diff options
author | Jacques Comeaux <jacquesrcomeaux@protonmail.com> | 2024-03-18 16:52:23 -0500 |
---|---|---|
committer | Jacques Comeaux <jacquesrcomeaux@protonmail.com> | 2024-03-18 16:52:23 -0500 |
commit | 37aef854206076a42c26cc021c97bb2c334b9424 (patch) | |
tree | 6569b854523f1389e93287ec342a3a5f6e1dda94 | |
parent | 5e704f08d1f70e12e4da1f0ed359dd2495852e5f (diff) |
Remove with-abstractions
-rw-r--r-- | FinMerge.agda | 45 | ||||
-rw-r--r-- | FinMerge/Properties.agda | 72 |
2 files changed, 71 insertions, 46 deletions
diff --git a/FinMerge.agda b/FinMerge.agda index c62fe14..c75e982 100644 --- a/FinMerge.agda +++ b/FinMerge.agda @@ -4,10 +4,10 @@ module FinMerge where open import Data.Empty using (⊥-elim) open import Data.Fin using (Fin; fromℕ<; toℕ; #_) open import Data.Fin.Properties using (¬Fin0) -open import Data.Nat using (ℕ; _+_; _≤_; _<_ ; z<s; s≤s) +open import Data.Nat using (ℕ; _+_; _≤_; z≤n; s≤s; _<_ ; z<s) open import Data.Nat.Properties using (≤-trans) open import Data.Sum.Base using (_⊎_) -open import Data.Product using (_×_; _,_; Σ-syntax; map₂; proj₂) +open import Data.Product using (_×_; _,_; Σ-syntax; map₂; proj₁; proj₂) open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; sym) open import Relation.Binary.PropositionalEquality.Properties using (module ≡-Reasoning) open import Function using (id ; _∘_ ; _$_) @@ -22,20 +22,39 @@ private -- Send the specified m to nothing pluck : m ≤ n → Fin (ℕ.suc n) → Maybe (Fin n) -pluck _≤_.z≤n Fin.zero = nothing -pluck _≤_.z≤n (Fin.suc x) = just x -pluck (_≤_.s≤s m) Fin.zero = just Fin.zero -pluck (_≤_.s≤s m) (Fin.suc x) = Data.Maybe.Base.map Fin.suc (pluck m x) +pluck z≤n Fin.zero = nothing +pluck z≤n (Fin.suc x) = just x +pluck (s≤s m) Fin.zero = just Fin.zero +pluck (s≤s m) (Fin.suc x) = Data.Maybe.Base.map Fin.suc (pluck m x) + +-- Send nothing to the specified m +unpluck : m ≤ n → Maybe (Fin n) → Fin (ℕ.suc n) +unpluck z≤n nothing = Fin.zero +unpluck z≤n (just x) = Fin.suc x +unpluck (s≤s m) nothing = Fin.suc (unpluck m nothing) +unpluck (s≤s m) (just Fin.zero) = Fin.zero +unpluck (s≤s m) (just (Fin.suc x)) = Fin.suc (unpluck m (just x)) -- Merge two elements of a finite set merge : {i j : ℕ} → i < j ≤ n → Fin (ℕ.suc n) → Fin n merge (lt , le) x = fromMaybe (fromℕ< (≤-trans lt le)) (pluck le x) -glue-once : Fin (ℕ.suc n) → Fin (ℕ.suc n) → Σ[ x ∈ ℕ ] (Fin (ℕ.suc n) → Fin x) -glue-once {n} f0 g0 with compare f0 g0 -... | less (f0<g0 , s≤s g0≤n) = n , merge (f0<g0 , g0≤n) -... | equal f0≡g0 = ℕ.suc n , id -... | greater (g0<f0 , s≤s f0≤n) = n , merge (g0<f0 , f0≤n) +-- Merge two elements of a finite set +unmerge : {i j : ℕ} → i < j ≤ n → Fin n → Fin (ℕ.suc n) +unmerge (lt , le) x = unpluck le (just x) + +glue-once : {i j : Fin (ℕ.suc n)} → Ordering i j → Σ[ x ∈ ℕ ] (Fin (ℕ.suc n) → Fin x) +glue-once {n} (less (i<j , s≤s j≤n)) = n , merge (i<j , j≤n) +glue-once {n} (equal i≡j) = ℕ.suc n , id +glue-once {n} (greater (j<i , s≤s i≤n)) = n , merge (j<i , i≤n) + +glue-unglue-once + : {i j : Fin (ℕ.suc n)} + → Ordering i j + → Σ[ x ∈ ℕ ] ((Fin (ℕ.suc n) → Fin x) × (Fin x → Fin (ℕ.suc n))) +glue-unglue-once {n} (less (i<j , s≤s j≤n)) = n , merge (i<j , j≤n) , unmerge (i<j , j≤n) +glue-unglue-once {n} (equal i≡j) = ℕ.suc n , id , id +glue-unglue-once {n} (greater (j<i , s≤s i≤n)) = n , merge (j<i , i≤n) , unmerge (j<i , i≤n) -- Glue together the image of two finite-set functions glue : (Fin m → Fin n) → (Fin m → Fin n) → Σ[ x ∈ ℕ ] (Fin n → Fin x) @@ -43,7 +62,7 @@ glue {ℕ.zero} {n} _ _ = n , id glue {ℕ.suc _} {ℕ.zero} f _ = ⊥-elim (¬Fin0 (f (# 0))) glue {ℕ.suc _} {ℕ.suc _} f g with glue (f ∘ Fin.suc) (g ∘ Fin.suc) ... | ℕ.zero , h = ⊥-elim (¬Fin0 (h (# 0))) -... | ℕ.suc _ , h = map₂ (_∘ h) (glue-once (h (f (# 0))) (h (g (# 0)))) +... | ℕ.suc _ , h = map₂ (_∘ h) (glue-once (compare (h (f (# 0))) (h (g (# 0))))) -- Glue together the image of two finite-set functions, iterative glue-iter @@ -55,5 +74,5 @@ glue-iter glue-iter {ℕ.zero} {n} {y} f g h = y , h glue-iter {ℕ.suc m} {n} {ℕ.zero} f g h = ⊥-elim (¬Fin0 (f (# 0))) glue-iter {ℕ.suc m} {n} {ℕ.suc y} f g h = - let p = proj₂ (glue-once (f (# 0)) (g (# 0))) in + let p = proj₁ (proj₂ (glue-unglue-once (compare (f (# 0)) (g (# 0))))) in glue-iter (p ∘ f ∘ Fin.suc) (p ∘ g ∘ Fin.suc) (p ∘ h) diff --git a/FinMerge/Properties.agda b/FinMerge/Properties.agda index 79f8686..9123460 100644 --- a/FinMerge/Properties.agda +++ b/FinMerge/Properties.agda @@ -12,9 +12,9 @@ open import Relation.Binary.PropositionalEquality.Properties using (module ≡-R open import Data.Maybe.Base using (Maybe; nothing; just; fromMaybe) open import Function using (id; _∘_) -open import Util using (_<_<_; _<_≤_; toℕ<; less; equal; greater; compare) +open import Util using (_<_<_; _<_≤_; toℕ<; Ordering; less; equal; greater; compare) -open import FinMerge using (merge; pluck; glue-once; glue-iter) +open import FinMerge using (merge; pluck; glue-once; glue-unglue-once; glue-iter) private @@ -109,12 +109,20 @@ merge-i-j {_} {i} {j} i<j≤n = ≡ merge i<j≤n j ∎ glue-once-correct - : (f0 g0 : Fin (ℕ.suc n)) - → proj₂ (glue-once f0 g0) f0 ≡ proj₂ (glue-once f0 g0) g0 -glue-once-correct {n} f0 g0 with compare f0 g0 -... | less (f0<g0 , s≤s g0≤n) = merge-i-j (f0<g0 , g0≤n) -... | equal f0≡g0 = f0≡g0 -... | greater (g0<f0 , s≤s f0≤n) = sym (merge-i-j (g0<f0 , f0≤n)) + : {i j : Fin (ℕ.suc n)} + → (i?j : Ordering i j) + → proj₂ (glue-once i?j) i ≡ proj₂ (glue-once i?j) j +glue-once-correct (less (i<j , s≤s j≤n)) = merge-i-j (i<j , j≤n) +glue-once-correct (equal i≡j) = i≡j +glue-once-correct (greater (j<i , s≤s