt G₁.e)
+ (splitAt (G₁.e + G₂.e) x)) ⟨
+ (join X (Y + Z) ∘ [ map G₁.t G₂+G₃.t ∘ map id (_↑ˡ G₃.e) ∘ splitAt _ , map G₁.t G₂+G₃.t ∘ inj₂ ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x
+ ≡⟨ cong (join X (Y + Z)) ([,]-∘ (map G₁.t G₂+G₃.t) (splitAt (G₁.e + G₂.e) x)) ⟨
+ (join X (Y + Z) ∘ map G₁.t G₂+G₃.t ∘ [ map id (_↑ˡ G₃.e) ∘ splitAt _ , inj₂ ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x
≡⟨ cong
- (join X (Y + Z) ∘ map ≡G₁.t ≡G₂+G₃.t)
- (splitAt-join ≡G₁.e ≡G₂+G₃.e (([ map id _ ∘ splitAt _ , inj₂ ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x)) ⟨
- (join X (Y + Z) ∘ map ≡G₁.t ≡G₂+G₃.t ∘ splitAt ≡G₁.e ∘ join ≡G₁.e ≡G₂+G₃.e ∘ [ map id _ ∘ splitAt _ , inj₂ ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x ≡⟨⟩
- (≡G₁+[G₂+G₃].t ∘ join ≡G₁.e ≡G₂+G₃.e ∘ [ map id _ ∘ splitAt _ , inj₂ ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x
- ≡⟨ cong ≡G₁+[G₂+G₃].t ([,]-∘ (join ≡G₁.e ≡G₂+G₃.e) (splitAt (≡G₁.e + ≡G₂.e) x)) ⟩
- (≡G₁+[G₂+G₃].t ∘ [ join ≡G₁.e ≡G₂+G₃.e ∘ map id (_↑ˡ ≡G₃.e) ∘ splitAt _ , join ≡G₁.e ≡G₂+G₃.e ∘ inj₂ ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x
- ≡⟨ cong ≡G₁+[G₂+G₃].t ([-,]-cong ([,]-map ∘ splitAt ≡G₁.e) (splitAt (≡G₁.e + ≡G₂.e) x)) ⟩
- (≡G₁+[G₂+G₃].t ∘ [ [ _↑ˡ ≡G₂.e + ≡G₃.e , (≡G₁.e ↑ʳ_) ∘ (_↑ˡ ≡G₃.e) ] ∘ splitAt ≡G₁.e , (≡G₁.e ↑ʳ_) ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x ≡⟨⟩
- (≡G₁+[G₂+G₃].t ∘ to (+-assoc-↔ ≡G₁.e ≡G₂.e ≡G₃.e)) x ≡⟨ ≡G₁+[G₂+G₃].≗t (to (+-assoc-↔ ≡G₁.e ≡G₂.e ≡G₃.e) x) ⟩
- (≡G₁+[G₂+G₃].t′ ∘ ≡G₁+[G₂+G₃].to ∘ to (+-assoc-↔ ≡G₁.e ≡G₂.e ≡G₃.e)) x ∎
-
-unitaryˡ : Graph-same G G′ → Graph-same (together empty-graph G) G′
-unitaryˡ ≡G = ≡G
-
-n+0↔0 : ∀ n → Fin (n + 0) ↔ Fin n
-n+0↔0 n = record
+ (join X (Y + Z) ∘ map G₁.t G₂+G₃.t)
+ (splitAt-join G₁.e G₂+G₃.e (([ map id _ ∘ splitAt _ , inj₂ ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x)) ⟨
+ (join X (Y + Z) ∘ map G₁.t G₂+G₃.t ∘ splitAt G₁.e ∘ join G₁.e G₂+G₃.e ∘ [ map id _ ∘ splitAt _ , inj₂ ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x ≡⟨⟩
+ (G₁+[G₂+G₃].t ∘ join G₁.e G₂+G₃.e ∘ [ map id _ ∘ splitAt _ , inj₂ ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x
