aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-11-09 20:28:11 -0600
committerJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-11-09 20:28:11 -0600
commited5f0ae0f95a1675b272b205bb58724368031c01 (patch)
tree9b0cbe733a77d83050b665fe984a6e21c64a3815
parent6a5154cf29d98ab644b5def52c55f213d1076e2b (diff)
Use functional vector in edge definition
-rw-r--r--Data/Hypergraph.agda2
-rw-r--r--Data/Hypergraph/Edge.agda72
-rw-r--r--Data/Opaque/List.agda61
-rw-r--r--Functor/Instance/List.agda61
-rw-r--r--Functor/Instance/Nat/Circ.agda2
-rw-r--r--Functor/Instance/Nat/Edge.agda9
-rw-r--r--Functor/Monoidal/Construction/MultisetOf.agda6
-rw-r--r--Functor/Monoidal/Instance/Nat/Circ.agda20
8 files changed, 157 insertions, 76 deletions
diff --git a/Data/Hypergraph.agda b/Data/Hypergraph.agda
index 770c500..7d22129 100644
--- a/Data/Hypergraph.agda
+++ b/Data/Hypergraph.agda
@@ -12,6 +12,8 @@ import Data.Hypergraph.Edge {ℓ} HL as Hyperedge
import Data.List.Relation.Binary.Permutation.Propositional as List-↭
import Data.List.Relation.Binary.Permutation.Setoid as ↭
+open HypergraphLabel HL using (Label) public
+
open import Data.List using (List; map)
open import Data.Nat using (ℕ)
open import Data.String using (String; unlines)
diff --git a/Data/Hypergraph/Edge.agda b/Data/Hypergraph/Edge.agda
index 5c22a04..447f008 100644
--- a/Data/Hypergraph/Edge.agda
+++ b/Data/Hypergraph/Edge.agda
@@ -5,23 +5,24 @@ open import Data.Hypergraph.Label using (HypergraphLabel)
open import Level using (Level; 0ℓ)
module Data.Hypergraph.Edge {ℓ : Level} (HL : HypergraphLabel) where
-import Data.Vec as Vec
-import Data.Vec.Relation.Binary.Equality.Cast as VecCast
-import Relation.Binary.PropositionalEquality as ≡
+import Data.Vec.Functional as Vec
+import Data.Vec.Functional.Relation.Binary.Equality.Setoid as PW
+import Data.Fin.Properties as FinProp
-open import Data.Fin using (Fin)
+open import Data.Fin as Fin using (Fin)
open import Data.Fin.Show using () renaming (show to showFin)
open import Data.Nat using (ℕ)
open import Data.String using (String; _<+>_)
open import Data.Vec.Show using () renaming (show to showVec)
open import Level using (0ℓ)
open import Relation.Binary using (Setoid; IsEquivalence)
-open import Function using (_⟶ₛ_; Func)
+open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; module ≡-Reasoning)
+open import Function using (_⟶ₛ_; Func; _∘_)
module HL = HypergraphLabel HL
-open HL using (Label; cast; cast-is-id)
-open Vec using (Vec)
+open HL using (Label)
+open Vec using (Vector)
open Func
record Edge (v : ℕ) : Set ℓ where
@@ -29,7 +30,7 @@ record Edge (v : ℕ) : Set ℓ where
