aboutsummaryrefslogtreecommitdiff
path: root/Category/Instance/FinitelyCocompletes.agda
diff options
context:
space:
mode:
authorJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-02-03 10:11:47 -0600
committerJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-02-03 10:11:47 -0600
commit8d3d3b53cfab2540ed006e768af1e41ea3d35750 (patch)
treec3bce2c5511946be2b1bf1b6d4d24ec69ffb4887 /Category/Instance/FinitelyCocompletes.agda
parent81ae9ec6480725f12cce720fca7d22f677573b13 (diff)
Add category of finitely-cocomplete categories
- Objects are categories with all finite colimits - Morphisms are functors preserving finite colimits (i.e. right exact)
Diffstat (limited to 'Category/Instance/FinitelyCocompletes.agda')
-rw-r--r--Category/Instance/FinitelyCocompletes.agda369
1 files changed, 369 insertions, 0 deletions
diff --git a/Category/Instance/FinitelyCocompletes.agda b/Category/Instance/FinitelyCocompletes.agda
new file mode 100644
index 0000000..0847165
--- /dev/null
+++ b/Category/Instance/FinitelyCocompletes.agda
@@ -0,0 +1,369 @@
+{-# OPTIONS --without-K --safe #-}
+open import Level using (Level)
+module Category.Instance.FinitelyCocompletes {o ℓ e : Level} where
+
+open import Categories.Category using (_[_,_])
+open import Categories.Category.BinaryProducts using (BinaryProducts)
+open import Categories.Category.Cartesian using (Cartesian)
+open import Categories.Category.Helper using (categoryHelper)
+open import Categories.Category.Monoidal.Instance.Cats using () renaming (module Product to Products)
+open import Categories.Category.Core using (Category)
+open import Categories.Category.Instance.Cats using (Cats)
+open import Categories.Category.Instance.One using (One; One-⊤)
+open import Categories.Category.Product using (πˡ; πʳ; _※_; _⁂_) renaming (Product to ProductCat)
+open import Categories.Diagram.Coequalizer using (IsCoequalizer)
+open import Categories.Functor using (Functor) renaming (id to idF)
+open import Categories.Object.Coproduct using (IsCoproduct)
+open import Categories.Object.Initial using (IsInitial)
+open import Categories.Object.Product.Core using (Product)
+open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_; associator; unitorˡ; unitorʳ; module ≃; _ⓘₕ_)
+open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)
+open import Category.Cocomplete.Finitely.Product using (FinitelyCocomplete-×)
+open import Category.Instance.One.Properties using (One-FinitelyCocomplete)
+open import Data.Product.Base using (_,_; proj₁; proj₂; map; dmap; zip′)
+open import Functor.Exact using (∘-RightExactFunctor; RightExactFunctor; idREF; IsRightExact; rightexact)