+ ≡⟨ cong G₁+[G₂+G₃].t ([,]-∘ (join G₁.e G₂+G₃.e) (splitAt (G₁.e + G₂.e) x)) ⟩
+ (G₁+[G₂+G₃].t ∘ [ join G₁.e G₂+G₃.e ∘ map id (_↑ˡ G₃.e) ∘ splitAt _ , join G₁.e G₂+G₃.e ∘ inj₂ ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x
+ ≡⟨ cong G₁+[G₂+G₃].t ([-,]-cong ([,]-map ∘ splitAt G₁.e) (splitAt (G₁.e + G₂.e) x)) ⟩
+ (G₁+[G₂+G₃].t ∘ [ [ _↑ˡ G₂.e + G₃.e , (G₁.e ↑ʳ_) ∘ (_↑ˡ G₃.e) ] ∘ splitAt G₁.e , (G₁.e ↑ʳ_) ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x ≡⟨⟩
+ (G₁+[G₂+G₃].t ∘ to (+-assoc-↔ G₁.e G₂.e G₃.e)) x ∎
+
+unitaryˡ : Graph-same (together empty-graph G) G
+unitaryˡ = Graph-same-refl
+
+n+0↔n : ∀ n → Fin (n + 0) ↔ Fin n
+n+0↔n n = record
{ to = to
; from = from
; to-cong = λ { refl → refl }
@@ -562,63 +533,33 @@ n+0↔0 n = record
; inverse = (λ { refl → to∘from _ }) , λ { refl → from∘to _ }
}
where
- to : ∀ {n} → Fin (n + 0) → Fin n
- to {ℕ.suc ℕ.zero} n = n
- to {ℕ.suc (ℕ.suc n)} zero = zero
- to {ℕ.suc (ℕ.suc n)} (suc z) = suc (to z)
- from : ∀ {n} → Fin n → Fin (n + 0)
- from {ℕ.suc ℕ.zero} n = n
- from {ℕ.suc (ℕ.suc n)} zero = zero
- from {ℕ.suc (ℕ.suc n)} (suc z) = suc (from z)
- from∘to : ∀ {n} → ∀ (x : Fin (n + 0)) → from (to x) ≡ x
- from∘to {ℕ.suc ℕ.zero} zero = refl
- from∘to {ℕ.suc (ℕ.suc n)} zero = refl
- from∘to {ℕ.suc (ℕ.suc n)} (suc x) = cong suc (from∘to x)
- to∘from : ∀ {n} → ∀ (x : Fin n) → to (from x) ≡ x
- to∘from {ℕ.suc ℕ.zero} zero = refl
- to∘from {ℕ.suc (ℕ.suc n)} zero = refl
- to∘from {ℕ.suc (ℕ.suc n)} (suc x) = cong suc (to∘from x)
+ to : Fin (n + 0) → Fin n
+ to x with inj₁ x₁ ← splitAt n x = x₁
+ from : Fin n → Fin (n + 0)
+ from x = x ↑ˡ 0
+ from∘to : (x : Fin (n + 0)) → from (to x) ≡ x
+ from∘to x with inj₁ x₁ ← splitAt n x in eq = splitAt⁻¹-↑ˡ eq
+ to∘from : (x : Fin n) → to (from x) ≡ x
+ to∘from x rewrite splitAt-↑ˡ n x 0 = refl
unitaryʳ
- : {G G′ : Graph n}
- → Graph-same G G′
- → Graph-same (map-nodes ([ (λ x → x) , (λ ()) ] ∘ splitAt n) (together G empty-graph)) G′
-unitaryʳ {n} {G} {G′} ≡G = record
- { ↔e = e+0↔e′
+ : {G : Graph n}
+ → Graph-same (map-nodes ([ (λ x → x) , (λ ()) ] ∘ splitAt n) (together G empty-graph)) G