i≤n)) = sym (merge-i-j (j<i , i≤n)) + +glue-once-correct′ + : {i j : Fin (ℕ.suc n)} + → (i?j : Ordering i j) + → proj₁ (proj₂ (glue-unglue-once i?j)) i ≡ proj₁ (proj₂ (glue-unglue-once i?j)) j +glue-once-correct′ (less (i<j , s≤s j≤n)) = merge-i-j (i<j , j≤n) +glue-once-correct′ (equal i≡j) = i≡j +glue-once-correct′ (greater (j<i , s≤s i≤n)) = sym (merge-i-j (j<i , i≤n)) glue-iter-append : {y : ℕ} @@ -123,33 +131,31 @@ glue-iter-append → Σ[ h′ ∈ (Fin y → Fin (proj₁ (glue-iter f g h))) ] (proj₂ (glue-iter f g h) ≡ h′ ∘ h) glue-iter-append {ℕ.zero} f g h = id , refl glue-iter-append {ℕ.suc m} {_} {ℕ.zero} f g h = ⊥-elim (¬Fin0 (f (# 0))) -glue-iter-append {ℕ.suc m} {_} {ℕ.suc y} f g h with - glue-iter-append - (proj₂ (glue-once (f (# 0)) (g (# 0))) ∘ f ∘ Fin.suc) - (proj₂ (glue-once (f (# 0)) (g (# 0))) ∘ g ∘ Fin.suc) - (proj₂ (glue-once (f (# 0)) (g (# 0))) ∘ h) -... | h′ , glue-p∘h≡h′∘p∘h = h′ ∘ proj₂ (glue-once (f (# 0)) (g (# 0))) , glue-p∘h≡h′∘p∘h +glue-iter-append {ℕ.suc m} {_} {ℕ.suc y} f g h = + let + p = proj₁ (proj₂ (glue-unglue-once (compare (f (# 0)) (g (# 0))))) + h′ , glue-p∘h≡h′∘p∘h = glue-iter-append (p ∘ f ∘ Fin.suc) (p ∘ g ∘ Fin.suc) (p ∘ h) + in + h′ ∘ p , glue-p∘h≡h′∘p∘h lemma₂ : (f g : Fin (ℕ.suc m) → Fin n) → let p = proj₂ (glue-iter f g id) in p (f (# 0)) ≡ p (g (# 0)) lemma₂ {_} {ℕ.zero} f g = ⊥-elim (¬Fin0 (f (# 0))) -lemma₂ {_} {ℕ.suc n} f g with - glue-iter-append - (proj₂ (glue-once (f (# 0)) (g (# 0))) ∘ f ∘ Fin.suc) - (proj₂ (glue-once (f (# 0)) (g (# 0))) ∘ g ∘ Fin.suc) - (proj₂ (glue-once (f (# 0)) (g (# 0)))) -... | h′ , glue≡h′∘h = ≡ - where - open ≡-Reasoning - p = proj₂ (glue-once (f (# 0)) (g (# 0))) - f′ = f ∘ Fin.suc - g′ = g ∘ Fin.suc - ≡ : proj₂ (glue-iter (p ∘ f′) (p ∘ g′) p) (f Fin.zero) - ≡ proj₂ (glue-iter (p ∘ f′) (p ∘ g′) p) (g Fin.zero) - ≡ = begin - proj₂ (glue-iter (p ∘ f′) (p ∘ g′) p) (f Fin.zero) - ≡⟨ cong-app glue≡h′∘h (f Fin.zero) ⟩ - h′ (p (f Fin.zero)) ≡⟨ cong h′ (glue-once-correct (f (# 0)) (g (# 0))) ⟩ - h′ (p (g Fin.zero)) ≡⟨ sym (cong-app glue≡h′∘h (g Fin.zero)) ⟩ - proj₂ (glue-iter (p ∘ f′) (p ∘ g′) p) (g Fin.zero) ∎ +lemma₂ {_} {ℕ.suc n} f g = + let + p = proj₁ (proj₂ (glue-unglue-once (compare (f (# 0)) (g (# 0))))) + h′ , glue≡h′∘h = glue-iter-append (p ∘ f ∘ Fin.suc) (p ∘ g ∘ Fin.suc) p + f′ = f ∘ Fin.suc + g′ = g ∘ Fin.suc + ≡ : proj₂ (glue-iter (p ∘ f′) (p ∘ g′) p) (f Fin.zero) + ≡ proj₂ (glue-iter (p ∘ f′) (p ∘ g′) p) (g Fin.zero) + ≡ = begin + proj₂ (glue-iter (p ∘ f′) (p ∘ g′) p) (f Fin.zero) + ≡⟨ cong-app glue≡h′∘h (f Fin.zero) ⟩ + h′ (p (f Fin.zero)) ≡⟨ cong h′ (glue-once-correct′ (compare (f (# 0)) (g (# 0)))) ⟩ + h′ (p (g Fin.zero)) ≡⟨ sym (cong-app glue≡h′∘h (g Fin.zero)) ⟩ + proj₂ (glue-iter (p ∘ f′) (p ∘ g′) p) (g Fin.zero) ∎ + in + ≡ + where open ≡-Reasoning |