+open import Function.Base using (id; flip)
+open import Level using (Level; suc; _⊔_)
+
+FinitelyCocompletes : Category (suc (o ⊔ ℓ ⊔ e)) (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e)
+FinitelyCocompletes = categoryHelper record
+ { Obj = FinitelyCocompleteCategory o ℓ e
+ ; _⇒_ = RightExactFunctor
+ ; _≈_ = λ F G → REF.F F ≃ REF.F G
+ ; id = idREF
+ ; _∘_ = ∘-RightExactFunctor
+ ; assoc = λ {_ _ _ _ F G H} → associator (REF.F F) (REF.F G) (REF.F H)
+ ; identityˡ = unitorˡ
+ ; identityʳ = unitorʳ
+ ; equiv = record
+ { refl = ≃.refl
+ ; sym = ≃.sym
+ ; trans = ≃.trans
+ }
+ ; ∘-resp-≈ = _ⓘₕ_
+ }
+ where
+ module REF = RightExactFunctor
+
+One-FCC : FinitelyCocompleteCategory o ℓ e
+One-FCC = record
+ { U = One
+ ; finCo = One-FinitelyCocomplete
+ }
+
+_×_
+ : FinitelyCocompleteCategory o ℓ e
+ → FinitelyCocompleteCategory o ℓ e
+ → FinitelyCocompleteCategory o ℓ e
+_×_ 𝒞 𝒟 = record
+ { U = ProductCat 𝒞.U 𝒟.U
+ ; finCo = FinitelyCocomplete-× 𝒞.finCo 𝒟.finCo
+ }
+ where
+ module 𝒞 = FinitelyCocompleteCategory 𝒞
+ module 𝒟 = FinitelyCocompleteCategory 𝒟
+
+module _ (𝒞 𝒟 : FinitelyCocompleteCategory o ℓ e) where
+
+ private
+ module 𝒞 = FinitelyCocompleteCategory 𝒞
+ module 𝒟 = FinitelyCocompleteCategory 𝒟
+ module 𝒞×𝒟 = FinitelyCocompleteCategory (𝒞 × 𝒟)
+
+ πˡ-RightExact : IsRightExact (𝒞 × 𝒟) 𝒞 πˡ
+ πˡ-RightExact = record
+ { F-resp-⊥ = F-resp-⊥
+ ; F-resp-+ = F-resp-+
+ ; F-resp-coeq = F-resp-coeq
+ }
+ where
+ F-resp-⊥
+ : {(A , B) : 𝒞×𝒟.Obj}
+ → IsInitial 𝒞×𝒟.U (A , B)
+ → IsInitial 𝒞.U A
+ F-resp-⊥ {A , B} initial = record
+ { ! = λ { {C} → proj₁ (! {C , B}) }
+ ; !-unique = λ { f → proj₁ (!-unique (f , 𝒟.id)) }
+ }
+ where
+ open IsInitial initial
+ F-resp-+
+ : {(C₁ , D₁) (C₂ , D₂) (C₃ , D₃) : 𝒞×𝒟.Obj}
+ {(i₁-c , i₁-d) : 𝒞×𝒟.U [ (C₁ , D₁) , (C₃ , D₃) ]}
+ {(i₂-c , i₂-d) : 𝒞×𝒟.U [ (C₂ , D₂) , (C₃ , D₃) ]}
+ → IsCoproduct (ProductCat 𝒞.U 𝒟.U) (i₁-c , i₁-d) (i₂-c , i₂-d)
+ → IsCoproduct 𝒞.U i₁-c i₂-c
+ F-resp-+ {_} {_} {_} {i₁-c , i₁-d} {i₂-c , i₂-d} isCoproduct = record
+ { [_,_] = λ { h₁ h₂ → proj₁ (copairing (h₁ , i₁-d) (h₂ , i₂-d)) }
+ ; inject₁ = proj₁ inject₁
+ ; inject₂ = proj₁ inject₂
+ ; unique = λ { eq₁ eq₂ → proj₁ (unique (eq₁ , 𝒟.identityˡ) (eq₂ , 𝒟.identityˡ)) }
+ }
+ where
+ open IsCoproduct isCoproduct renaming ([_,_] to copairing)
+ F-resp-coeq
+ : {(C₁ , D₁) (C₂ , D₂) (C₃ , D₃) : 𝒞×𝒟.Obj}
+ {f g : 𝒞×𝒟.U [ (C₁ , D₁) , (C₂ , D₂) ]}
+ {h : 𝒞×𝒟.U [ (C₂ , D₂) , (C₃ , D₃) ]}
+ → IsCoequalizer (ProductCat 𝒞.U 𝒟.U) f g h
+ → IsCoequalizer 𝒞.U (proj₁ f) (proj₁ g) (proj₁ h)
+ F-resp-coeq isCoequalizer = record
+ { equality = proj₁ equality