+unitaryʳ {n} {G} = record
+ { ↔e = e+0↔e
; ≗s = ≗s+0
; ≗t = ≗t+0
}
where
- open Graph-same ≡G
+ open Graph G
open ≡-Reasoning
- e+0↔e′ : Fin (e + 0) ↔ Fin e′
- e+0↔e′ = ↔e ↔-∘ n+0↔0 e
- module e+0↔e′ = Inverse e+0↔e′
- open Inverse
- ↑ˡ-0 : ∀ e → (x : Fin e) → x ≡ to (n+0↔0 e) (x ↑ˡ 0)
- ↑ˡ-0 (ℕ.suc ℕ.zero) zero = refl
- ↑ˡ-0 (ℕ.suc (ℕ.suc e)) zero = refl
- ↑ˡ-0 (ℕ.suc (ℕ.suc e)) (suc x) = cong suc (↑ˡ-0 (ℕ.suc e) x)
- ≗s+0 : [ id , (λ ()) ] ∘ splitAt n ∘ join n 0 ∘ map s (λ ()) ∘ splitAt e ≗ s′ ∘ e+0↔e′.to
- ≗s+0 x+0 with splitAt e x+0 in eq
- ... | inj₁ x = begin
- [ id , (λ ()) ] (splitAt n (join n 0 (inj₁ (s x)))) ≡⟨ cong [ id , (λ ()) ] (splitAt-join n 0 (inj₁ (s x))) ⟩
- s x ≡⟨ cong s (↑ˡ-0 e x) ⟩
- s (to (n+0↔0 e) (x ↑ˡ 0)) ≡⟨⟩
- s (to (n+0↔0 e) (join e 0 (inj₁ x))) ≡⟨ cong (s ∘ to (n+0↔0 e) ∘ join e 0) eq ⟨
- s (to (n+0↔0 e) (join e 0 (splitAt e x+0))) ≡⟨ cong (s ∘ to (n+0↔0 e)) (join-splitAt e 0 x+0) ⟩
- s (to (n+0↔0 e) x+0) ≡⟨ ≗s (to (n+0↔0 e) x+0) ⟩
- s′ (e+0↔e′.to x+0) ∎
- ≗t+0 : [ id , (λ ()) ] ∘ splitAt n ∘ join n 0 ∘ map t (λ ()) ∘ splitAt e ≗ t′ ∘ e+0↔e′.to
- ≗t+0 x+0 with splitAt e x+0 in eq
- ... | inj₁ x = begin
- [ id , (λ ()) ] (splitAt n (join n 0 (inj₁ (t x)))) ≡⟨ cong [ id , (λ ()) ] (splitAt-join n 0 (inj₁ (t x))) ⟩
- t x ≡⟨ cong t (↑ˡ-0 e x) ⟩
- t (to (n+0↔0 e) (x ↑ˡ 0)) ≡⟨⟩
- t (to (n+0↔0 e) (join e 0 (inj₁ x))) ≡⟨ cong (t ∘ to (n+0↔0 e) ∘ join e 0) eq ⟨
- t (to (n+0↔0 e) (join e 0 (splitAt e x+0))) ≡⟨ cong (t ∘ to (n+0↔0 e)) (join-splitAt e 0 x+0) ⟩
- t (to (n+0↔0 e) x+0) ≡⟨ ≗t (to (n+0↔0 e) x+0) ⟩
- t′ (e+0↔e′.to x+0) ∎
+ e+0↔e : Fin (e + 0) ↔ Fin e
+ e+0↔e = n+0↔n e
+ module e+0↔e = Inverse e+0↔e
+ ≗s+0 : [ id , (λ ()) ] ∘ splitAt n ∘ join n 0 ∘ map s (λ ()) ∘ splitAt e ≗ s ∘ e+0↔e.to
+ ≗s+0 x+0 with inj₁ x ← splitAt e x+0 = cong [ id , (λ ()) ] (splitAt-↑ˡ n (s x) 0)
+ ≗t+0 : [ id , (λ ()) ] ∘ splitAt n ∘ join n 0 ∘ map t (λ ()) ∘ splitAt e ≗ t ∘ e+0↔e.to
+ ≗t+0 x+0 with inj₁ x ← splitAt e x+0 = cong [ id , (λ ()) ] (splitAt-↑ˡ n (t x) 0)
+-comm-↔ : ∀ (n m : ℕ) → Fin (n + m) ↔ Fin (m + n)
+-comm-↔ n m = record
@@ -655,62 +596,46 @@ join-swap (inj₁ x) = refl