field
{arity} : ℕ
label : Label arity
- ports : Vec (Fin v) arity
+ ports : Fin arity → Fin v
map : {n m : ℕ} → (Fin n → Fin m) → Edge n → Edge m
map f edge = record
@@ -39,11 +40,10 @@ map f edge = record
where
open Edge edge
-open ≡ using (_≡_)
-open VecCast using (_≈[_]_)
-
module _ {v : ℕ} where
+ open PW (≡.setoid (Fin v)) using (_≋_)
+
-- an equivalence relation on edges with v nodes
record _≈_ (E E′ : Edge v) : Set ℓ where
constructor mk≈
@@ -51,34 +51,49 @@ module _ {v : ℕ} where
module E′ = Edge E′
field
≡arity : E.arity ≡ E′.arity
- ≡label : cast ≡arity E.label ≡ E′.label
- ≡ports : E.ports ≈[ ≡arity ] E′.ports
+ ≡label : HL.cast ≡arity E.label ≡ E′.label
+ ≡ports : E.ports ≋ E′.ports ∘ Fin.cast ≡arity
≈-refl : {x : Edge v} → x ≈ x
- ≈-refl = record
+ ≈-refl {x} = record
{ ≡arity = ≡.refl
; ≡label = HL.≈-reflexive ≡.refl
- ; ≡ports = VecCast.≈-reflexive ≡.refl
+ ; ≡ports = ≡.cong (Edge.ports x) ∘ ≡.sym ∘ FinProp.cast-is-id _
}
≈-sym : {x y : Edge v} → x ≈ y → y ≈ x
≈-sym x≈y = record
{ ≡arity = ≡.sym ≡arity
; ≡label = HL.≈-sym ≡label
- ; ≡ports = VecCast.≈-sym ≡ports
+ ; ≡ports = ≡.sym ∘ ≡ports-sym
}
where
open _≈_ x≈y
-
- ≈-trans : {i j k : Edge v} → i ≈ j → j ≈ k → i ≈ k
- ≈-trans {i} {j} {k} i≈j j≈k = record
- { ≡arity = ≡.trans i≈j.≡arity j≈k.≡arity
- ; ≡label = HL.≈-trans i≈j.≡label j≈k.≡label
- ; ≡ports = VecCast.≈-trans i≈j.≡ports j≈k.≡ports
+ open ≡-Reasoning
+ ≡ports-sym : (i : Fin E′.arity) → E.ports (Fin.cast _ i) ≡ E′.ports i
+ ≡ports-sym i = begin
+ E.ports (Fin.cast _ i) ≡⟨ ≡ports (Fin.cast _ i) ⟩
+ E′.ports (Fin.cast ≡arity (Fin.cast _ i))
+ ≡⟨ ≡.cong E′.ports (FinProp.cast-involutive ≡arity _ i) ⟩
+ E′.ports i ∎
+
+ ≈-trans : {x y z : Edge v} → x ≈ y → y ≈ z → x ≈ z
+ ≈-trans {x} {y} {z} x≈y y≈z = record
+ { ≡arity = ≡.trans x≈y.≡arity y≈z.≡arity
+ ; ≡label = HL.≈-trans x≈y.≡label y≈z.≡label
+ ; ≡ports = ≡-ports
}
where
- module i≈j = _≈_ i≈j
- module j≈k = _≈_ j≈k
+ module x≈y = _≈_ x≈y
+ module y≈z = _≈_ y≈z
+ open ≡-Reasoning
+ ≡-ports : (i : Fin x≈y.E.arity) → x≈y.E.ports i ≡ y≈z.E′.ports (Fin.cast _ i)
+ ≡-ports i = begin
+ x≈y.E.ports i  ≡⟨ x≈y.≡ports i ⟩
+ y≈z.E.ports (Fin.cast _ i)  ≡⟨ y≈z.≡ports (Fin.cast _ i) ⟩
+ y≈z.E′.ports (Fin.cast y≈z.≡arity (Fin.cast _ i)) 
+ ≡⟨ ≡.cong y≈z.E′.ports (FinProp.cast-trans _ y≈z.≡arity i) ⟩
+ y≈z.E′.ports (Fin.cast _ i) ∎
≈-IsEquivalence : IsEquivalence _≈_
≈-IsEquivalence = record
@@ -88,16 +103,11 @@ module _ {v : ℕ} where
}
show : Edge v → String
- show (mkEdge {a} l p) = HL.showLabel a l <+> showVec showFin p
-
- ≈⇒≡ : {x y : Edge v} → x ≈ y → x ≡ y
- ≈⇒≡ {mkEdge l p} (mk≈ ≡.refl ≡.refl ≡.refl)