+ ; coequalize = λ { eq → proj₁ (coequalize (eq , proj₂ equality)) }
+ ; universal = proj₁ universal
+ ; unique = λ { eq → proj₁ (unique (eq , 𝒟.Equiv.sym 𝒟.identityˡ)) }
+ }
+ where
+ open IsCoequalizer isCoequalizer
+
+ πʳ-RightExact : IsRightExact (𝒞 × 𝒟) 𝒟 πʳ
+ πʳ-RightExact = record
+ { F-resp-⊥ = F-resp-⊥
+ ; F-resp-+ = F-resp-+
+ ; F-resp-coeq = F-resp-coeq
+ }
+ where
+ F-resp-⊥
+ : {(A , B) : 𝒞×𝒟.Obj}
+ → IsInitial 𝒞×𝒟.U (A , B)
+ → IsInitial 𝒟.U B
+ F-resp-⊥ {A , B} initial = record
+ { ! = λ { {C} → proj₂ (! {A , C}) }
+ ; !-unique = λ { f → proj₂ (!-unique (𝒞.id , f)) }
+ }
+ where
+ open IsInitial initial
+ F-resp-+
+ : {(C₁ , D₁) (C₂ , D₂) (C₃ , D₃) : 𝒞×𝒟.Obj}
+ {(i₁-c , i₁-d) : 𝒞×𝒟.U [ (C₁ , D₁) , (C₃ , D₃) ]}
+ {(i₂-c , i₂-d) : 𝒞×𝒟.U [ (C₂ , D₂) , (C₃ , D₃) ]}
+ → IsCoproduct 𝒞×𝒟.U (i₁-c , i₁-d) (i₂-c , i₂-d)
+ → IsCoproduct 𝒟.U i₁-d i₂-d
+ F-resp-+ {_} {_} {_} {i₁-c , i₁-d} {i₂-c , i₂-d} isCoproduct = record
+ { [_,_] = λ { h₁ h₂ → proj₂ (copairing (i₁-c , h₁) (i₂-c , h₂)) }
+ ; inject₁ = proj₂ inject₁
+ ; inject₂ = proj₂ inject₂
+ ; unique = λ { eq₁ eq₂ → proj₂ (unique (𝒞.identityˡ , eq₁) (𝒞.identityˡ , eq₂)) }
+ }
+ where
+ open IsCoproduct isCoproduct renaming ([_,_] to copairing)
+ F-resp-coeq
+ : {(C₁ , D₁) (C₂ , D₂) (C₃ , D₃) : 𝒞×𝒟.Obj}
+ {f g : 𝒞×𝒟.U [ (C₁ , D₁) , (C₂ , D₂) ]}
+ {h : 𝒞×𝒟.U [ (C₂ , D₂) , (C₃ , D₃) ]}
+ → IsCoequalizer 𝒞×𝒟.U f g h
+ → IsCoequalizer 𝒟.U (proj₂ f) (proj₂ g) (proj₂ h)
+ F-resp-coeq isCoequalizer = record
+ { equality = proj₂ equality
+ ; coequalize = λ { eq → proj₂ (coequalize (proj₁ equality , eq)) }
+ ; universal = proj₂ universal
+ ; unique = λ { eq → proj₂ (unique (𝒞.Equiv.sym 𝒞.identityˡ , eq)) }
+ }
+ where
+ open IsCoequalizer isCoequalizer
+
+module _ where
+
+ open FinitelyCocompleteCategory using (U)
+
+ IsRightExact-※
+ : {𝒞 𝒟 ℰ : FinitelyCocompleteCategory o ℓ e}
+ (F : Functor (U 𝒞) (U 𝒟))
+ (G : Functor (U 𝒞) (U ℰ))
+ → IsRightExact 𝒞 𝒟 F
+ → IsRightExact 𝒞 ℰ G
+ → IsRightExact 𝒞 (𝒟 × ℰ) (F ※ G)
+ IsRightExact-※ {𝒞} {𝒟} {ℰ} F G isRightExact-F isRightExact-G = record 
+ { F-resp-⊥ = F-resp-⊥′
+ ; F-resp-+ = F-resp-+′
+ ; F-resp-coeq = F-resp-coeq′
+ }
+ where
+ module 𝒞 = FinitelyCocompleteCategory 𝒞
+ module 𝒟 = FinitelyCocompleteCategory 𝒟
+ module ℰ = FinitelyCocompleteCategory ℰ
+ open IsRightExact isRightExact-F
+ open IsRightExact isRightExact-G renaming (F-resp-⊥ to G-resp-⊥; F-resp-+ to G-resp-+; F-resp-coeq to G-resp-coeq)
+ module F = Functor F
+ module G = Functor G
+ F-resp-⊥′
+ : {A : 𝒞.Obj}
+ → IsInitial 𝒞.U A
+ → IsInitial (ProductCat 𝒟.U ℰ.U) (F.₀ A , G.₀ A)
+ F-resp-⊥′ A-isInitial = record
+ { ! = F[A]-isInitial.! , G[A]-isInitial.!