join-swap (inj₂ y) = refl
braiding
- : {G₁ G₁′ : Graph n}
- → {G₂ G₂′ : Graph m}
- → Graph-same G₁ G₁′
- → Graph-same G₂ G₂′
- → Graph-same (map-nodes ([ m ↑ʳ_ , _↑ˡ n ] ∘ splitAt n) (together G₁ G₂)) (together G₂′ G₁′)
-braiding {n} {m} ≡G₁ ≡G₂ = record
- { ↔e = +-comm-↔ ≡G₁.e′ ≡G₂.e′ ↔-∘ +-resp-↔ ≡G₁.↔e ≡G₂.↔e
+ : {G₁ : Graph n}
+ → {G₂ : Graph m}
+ → Graph-same (map-nodes ([ m ↑ʳ_ , _↑ˡ n ] ∘ splitAt n) (together G₁ G₂)) (together G₂ G₁)
+braiding {n} {m} {G₁} {G₂} = record
+ { ↔e = +-comm-↔ G₁.e G₂.e
; ≗s = ≗s
; ≗t = ≗t
}
where
open ≡-Reasoning
- module ≡G₁ = Graph-same ≡G₁
- module ≡G₂ = Graph-same ≡G₂
+ module G₁ = Graph G₁
+ module G₂ = Graph G₂
≗s : [ m ↑ʳ_ , _↑ˡ n ] ∘ splitAt n
- ∘ join n m ∘ map ≡G₁.s ≡G₂.s ∘ splitAt ≡G₁.e
- ≗ join m n ∘ map ≡G₂.s′ ≡G₁.s′ ∘ splitAt ≡G₂.e′
- ∘ join ≡G₂.e′ ≡G₁.e′ ∘ swap ∘ splitAt ≡G₁.e′
- ∘ join ≡G₁.e′ ≡G₂.e′ ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e
+ ∘ join n m ∘ map G₁.s G₂.s ∘ splitAt G₁.e
+ ≗ join m n ∘ map G₂.s G₁.s ∘ splitAt G₂.e
+ ∘ Inverse.to (+-comm-↔ G₁.e G₂.e)
≗s x = begin
- ([ m ↑ʳ_ , _↑ˡ n ] ∘ splitAt n ∘ join n m ∘ map ≡G₁.s ≡G₂.s ∘ splitAt ≡G₁.e) x
- ≡⟨ (join-swap ∘ splitAt n ∘ join n m ∘ map ≡G₁.s ≡G₂.s ∘ splitAt ≡G₁.e) x ⟨
- (join m n ∘ swap ∘ splitAt n ∘ join n m ∘ map ≡G₁.s ≡G₂.s ∘ splitAt ≡G₁.e) x
- ≡⟨ (cong (join m n ∘ swap) ∘ splitAt-join n m ∘ map ≡G₁.s ≡G₂.s ∘ splitAt ≡G₁.e) x ⟩
- (join m n ∘ swap ∘ map ≡G₁.s ≡G₂.s ∘ splitAt ≡G₁.e) x
- ≡⟨ (cong (join m n ∘ swap) ∘ map-cong ≡G₁.≗s ≡G₂.≗s ∘ splitAt ≡G₁.e) x ⟩
- (join m n ∘ swap ∘ map (≡G₁.s′ ∘ ≡G₁.to) (≡G₂.s′ ∘ ≡G₂.to) ∘ splitAt ≡G₁.e) x
- ≡⟨ (cong (join m n ∘ swap) ∘ map-map ∘ splitAt ≡G₁.e) x ⟨
- (join m n ∘ swap ∘ map ≡G₁.s′ ≡G₂.s′ ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e) x
- ≡⟨ (cong (join m n) ∘ swap-map ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e) x ⟩
- (join m n ∘ map ≡G₂.s′ ≡G₁.s′ ∘ swap ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e) x
- ≡⟨ (cong (join m n ∘ map ≡G₂.s′ ≡G₁.s′ ∘ swap) ∘ splitAt-join ≡G₁.e′ ≡G₂.e′ ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e) x ⟨
