aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-10-16 19:51:17 -0500
committerJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-10-16 19:51:17 -0500
commite5b3cd06b1ba2504831db203a6be30c184df3274 (patch)
treea999bb66efc17d34be6e4de4f7bca497d49731b0
parentd7fb0a54d661f82282cb7175ba3b133aa74024ed (diff)
Add Preimage symmetric monoidal functor
-rw-r--r--Functor/Instance/Nat/Preimage.agda68
-rw-r--r--Functor/Monoidal/Instance/Nat/Preimage.agda164
2 files changed, 232 insertions, 0 deletions
diff --git a/Functor/Instance/Nat/Preimage.agda b/Functor/Instance/Nat/Preimage.agda
new file mode 100644
index 0000000..7d471b9
--- /dev/null
+++ b/Functor/Instance/Nat/Preimage.agda
@@ -0,0 +1,68 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Functor.Instance.Nat.Preimage where
+
+open import Categories.Category.Core using (module Category)
+open import Categories.Category.Instance.Nat using (Nat)
+open import Categories.Category.Instance.Setoids using (Setoids)
+open import Categories.Functor using (Functor)
+open import Data.Fin.Base using (Fin)
+open import Data.Bool.Base using (Bool)
+open import Data.Nat.Base using (ℕ)
+open import Data.Subset.Functional using (Subset)
+open import Data.Vec.Functional.Relation.Binary.Equality.Setoid using (≋-setoid)
+open import Function.Base using (id; flip; _∘_)
+open import Function.Bundles using (Func; _⟶ₛ_)
+open import Function.Construct.Identity using () renaming (function to Id)
+open import Function.Construct.Setoid using (setoid; _∙_)
+open import Level using (0ℓ)
+open import Relation.Binary using (Rel; Setoid)
+open import Relation.Binary.PropositionalEquality as ≡ using (_≗_)
+
+open Functor
+open Func
+
+module Nat = Category Nat
+
+_≈_ : {X Y : Setoid 0ℓ 0ℓ} → Rel (X ⟶ₛ Y) 0ℓ
+_≈_ {X} {Y} = Setoid._≈_ (setoid X Y)
+infixr 4 _≈_
+
+private
+ variable A B C : ℕ
+
+-- action on objects (Subset n)
+Subsetₛ : ℕ → Setoid 0ℓ 0ℓ
+Subsetₛ = ≋-setoid (≡.setoid Bool)
+
+-- action of Preimage on morphisms (contravariant)
+Preimage₁ : (Fin A → Fin B) → Subsetₛ B ⟶ₛ Subsetₛ A
+to (Preimage₁ f) i = i ∘ f
+cong (Preimage₁ f) x≗y = x≗y ∘ f
+
+-- Preimage respects identity
+Preimage-identity : Preimage₁ id ≈ Id (Subsetₛ A)
+Preimage-identity {A} = Setoid.refl (Subsetₛ A)
+
+-- Preimage flips composition
+Preimage-homomorphism
+ : {A B C : ℕ}
+ (f : Fin A → Fin B)
+ (g : Fin B → Fin C)
+ → Preimage₁ (g ∘ f) ≈ Preimage₁ f ∙ Preimage₁ g
+Preimage-homomorphism {A} _ _ = Setoid.refl (Subsetₛ A)
+
+-- Preimage respects equality
+Preimage-resp-≈
+ : {f g : Fin A → Fin B}
+ → f ≗ g
+ → Preimage₁ f ≈ Preimage₁ g
+Preimage-resp-≈ f≗g {v} = ≡.cong v ∘ f≗g
+
+-- the Preimage functor
+Preimage : Functor Nat.op (Setoids 0ℓ 0ℓ)
+F₀ Preimage = Subsetₛ
+F₁ Preimage = Preimage₁
+identity Preimage = Preimage-identity
+homomorphism Preimage {f = f} {g} {v} = Preimage-homomorphism g f {v}
+F-resp-≈ Preimage = Preimage-resp-≈
diff --git a/Functor/Monoidal/Instance/Nat/Preimage.agda b/Functor/Monoidal/Instance/Nat/Preimage.agda
new file mode 100644
index 0000000..e687443
--- /dev/null
+++ b/Functor/Monoidal/Instance/Nat/Preimage.agda
@@ -0,0 +1,164 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Functor.Monoidal.Instance.Nat.Preimage where