+ ; !-unique = dmap F[A]-isInitial.!-unique G[A]-isInitial.!-unique
+ }
+ where
+ module F[A]-isInitial = IsInitial (F-resp-⊥ A-isInitial)
+ module G[A]-isInitial = IsInitial (G-resp-⊥ A-isInitial)
+ F-resp-+′
+ : {A B C : 𝒞.Obj} {i₁ : 𝒞.U [ A , C ]} {i₂ : 𝒞.U [ B , C ]}
+ → IsCoproduct 𝒞.U i₁ i₂
+ → IsCoproduct (ProductCat 𝒟.U ℰ.U) (F.₁ i₁ , G.₁ i₁) (F.₁ i₂ , G.₁ i₂)
+ F-resp-+′ {A} {B} {A+B} A+B-isCoproduct = record
+ { [_,_] = zip′ F[A+B]-isCoproduct.[_,_] G[A+B]-isCoproduct.[_,_]
+ ; inject₁ = F[A+B]-isCoproduct.inject₁ , G[A+B]-isCoproduct.inject₁
+ ; inject₂ = F[A+B]-isCoproduct.inject₂ , G[A+B]-isCoproduct.inject₂
+ ; unique = zip′ F[A+B]-isCoproduct.unique G[A+B]-isCoproduct.unique
+ }
+ where
+ module F[A+B]-isCoproduct = IsCoproduct (F-resp-+ A+B-isCoproduct)
+ module G[A+B]-isCoproduct = IsCoproduct (G-resp-+ A+B-isCoproduct)
+ F-resp-coeq′
+ : {A B C : 𝒞.Obj} {f g : 𝒞.U [ A , B ]} {h : 𝒞.U [ B , C ]}
+ → IsCoequalizer 𝒞.U f g h
+ → IsCoequalizer (ProductCat 𝒟.U ℰ.U) (F.₁ f , G.₁ f) (F.₁ g , G.₁ g) (F.₁ h , G.₁ h)
+ F-resp-coeq′ h-isCoequalizer = record
+ { equality = F[h]-isCoequalizer.equality , G[h]-isCoequalizer.equality
+ ; coequalize = map F[h]-isCoequalizer.coequalize G[h]-isCoequalizer.coequalize
+ ; universal = F[h]-isCoequalizer.universal , G[h]-isCoequalizer.universal
+ ; unique = map F[h]-isCoequalizer.unique G[h]-isCoequalizer.unique
+ }
+ where
+ module F[h]-isCoequalizer = IsCoequalizer (F-resp-coeq h-isCoequalizer)
+ module G[h]-isCoequalizer = IsCoequalizer (G-resp-coeq h-isCoequalizer)
+
+ IsRightExact-⁂
+ : {𝒜 ℬ 𝒞 𝒟 : FinitelyCocompleteCategory o ℓ e}
+ (F : Functor (U 𝒜) (U 𝒞))
+ (G : Functor (U ℬ) (U 𝒟))
+ → IsRightExact 𝒜 𝒞 F
+ → IsRightExact ℬ 𝒟 G
+ → IsRightExact (𝒜 × ℬ) (𝒞 × 𝒟) (F ⁂ G)
+ IsRightExact-⁂ {𝒜} {ℬ} {𝒞} {𝒟} F G isRightExact-F isRightExact-G = record 
+ { F-resp-⊥ = F-resp-⊥′
+ ; F-resp-+ = F-resp-+′
+ ; F-resp-coeq = F-resp-coeq′
+ }
+ where
+ module 𝒜 = FinitelyCocompleteCategory 𝒜
+ module ℬ = FinitelyCocompleteCategory ℬ
+ module 𝒞 = FinitelyCocompleteCategory 𝒞
+ module 𝒟 = FinitelyCocompleteCategory 𝒟
+ module 𝒜×ℬ = FinitelyCocompleteCategory (𝒜 × ℬ)
+ module 𝒞×𝒟 = FinitelyCocompleteCategory (𝒞 × 𝒟)
+ open IsRightExact isRightExact-F
+ open IsRightExact isRightExact-G renaming (F-resp-⊥ to G-resp-⊥; F-resp-+ to G-resp-+; F-resp-coeq to G-resp-coeq)
+ module F = Functor F
+ module G = Functor G
+ F-resp-⊥′
+ : {(A , B) : 𝒜×ℬ.Obj}
+ → IsInitial 𝒜×ℬ.U (A , B)
+ → IsInitial 𝒞×𝒟.U (F.₀ A , G.₀ B)
+ F-resp-⊥′ {A , B} A,B-isInitial = record
+ { ! = F[A]-isInitial.! , G[B]-isInitial.!