- (join m n ∘ map ≡G₂.s′ ≡G₁.s′ ∘ swap ∘ splitAt ≡G₁.e′ ∘ join ≡G₁.e′ ≡G₂.e′ ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e) x
- ≡⟨ (cong (join m n ∘ map ≡G₂.s′ ≡G₁.s′) ∘ splitAt-join ≡G₂.e′ ≡G₁.e′ ∘ swap ∘ splitAt ≡G₁.e′ ∘ join ≡G₁.e′ ≡G₂.e′ ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e) x ⟨
- (join m n ∘ map ≡G₂.s′ ≡G₁.s′ ∘ splitAt ≡G₂.e′ ∘ join ≡G₂.e′ ≡G₁.e′ ∘ swap ∘ splitAt ≡G₁.e′ ∘ join ≡G₁.e′ ≡G₂.e′ ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e) x ∎
+ ([ m ↑ʳ_ , _↑ˡ n ] ∘ splitAt n ∘ join n m ∘ map G₁.s G₂.s ∘ splitAt G₁.e) x
+ ≡⟨ (join-swap ∘ splitAt n ∘ join n m ∘ map G₁.s G₂.s ∘ splitAt G₁.e) x ⟨
+ (join m n ∘ swap ∘ splitAt n ∘ join n m ∘ map G₁.s G₂.s ∘ splitAt G₁.e) x
+ ≡⟨ (cong (join m n ∘ swap) ∘ splitAt-join n m ∘ map G₁.s G₂.s ∘ splitAt G₁.e) x ⟩
+ (join m n ∘ swap ∘ map G₁.s G₂.s ∘ splitAt G₁.e) x
+ ≡⟨ (cong (join m n) ∘ swap-map ∘ splitAt G₁.e) x ⟩
+ (join m n ∘ map G₂.s G₁.s ∘ swap ∘ splitAt G₁.e) x
+ ≡⟨ (cong (join m n ∘ map G₂.s G₁.s) ∘ splitAt-join G₂.e G₁.e ∘ swap ∘ splitAt G₁.e) x ⟨
+ (join m n ∘ map G₂.s G₁.s ∘ splitAt G₂.e ∘ join G₂.e G₁.e ∘ swap ∘ splitAt G₁.e) x ∎
≗t : [ m ↑ʳ_ , _↑ˡ n ] ∘ splitAt n
- ∘ join n m ∘ map ≡G₁.t ≡G₂.t ∘ splitAt ≡G₁.e
- ≗ join m n ∘ map ≡G₂.t′ ≡G₁.t′ ∘ splitAt ≡G₂.e′
- ∘ join ≡G₂.e′ ≡G₁.e′ ∘ swap ∘ splitAt ≡G₁.e′
- ∘ join ≡G₁.e′ ≡G₂.e′ ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e
+ ∘ join n m ∘ map G₁.t G₂.t ∘ splitAt G₁.e
+ ≗ join m n ∘ map G₂.t G₁.t ∘ splitAt G₂.e
+ ∘ Inverse.to (+-comm-↔ G₁.e G₂.e)
≗t x = begin
- ([ m ↑ʳ_ , _↑ˡ n ] ∘ splitAt n ∘ join n m ∘ map ≡G₁.t ≡G₂.t ∘ splitAt ≡G₁.e) x
- ≡⟨ (join-swap ∘ splitAt n ∘ join n m ∘ map ≡G₁.t ≡G₂.t ∘ splitAt ≡G₁.e) x ⟨
- (join m n ∘ swap ∘ splitAt n ∘ join n m ∘ map ≡G₁.t ≡G₂.t ∘ splitAt ≡G₁.e) x
- ≡⟨ (cong (join m n ∘ swap) ∘ splitAt-join n m ∘ map ≡G₁.t ≡G₂.t ∘ splitAt ≡G₁.e) x ⟩
- (join m n ∘ swap ∘ map ≡G₁.t ≡G₂.t ∘ splitAt ≡G₁.e) x
- ≡⟨ (cong (join m n ∘ swap) ∘ map-cong ≡G₁.≗t ≡G₂.≗t ∘ splitAt ≡G₁.e) x ⟩
- (join m n ∘ swap ∘ map (≡G₁.t′ ∘ ≡G₁.to) (≡G₂.t′ ∘ ≡G₂.to) ∘ splitAt ≡G₁.e) x
- ≡⟨ (cong (join m n ∘ swap) ∘ map-map ∘ splitAt ≡G₁.e) x ⟨