+
+open import Category.Monoidal.Instance.Nat using (Natop,+,0; Natop-Cartesian)
+open import Categories.Category.Instance.Nat using (Nat-Cocartesian)
+open import Categories.Category.Instance.SingletonSet using (SingletonSetoid)
+open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
+open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian)
+open import Categories.Category.BinaryProducts using (module BinaryProducts)
+open import Categories.Category.Cartesian using (Cartesian)
+open import Categories.Category.Cocartesian using (Cocartesian; BinaryCoproducts)
+open import Categories.Category.Product using (_⁂_)
+open import Categories.Functor using (_∘F_)
+open import Data.Subset.Functional using (Subset)
+open import Data.Nat.Base using (ℕ; _+_)
+open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
+open import Data.Product.Base using (_,_; _×_; Σ)
+open import Data.Vec.Functional using ([]; _++_)
+open import Data.Vec.Functional.Properties using (++-cong)
+open import Data.Vec.Functional using (Vector; [])
+open import Function.Bundles using (Func; _⟶ₛ_)
+open import Functor.Instance.Nat.Preimage using (Preimage; Subsetₛ)
+open import Level using (0ℓ)
+
+open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using (products)
+open BinaryProducts products using (-×-)
+open Cocartesian Nat-Cocartesian using (module Dual; _+₁_; +-assocʳ; +-swap; +₁∘+-swap)
+open Dual.op-binaryProducts using () renaming (-×- to -+-; assocˡ∘⟨⟩ to []∘assocʳ; swap∘⟨⟩ to []∘swap)
+
+open import Data.Fin.Base using (Fin; splitAt; join; _↑ˡ_; _↑ʳ_)
+open import Data.Fin.Properties using (splitAt-join; splitAt-↑ˡ)
+open import Data.Sum.Base using ([_,_]′; map; map₁; map₂; inj₁; inj₂)
+open import Data.Sum.Properties using ([,]-map; [,]-cong; [-,]-cong; [,-]-cong; [,]-∘)
+open import Data.Fin.Preimage using (preimage)
+open import Function.Base using (_∘_; id)
+open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_; module ≡-Reasoning)
+open import Data.Bool.Base using (Bool)
+
+open Func
+Preimage-ε : SingletonSetoid {0ℓ} {0ℓ} ⟶ₛ Subsetₛ 0
+to Preimage-ε x = []
+cong Preimage-ε x ()
+
+++ₛ : {n m : ℕ} → Subsetₛ n ×ₛ Subsetₛ m ⟶ₛ Subsetₛ (n + m)
+to ++ₛ (xs , ys) = xs ++ ys
+cong ++ₛ (≗xs , ≗ys) = ++-cong _ _ ≗xs ≗ys
+
+preimage-++
+ : {n n′ m m′ : ℕ}
+ (f : Fin n → Fin n′)
+ (g : Fin m → Fin m′)
+ {xs : Subset n′}
+ {ys : Subset m′}
+ → preimage f xs ++ preimage g ys ≗ preimage (f +₁ g) (xs ++ ys)
+preimage-++ {n} {n′} {m} {m′} f g {xs} {ys} e = begin
+ (xs ∘ f ++ ys ∘ g) e ≡⟨ [,]-map (splitAt n e) ⟨
+ [ xs , ys ]′ (map f g (splitAt n e)) ≡⟨ ≡.cong [ xs , ys ]′ (splitAt-join n′ m′ (map f g (splitAt n e))) ⟨
+ [ xs , ys ]′ (splitAt n′ (join n′ m′ (map f g (splitAt n e)))) ≡⟨ ≡.cong ([ xs , ys ]′ ∘ splitAt n′) ([,]-map (splitAt n e)) ⟩
+ [ xs , ys ]′ (splitAt n′ ((f +₁ g) e)) ∎
+ where
+ open ≡-Reasoning
+
+⊗-homomorphism : NaturalTransformation (-×- ∘F (Preimage ⁂ Preimage)) (Preimage ∘F -+-)
+⊗-homomorphism = ntHelper record
+ { η = λ (n , m) → ++ₛ {n} {m}
+ ; commute = λ { {n′ , m′} {n , m} (f , g) {xs , ys} e → preimage-++ f g e }
+ }
+
+open import Category.Instance.Setoids.SymmetricMonoidal {0ℓ} using (Setoids-×)