- rewrite cast-is-id ≡.refl l
- rewrite VecCast.cast-is-id ≡.refl p = ≡.refl
+ show (mkEdge {a} l p) = HL.showLabel a l <+> showVec showFin (Vec.toVec p)
Edgeₛ : (v : ℕ) → Setoid ℓ ℓ
Edgeₛ v = record { isEquivalence = ≈-IsEquivalence {v} }
mapₛ : {n m : ℕ} → (Fin n → Fin m) → Edgeₛ n ⟶ₛ Edgeₛ m
mapₛ f .to = map f
-mapₛ f .cong (mk≈ ≡a ≡l ≡p) = mk≈ ≡a ≡l (VecCast.≈-cong′ (Vec.map f) ≡p)
+mapₛ f .cong (mk≈ ≡a ≡l ≡p) = mk≈ ≡a ≡l (≡.cong f ∘ ≡p)
diff --git a/Data/Opaque/List.agda b/Data/Opaque/List.agda
new file mode 100644
index 0000000..a8e536f
--- /dev/null
+++ b/Data/Opaque/List.agda
@@ -0,0 +1,61 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Data.Opaque.List where
+
+import Data.List as L
+import Function.Construct.Constant as Const
+
+open import Level using (Level; _⊔_)
+open import Data.List.Relation.Binary.Pointwise as PW using (++⁺; map⁺)
+open import Data.Product using (uncurry′)
+open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
+open import Data.Unit.Polymorphic using (⊤)
+open import Function using (_⟶ₛ_; Func)
+open import Relation.Binary using (Setoid)
+
+open Func
+
+private
+
+ variable
+ a c ℓ : Level
+ A B : Set a
+ Aₛ Bₛ : Setoid c ℓ
+
+ ⊤ₛ : Setoid c ℓ
+ ⊤ₛ = record { Carrier = ⊤ ; _≈_ = λ _ _ → ⊤ }
+
+opaque
+
+ List : Set a → Set a
+ List = L.List
+
+ [] : List A
+ [] = L.[]
+
+ _∷_ : A → List A → List A
+ _∷_ = L._∷_
+
+ map : (A → B) → List A → List B
+ map = L.map
+
+ _++_ : List A → List A → List A
+ _++_ = L._++_
+
+ Listₛ : Setoid c ℓ → Setoid c (c ⊔ ℓ)
+ Listₛ = PW.setoid
+
+ []ₛ : ⊤ₛ {c} {c ⊔ ℓ} ⟶ₛ Listₛ {c} {ℓ} Aₛ
+ []ₛ = Const.function ⊤ₛ (Listₛ _) []
+
+ ∷ₛ : Aₛ ×ₛ Listₛ Aₛ ⟶ₛ Listₛ Aₛ
+ ∷ₛ .to = uncurry′ _∷_
+ ∷ₛ .cong = uncurry′ PW._∷_
+
+ mapₛ : (Aₛ ⟶ₛ Bₛ) → Listₛ Aₛ ⟶ₛ Listₛ Bₛ
+ mapₛ f .to = map (to f)
+ mapₛ f .cong xs≈ys = map⁺ (to f) (to f) (PW.map (cong f) xs≈ys)
+
+ ++ₛ : Listₛ Aₛ ×ₛ Listₛ Aₛ ⟶ₛ Listₛ Aₛ
+ ++ₛ .to = uncurry′ _++_
+ ++ₛ .cong = uncurry′ ++⁺
diff --git a/Functor/Instance/List.agda b/Functor/Instance/List.agda
index b40670d..ceb73e1 100644
--- a/Functor/Instance/List.agda
+++ b/Functor/Instance/List.agda
@@ -4,13 +4,12 @@ open import Level using (Level; _⊔_)
module Functor.Instance.List {c ℓ : Level} where
-import Data.List as List
import Data.List.Properties as ListProps
import Data.List.Relation.Binary.Pointwise as PW
open import Categories.Category.Instance.Setoids using (Setoids)
open import Categories.Functor using (Functor)
-open import Data.Setoid using (∣_∣)
+open import Data.Setoid using (∣_∣; _⇒ₛ_)
open import Function.Base using (_∘_; id)
open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_)