- (join m n ∘ swap ∘ map ≡G₁.t′ ≡G₂.t′ ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e) x
- ≡⟨ (cong (join m n) ∘ swap-map ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e) x ⟩
- (join m n ∘ map ≡G₂.t′ ≡G₁.t′ ∘ swap ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e) x
- ≡⟨ (cong (join m n ∘ map ≡G₂.t′ ≡G₁.t′ ∘ swap) ∘ splitAt-join ≡G₁.e′ ≡G₂.e′ ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e) x ⟨
- (join m n ∘ map ≡G₂.t′ ≡G₁.t′ ∘ swap ∘ splitAt ≡G₁.e′ ∘ join ≡G₁.e′ ≡G₂.e′ ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e) x
- ≡⟨ (cong (join m n ∘ map ≡G₂.t′ ≡G₁.t′) ∘ splitAt-join ≡G₂.e′ ≡G₁.e′ ∘ swap ∘ splitAt ≡G₁.e′ ∘ join ≡G₁.e′ ≡G₂.e′ ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e) x ⟨
- (join m n ∘ map ≡G₂.t′ ≡G₁.t′ ∘ splitAt ≡G₂.e′ ∘ join ≡G₂.e′ ≡G₁.e′ ∘ swap ∘ splitAt ≡G₁.e′ ∘ join ≡G₁.e′ ≡G₂.e′ ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e) x ∎
+ ([ m ↑ʳ_ , _↑ˡ n ] ∘ splitAt n ∘ join n m ∘ map G₁.t G₂.t ∘ splitAt G₁.e) x
+ ≡⟨ (join-swap ∘ splitAt n ∘ join n m ∘ map G₁.t G₂.t ∘ splitAt G₁.e) x ⟨
+ (join m n ∘ swap ∘ splitAt n ∘ join n m ∘ map G₁.t G₂.t ∘ splitAt G₁.e) x
+ ≡⟨ (cong (join m n ∘ swap) ∘ splitAt-join n m ∘ map G₁.t G₂.t ∘ splitAt G₁.e) x ⟩
+ (join m n ∘ swap ∘ map G₁.t G₂.t ∘ splitAt G₁.e) x
+ ≡⟨ (cong (join m n) ∘ swap-map ∘ splitAt G₁.e) x ⟩
+ (join m n ∘ map G₂.t G₁.t ∘ swap ∘ splitAt G₁.e) x
+ ≡⟨ (cong (join m n ∘ map G₂.t G₁.t) ∘ splitAt-join G₂.e G₁.e ∘ swap ∘ splitAt G₁.e) x ⟨
+ (join m n ∘ map G₂.t G₁.t ∘ splitAt G₂.e ∘ join G₂.e G₁.e ∘ swap ∘ splitAt G₁.e) x ∎
graph : SymmetricMonoidalFunctor Nat-smc (Setoids-× {0ℓ})
graph = record
@@ -719,11 +644,11 @@ graph = record
{ isMonoidal = record
{ ε = ε
; ⊗-homo = ⊗-homomorphism
- ; associativity = λ { ((≡G₁ , ≡G₂) , ≡G₃) → associativity ≡G₁ ≡G₂ ≡G₃ }
- ; unitaryˡ = λ { (lift tt , ≡G) → unitaryˡ ≡G }
- ; unitaryʳ = λ { (≡G , lift tt) → unitaryʳ ≡G }
+ ; associativity = λ { {x} {y} {z} {(G₁ , G₂) , G₃} → associativity G₁ G₂ G₃ }
+ ; unitaryˡ = unitaryˡ
+ ; unitaryʳ = unitaryʳ
}
- ; braiding-compat = λ { (≡G₁ , ≡G₂) → braiding ≡G₁ ≡G₂ }
+ ; braiding-compat = λ { {x} {y} {G₁ , G₂} → braiding {G₁ = G₁} {G₂ = G₂} }
}
}