+open import Categories.Functor.Monoidal.Symmetric Natop,+,0 Setoids-× using (module Lax)
+open Lax using (SymmetricMonoidalFunctor)
+
+++-assoc
+ : {m n o : ℕ}
+ (X : Subset m)
+ (Y : Subset n)
+ (Z : Subset o)
+ → ((X ++ Y) ++ Z) ∘ +-assocʳ {m} ≗ X ++ (Y ++ Z)
+++-assoc {m} {n} {o} X Y Z i = begin
+ ((X ++ Y) ++ Z) (+-assocʳ {m} i) ≡⟨⟩
+ [ [ X , Y ]′ ∘ splitAt m , Z ]′ (splitAt (m + n) (+-assocʳ {m} i)) ≡⟨ [,]-cong ([,]-cong (inv ∘ X) (inv ∘ Y) ∘ splitAt m) (inv ∘ Z) (splitAt (m + n) (+-assocʳ {m} i)) ⟨
+ [ [ b ∘ X′ , b ∘ Y′ ]′ ∘ splitAt m , b ∘ Z′ ]′ (splitAt _ (+-assocʳ {m} i)) ≡⟨ [-,]-cong ([,]-∘ b ∘ splitAt m) (splitAt (m + n) (+-assocʳ {m} i)) ⟨
+ [ b ∘ [ X′ , Y′ ]′ ∘ splitAt m , b ∘ Z′ ]′ (splitAt _ (+-assocʳ {m} i)) ≡⟨ [,]-∘ b (splitAt (m + n) (+-assocʳ {m} i)) ⟨
+ b ([ [ X′ , Y′ ]′ ∘ splitAt m , Z′ ]′ (splitAt _ (+-assocʳ {m} i))) ≡⟨ ≡.cong b ([]∘assocʳ {2} {m} i) ⟩
+ b ([ X′ , [ Y′ , Z′ ]′ ∘ splitAt n ]′ (splitAt m i)) ≡⟨ [,]-∘ b (splitAt m i) ⟩
+ [ b ∘ X′ , b ∘ [ Y′ , Z′ ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,-]-cong ([,]-∘ b ∘ splitAt n) (splitAt m i) ⟩
+ [ b ∘ X′ , [ b ∘ Y′ , b ∘ Z′ ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,]-cong (inv ∘ X) ([,]-cong (inv ∘ Y) (inv ∘ Z) ∘ splitAt n) (splitAt m i) ⟩
+ [ X , [ Y , Z ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨⟩
+ (X ++ (Y ++ Z)) i ∎
+ where
+ open Bool
+ open Fin
+ f : Bool → Fin 2
+ f false = zero
+ f true = suc zero
+ b : Fin 2 → Bool
+ b zero = false
+ b (suc zero) = true
+ inv : b ∘ f ≗ id
+ inv false = ≡.refl
+ inv true = ≡.refl
+ X′ : Fin m → Fin 2
+ X′ = f ∘ X
+ Y′ : Fin n → Fin 2
+ Y′ = f ∘ Y
+ Z′ : Fin o → Fin 2
+ Z′ = f ∘ Z
+ open ≡-Reasoning
+
+Preimage-unitaryˡ
+ : {n : ℕ}
+ (X : Subset n)
+ → (X ++ []) ∘ (_↑ˡ 0) ≗ X
+Preimage-unitaryˡ {n} X i = begin
+ [ X , [] ]′ (splitAt _ (i ↑ˡ 0)) ≡⟨ ≡.cong ([ X , [] ]′) (splitAt-↑ˡ n i 0) ⟩
+ [ X , [] ]′ (inj₁ i) ≡⟨⟩
+ X i ∎
+ where
+ open ≡-Reasoning
+
+++-swap
+ : {n m : ℕ}
+ (X : Subset n)
+ (Y : Subset m)
+ → (X ++ Y) ∘ +-swap {n} ≗ Y ++ X
+++-swap {n} {m} X Y i = begin
+ [ X , Y ]′ (splitAt n (+-swap {n} i)) ≡⟨ [,]-cong (inv ∘ X) (inv ∘ Y) (splitAt n (+-swap {n} i)) ⟨
+ [ b ∘ X′ , b ∘ Y′ ]′ (splitAt n (+-swap {n} i)) ≡⟨ [,]-∘ b (splitAt n (+-swap {n} i)) ⟨
+ b ([ X′ , Y′ ]′ (splitAt n (+-swap {n} i))) ≡⟨ ≡.cong b ([]∘swap {2} {n} i) ⟩
+ b ([ Y′ , X′ ]′ (splitAt m i)) ≡⟨ [,]-∘ b (splitAt m i) ⟩
+ [ b ∘ Y′ , b ∘ X′ ]′ (splitAt m i) ≡⟨ [,]-cong (inv ∘ Y) (inv ∘ X) (splitAt m i) ⟩
+ [ Y , X ]′ (splitAt m i) ∎
+ where
+ open Bool
+ open Fin
+ f : Bool → Fin 2
+ f false = zero
+ f true = suc zero
+ b : Fin 2 → Bool
+ b zero = false
+ b (suc zero) = true
+ inv : b ∘ f ≗ id
+ inv false = ≡.refl
+ inv true = ≡.refl
+ X′ : Fin n → Fin 2
+ X′ = f ∘ X
+ Y′ : Fin m → Fin 2
+ Y′ = f ∘ Y
+ open ≡-Reasoning
+
+open SymmetricMonoidalFunctor
+Preimage,++,[] : SymmetricMonoidalFunctor
+Preimage,++,[] .F = Preimage
+Preimage,++,[] .isBraidedMonoidal = record
+ { isMonoidal = record
+ { ε = Preimage-ε
+ ; ⊗-homo = ⊗-homomorphism
+ ; associativity = λ { {m} {n} {o} {(X , Y) , Z} i → ++-assoc X Y Z i }
+ ; unitaryˡ = λ _ → ≡.refl
+ ; unitaryʳ = λ { {n} {X , _} i → Preimage-unitaryˡ X i }
+ }
+ ; braiding-compat = λ { {n} {m} {X , Y} i → ++-swap X Y i }
+ }