open import Relation.Binary using (Setoid)
@@ -19,40 +18,48 @@ open Functor
open Setoid using (reflexive)
open Func
+open import Data.Opaque.List as List hiding (List)
+
private
variable
A B C : Setoid c ℓ
--- the List functor takes a carrier A to lists of A
--- and the equivalence on A to pointwise equivalence on lists of A
+open import Function.Construct.Identity using () renaming (function to Id)
+open import Function.Construct.Setoid using (_∙_)
-Listₛ : Setoid c ℓ → Setoid c (c ⊔ ℓ)
-Listₛ = PW.setoid
+opaque
--- List on morphisms is the familiar map operation
--- which applies the same function to every element of a list
+ unfolding List.List
+
+ map-id
+ : (xs : ∣ Listₛ A ∣)
+ → (open Setoid (Listₛ A))
+ → mapₛ (Id _) ⟨$⟩ xs ≈ xs
+ map-id {A} = reflexive (Listₛ A) ∘ ListProps.map-id
-mapₛ : A ⟶ₛ B → Listₛ A ⟶ₛ Listₛ B
-mapₛ f .to = List.map (to f)
-mapₛ f .cong = PW.map⁺ (to f) (to f) ∘ PW.map (cong f)
+ List-homo
+ : (f : A ⟶ₛ B)
+ (g : B ⟶ₛ C)
+ → (xs : ∣ Listₛ A ∣)
+ → (open Setoid (Listₛ C))
+ → mapₛ (g ∙ f) ⟨$⟩ xs ≈ mapₛ g ⟨$⟩ (mapₛ f ⟨$⟩ xs)
+ List-homo {C = C} f g = reflexive (Listₛ C) ∘ ListProps.map-∘
-map-id
- : (xs : ∣ Listₛ A ∣)
- → (open Setoid (Listₛ A))
- → List.map id xs ≈ xs
-map-id {A} = reflexive (Listₛ A) ∘ ListProps.map-id
+ List-resp-≈
+ : (f g : A ⟶ₛ B)
+ → (let open Setoid (A ⇒ₛ B) in f ≈ g)
+ → (let open Setoid (Listₛ A ⇒ₛ Listₛ B) in mapₛ f ≈ mapₛ g)
+ List-resp-≈ f g f≈g = PW.map⁺ (to f) (to g) (PW.refl f≈g)
-List-homo
- : (f : A ⟶ₛ B)
- (g : B ⟶ₛ C)
- → (xs : ∣ Listₛ A ∣)
- → (open Setoid (Listₛ C))
- → List.map (to g ∘ to f) xs ≈ List.map (to g) (List.map (to f) xs)
-List-homo {C = C} f g = reflexive (Listₛ C) ∘ ListProps.map-∘
+-- the List functor takes a carrier A to lists of A
+-- and the equivalence on A to pointwise equivalence on lists of A
+
+-- List on morphisms is the familiar map operation
+-- which applies the same function to every element of a list
List : Functor (Setoids c ℓ) (Setoids c (c ⊔ ℓ))
-List .F₀ = Listₛ
-List .F₁ = mapₛ
-List .identity {A} {xs} = map-id {A} xs
+List .F₀ = List.Listₛ
+List .F₁ = List.mapₛ
+List .identity {_} {xs} = map-id xs
List .homomorphism {f = f} {g} {xs} = List-homo f g xs
-List .F-resp-≈ {A} {B} {f} {g} f≈g = PW.map⁺ (to f) (to g) (PW.refl f≈g)
+List .F-resp-≈ {f = f} {g} f≈g = List-resp-≈ f g f≈g
diff --git a/Functor/Instance/Nat/Circ.agda b/Functor/Instance/Nat/Circ.agda
index 09bc495..36d726d 100644
--- a/Functor/Instance/Nat/Circ.agda
+++ b/Functor/Instance/Nat/Circ.agda
@@ -28,5 +28,5 @@ Circ : Functor Nat (Setoids ℓ ℓ)
Circ .F₀ = Circuitₛ
Circ .F₁ = mapₛ
Circ .identity = cong mkCircuitₛ Multiset∘Edge.identity