+ ; !-unique = dmap F[A]-isInitial.!-unique G[B]-isInitial.!-unique
+ }
+ where
+ module A,B-isInitial = IsInitial A,B-isInitial
+ A-isInitial : IsInitial 𝒜.U A
+ A-isInitial = record
+ { ! = λ { {X} → proj₁ (A,B-isInitial.! {X , B}) }
+ ; !-unique = λ { f → proj₁ (A,B-isInitial.!-unique (f , ℬ.id)) }
+ }
+ B-isInitial : IsInitial ℬ.U B
+ B-isInitial = record
+ { ! = λ { {X} → proj₂ (A,B-isInitial.! {A , X}) }
+ ; !-unique = λ { f → proj₂ (A,B-isInitial.!-unique (𝒜.id , f)) }
+ }
+ module F[A]-isInitial = IsInitial (F-resp-⊥ A-isInitial)
+ module G[B]-isInitial = IsInitial (G-resp-⊥ B-isInitial)
+ F-resp-+′
+ : {A B C : 𝒜×ℬ.Obj} {(i₁ , i₁′) : 𝒜×ℬ.U [ A , C ]} {(i₂ , i₂′) : 𝒜×ℬ.U [ B , C ]}
+ → IsCoproduct 𝒜×ℬ.U (i₁ , i₁′) (i₂ , i₂′)
+ → IsCoproduct 𝒞×𝒟.U (F.₁ i₁ , G.₁ i₁′) (F.₁ i₂ , G.₁ i₂′)
+ F-resp-+′ {A} {B} {A+B} {i₁ , i₁′} {i₂ , i₂′} A+B,A+B′-isCoproduct = record
+ { [_,_] = zip′ F[A+B]-isCoproduct.[_,_] G[A+B′]-isCoproduct.[_,_]
+ ; inject₁ = F[A+B]-isCoproduct.inject₁ , G[A+B′]-isCoproduct.inject₁
+ ; inject₂ = F[A+B]-isCoproduct.inject₂ , G[A+B′]-isCoproduct.inject₂
+ ; unique = zip′ F[A+B]-isCoproduct.unique G[A+B′]-isCoproduct.unique
+ }
+ where
+ module A+B,A+B′-isCoproduct = IsCoproduct A+B,A+B′-isCoproduct
+ A+B-isCoproduct : IsCoproduct 𝒜.U i₁ i₂
+ A+B-isCoproduct = record
+ { [_,_] = λ { f g → proj₁ (A+B,A+B′-isCoproduct.[ (f , i₁′) , (g , i₂′) ]) }
+ ; inject₁ = proj₁ A+B,A+B′-isCoproduct.inject₁
+ ; inject₂ = proj₁ A+B,A+B′-isCoproduct.inject₂
+ ; unique = λ { ≈f ≈g → proj₁ (A+B,A+B′-isCoproduct.unique (≈f , ℬ.identityˡ) (≈g , ℬ.identityˡ)) }
+ }
+ A+B′-isCoproduct : IsCoproduct ℬ.U i₁′ i₂′
+ A+B′-isCoproduct = record
+ { [_,_] = λ { f g → proj₂ (A+B,A+B′-isCoproduct.[ (i₁ , f) , (i₂ , g) ]) }
+ ; inject₁ = proj₂ A+B,A+B′-isCoproduct.inject₁
+ ; inject₂ = proj₂ A+B,A+B′-isCoproduct.inject₂
+ ; unique = λ { ≈f ≈g → proj₂ (A+B,A+B′-isCoproduct.unique (𝒜.identityˡ , ≈f) (𝒜.identityˡ , ≈g)) }
+ }
+ module F[A+B]-isCoproduct = IsCoproduct (F-resp-+ A+B-isCoproduct)
+ module G[A+B′]-isCoproduct = IsCoproduct (G-resp-+ A+B′-isCoproduct)
+ F-resp-coeq′
+ : {A B C : 𝒜×ℬ.Obj} {(f , f′) (g , g′) : 𝒜×ℬ.U [ A , B ]} {(h , h′) : 𝒜×ℬ.U [ B , C ]}
+ → IsCoequalizer 𝒜×ℬ.U (f , f′) (g , g′) (h , h′)
+ → IsCoequalizer 𝒞×𝒟.U (F.₁ f , G.₁ f′) (F.₁ g , G.₁ g′) (F.₁ h , G.₁ h′)
+ F-resp-coeq′ {_} {_} {_} {f , f′} {g , g′} {h , h′} h,h′-isCoequalizer = record
+ { equality = F[h]-isCoequalizer.equality , G[h′]-isCoequalizer.equality
+ ; coequalize = map F[h]-isCoequalizer.coequalize G[h′]-isCoequalizer.coequalize