-Circ .homomorphism = cong mkCircuitₛ Multiset∘Edge.homomorphism
+Circ .homomorphism {f = f} {g = g} = cong mkCircuitₛ (Multiset∘Edge.homomorphism {f = f} {g = g})
Circ .F-resp-≈ f≗g = cong mkCircuitₛ (Multiset∘Edge.F-resp-≈ f≗g)
diff --git a/Functor/Instance/Nat/Edge.agda b/Functor/Instance/Nat/Edge.agda
index 5de8f84..c69a1db 100644
--- a/Functor/Instance/Nat/Edge.agda
+++ b/Functor/Instance/Nat/Edge.agda
@@ -12,6 +12,7 @@ open import Categories.Category.Instance.Nat using (Nat)
open import Categories.Category.Instance.Setoids using (Setoids)
open import Categories.Functor using (Functor)
open import Data.Fin using (Fin)
+open import Data.Fin.Properties using (cast-is-id)
open import Data.Hypergraph.Edge {ℓ} HL as Edge using (Edgeₛ; map; mapₛ; _≈_)
open import Data.Nat using (ℕ)
open import Data.Vec.Relation.Binary.Equality.Cast using (≈-reflexive)
@@ -29,7 +30,7 @@ open Functor
map-id : {v : ℕ} {e : Edge.Edge v} → map id e ≈ e
map-id .≡arity = ≡.refl
map-id .≡label = HL.≈-reflexive ≡.refl
-map-id {_} {e} .≡ports = ≈-reflexive (VecProps.map-id (ports e))
+map-id {_} {e} .≡ports = ≡.cong (ports e) ∘ ≡.sym ∘ cast-is-id ≡.refl
map-∘
: {n m o : ℕ}
@@ -39,7 +40,7 @@ map-∘
→ map (g ∘ f) e ≈ map g (map f e)
map-∘ f g .≡arity = ≡.refl
map-∘ f g .≡label = HL.≈-reflexive ≡.refl
-map-∘ f g {e} .≡ports = ≈-reflexive (VecProps.map-∘ g f (ports e))
+map-∘ f g {e} .≡ports = ≡.cong (g ∘ f ∘ ports e) ∘ ≡.sym ∘ cast-is-id ≡.refl
map-resp-≗
: {n m : ℕ}
@@ -49,11 +50,11 @@ map-resp-≗
→ map f e ≈ map g e
map-resp-≗ f≗g .≡arity = ≡.refl
map-resp-≗ f≗g .≡label = HL.≈-reflexive ≡.refl
-map-resp-≗ f≗g {e} .≡ports = ≈-reflexive (VecProps.map-cong f≗g (ports e))
+map-resp-≗ {g = g} f≗g {e} .≡ports i = ≡.trans (f≗g (ports e i)) (≡.cong (g ∘ ports e) (≡.sym (cast-is-id ≡.refl i)))
Edge : Functor Nat (Setoids ℓ ℓ)
Edge .F₀ = Edgeₛ
Edge .F₁ = mapₛ
Edge .identity = map-id
-Edge .homomorphism = map-∘ _ _
+Edge .homomorphism {f = f} {g} = map-∘ f g
Edge .F-resp-≈ = map-resp-≗
diff --git a/Functor/Monoidal/Construction/MultisetOf.agda b/Functor/Monoidal/Construction/MultisetOf.agda
index eca7b3a..83bdf52 100644
--- a/Functor/Monoidal/Construction/MultisetOf.agda
+++ b/Functor/Monoidal/Construction/MultisetOf.agda
@@ -81,9 +81,9 @@ open SymmetricMonoidalFunctor
module ListOf,++,[] = MonoidalFunctor ListOf,++,[]
-BagOf,++,[] : SymmetricMonoidalFunctor 𝒞-SMC S
-BagOf,++,[] .F = List∘G
-BagOf,++,[] .isBraidedMonoidal = record
+MultisetOf,++,[] : SymmetricMonoidalFunctor 𝒞-SMC S
+MultisetOf,++,[] .F = List∘G
+MultisetOf,++,[] .isBraidedMonoidal = record
{ isMonoidal = ListOf,++,[].isMonoidal
; braiding-compat = ++-⊗-σ
}
diff --git a/Functor/Monoidal/Instance/Nat/Circ.agda b/Functor/Monoidal/Instance/Nat/Circ.agda
index 9d38127..0e2d3eb 100644
--- a/Functor/Monoidal/Instance/Nat/Circ.agda
+++ b/Functor/Monoidal/Instance/Nat/Circ.agda
@@ -46,29 +46,29 @@ Nat-Cocartesian-Category : CocartesianCategory 0ℓ 0ℓ 0ℓ
Nat-Cocartesian-Category = record { cocartesian = Nat-Cocartesian }
open import Functor.Monoidal.Construction.MultisetOf
- {𝒞 = Nat-Cocartesian-Category} (Edge Gates) FreeCMonoid using (BagOf,++,[])
+ {𝒞 = Nat-Cocartesian-Category} (Edge Gates) FreeCMonoid using (MultisetOf,++,[])
open Lax using (SymmetricMonoidalFunctor)
-module BagOf,++,[] = SymmetricMonoidalFunctor BagOf,++,[]
+module MultisetOf,++,[] = SymmetricMonoidalFunctor MultisetOf,++,[]
open SymmetricMonoidalFunctor
ε⇒ : SingletonSetoid ⟶ₛ Circuitₛ 0
-ε⇒ = mkCircuitₛ ∙ BagOf,++,[].ε
+ε⇒ = mkCircuitₛ ∙ MultisetOf,++,[].ε
open Cocartesian Nat-Cocartesian using (-+-)
open Func
η : {n m : ℕ} → Circuitₛ n ×ₛ Circuitₛ m ⟶ₛ Circuitₛ (n + m)
-η {n} {m} .to (mkCircuit X , mkCircuit Y) = mkCircuit (BagOf,++,[].⊗-homo.η (n , m) ⟨$⟩ (X , Y))
-η {n} {m} .cong (mk≈ x , mk≈ y) = mk≈ (cong (BagOf,++,[].⊗-homo.η (n , m)) (x , y))
+η {n} {m} .to (mkCircuit X , mkCircuit Y) = mkCircuit (MultisetOf,++,[].⊗-homo.η (n , m) ⟨$⟩ (X , Y))
+η {n} {m} .cong (mk≈ x , mk≈ y) = mk≈ (cong (MultisetOf,++,[].⊗-homo.η (n , m)) (x , y))
⊗-homomorphism : NaturalTransformation (-×- ∘F (Circ ⁂ Circ)) (Circ ∘F -+-)
⊗-homomorphism = ntHelper record
{ η = λ (n , m) → η {n} {m}
- ; commute = λ { (f , g) {mkCircuit X , mkCircuit Y} → mk≈ (BagOf,++,[].⊗-homo.commute (f , g) {X , Y}) }
+ ; commute = λ { (f , g) {mkCircuit X , mkCircuit Y} → mk≈ (MultisetOf,++,[].⊗-homo.commute (f , g) {X , Y}) }
}
Circ,⊗,ε : SymmetricMonoidalFunctor Nat,+,0 Setoids-×
@@ -78,10 +78,10 @@ Circ,⊗,ε .isBraidedMonoidal = record
{ ε = ε⇒
; ⊗-homo = ⊗-homomorphism
; associativity = λ { {n} {m} {o} {(mkCircuit x , mkCircuit y) , mkCircuit z} →
- mk≈ (BagOf,++,[].associativity {n} {m} {o} {(x , y) , z}) }
- ; unitaryˡ = λ { {n} {_ , mkCircuit x} → mk≈ (BagOf,++,[].unitaryˡ {n} {_ , x}) }
- ; unitaryʳ = λ { {n} {mkCircuit x , _} → mk≈ (BagOf,++,[].unitaryʳ {n} {x , _}) }
+ mk≈ (MultisetOf,++,[].associativity {n} {m} {o} {(x , y) , z}) }
+ ; unitaryˡ = λ { {n} {_ , mkCircuit x} → mk≈ (MultisetOf,++,[].unitaryˡ {n} {_ , x}) }
+ ; unitaryʳ = λ { {n} {mkCircuit x , _} → mk≈ (MultisetOf,++,[].unitaryʳ {n} {x , _}) }
}
; braiding-compat = λ { {n} {m} {mkCircuit x , mkCircuit y} →
- mk≈ (BagOf,++,[].braiding-compat {n} {m} {x , y}) }
+ mk≈ (MultisetOf,++,[].braiding-compat {n} {m} {x , y}) }
}