+ ; universal = F[h]-isCoequalizer.universal , G[h′]-isCoequalizer.universal
+ ; unique = map F[h]-isCoequalizer.unique G[h′]-isCoequalizer.unique
+ }
+ where
+ module h,h′-isCoequalizer = IsCoequalizer h,h′-isCoequalizer
+ h-isCoequalizer : IsCoequalizer 𝒜.U f g h
+ h-isCoequalizer = record
+ { equality = proj₁ h,h′-isCoequalizer.equality
+ ; coequalize = λ { eq → proj₁ (h,h′-isCoequalizer.coequalize (eq , proj₂ h,h′-isCoequalizer.equality)) }
+ ; universal = proj₁ h,h′-isCoequalizer.universal
+ ; unique = λ { ≈h → proj₁ (h,h′-isCoequalizer.unique (≈h , ℬ.Equiv.sym ℬ.identityˡ)) }
+ }
+ h′-isCoequalizer : IsCoequalizer ℬ.U f′ g′ h′
+ h′-isCoequalizer = record
+ { equality = proj₂ h,h′-isCoequalizer.equality
+ ; coequalize = λ { eq′ → proj₂ (h,h′-isCoequalizer.coequalize (proj₁ h,h′-isCoequalizer.equality , eq′)) }
+ ; universal = proj₂ h,h′-isCoequalizer.universal
+ ; unique = λ { ≈h′ → proj₂ (h,h′-isCoequalizer.unique (𝒜.Equiv.sym 𝒜.identityˡ , ≈h′)) }
+ }
+
+ module F[h]-isCoequalizer = IsCoequalizer (F-resp-coeq h-isCoequalizer)
+ module G[h′]-isCoequalizer = IsCoequalizer (G-resp-coeq h′-isCoequalizer)
+_×₁_
+ : {𝒜 ℬ 𝒞 𝒟 : FinitelyCocompleteCategory o ℓ e}
+ → RightExactFunctor 𝒜 𝒞
+ → RightExactFunctor ℬ 𝒟
+ → RightExactFunctor (𝒜 × ℬ) (𝒞 × 𝒟)
+F ×₁ G = record
+ { F = F.F ⁂ G.F
+ ; isRightExact = IsRightExact-⁂ F.F G.F F.isRightExact G.isRightExact
+ }
+ where
+ module F = RightExactFunctor F
+ module G = RightExactFunctor G
+
+FinitelyCocompletes-Products : {𝒞 𝒟 : FinitelyCocompleteCategory o ℓ e} → Product FinitelyCocompletes 𝒞 𝒟
+FinitelyCocompletes-Products {𝒞} {𝒟} = record
+ { A×B = 𝒞 × 𝒟
+ ; π₁ = rightexact πˡ (πˡ-RightExact 𝒞 𝒟)
+ ; π₂ = rightexact πʳ (πʳ-RightExact 𝒞 𝒟)
+ ; ⟨_,_⟩ = λ { (rightexact F isF) (rightexact G isG) → rightexact (F ※ G) (IsRightExact-※ F G isF isG) }
+ ; project₁ = λ { {_} {rightexact F _} {rightexact G _} → Cats.project₁ {h = F} {i = G} }
+ ; project₂ = λ { {_} {rightexact F _} {rightexact G _} → Cats.project₂ {h = F} {i = G} }
+ ; unique = Cats.unique
+ }
+ where
+ module 𝒞 = FinitelyCocompleteCategory 𝒞
+ module 𝒟 = FinitelyCocompleteCategory 𝒟
+ module Cats = BinaryProducts Products.Cats-has-all
+
+FinitelyCocompletes-BinaryProducts : BinaryProducts FinitelyCocompletes
+FinitelyCocompletes-BinaryProducts = record
+ { product = FinitelyCocompletes-Products
+ }
+
+FinitelyCocompletes-Cartesian : Cartesian FinitelyCocompletes
+FinitelyCocompletes-Cartesian = record 
+ { terminal = record
+ { ⊤ = One-FCC
+ ; ⊤-is-terminal = _
+ }
+ ; products = FinitelyCocompletes-BinaryProducts
+ }