diff options
| author | Jacques Comeaux <jacquesrcomeaux@protonmail.com> | 2026-01-06 11:43:55 -0600 |
|---|---|---|
| committer | Jacques Comeaux <jacquesrcomeaux@protonmail.com> | 2026-01-06 11:43:55 -0600 |
| commit | 527d35a56ec025cb813024488dcf78ff002e320e (patch) | |
| tree | b461cfc4ab17fba1d09ad7257069f4d8940b042b /Category/Instance/MonoidalPreorders/Primitive.agda | |
| parent | e7f6b8c96b80eb33ad123748498734be0cdf785d (diff) | |
Add monoidal cats to monoidal preorders functor
Diffstat (limited to 'Category/Instance/MonoidalPreorders/Primitive.agda')
| -rw-r--r-- | Category/Instance/MonoidalPreorders/Primitive.agda | 86 |
1 files changed, 86 insertions, 0 deletions
diff --git a/Category/Instance/MonoidalPreorders/Primitive.agda b/Category/Instance/MonoidalPreorders/Primitive.agda new file mode 100644 index 0000000..d00e17a --- /dev/null +++ b/Category/Instance/MonoidalPreorders/Primitive.agda @@ -0,0 +1,86 @@ +{-# OPTIONS --without-K --safe #-} + +module Category.Instance.MonoidalPreorders.Primitive where + +import Preorder.Primitive.MonotoneMap as MonotoneMap using (_≃_; module ≃) + +open import Categories.Category using (Category) +open import Categories.Category.Helper using (categoryHelper) +open import Category.Instance.Preorders.Primitive using (Preorders) +open import Level using (Level; suc; _⊔_) +open import Preorder.Primitive.Monoidal using (MonoidalPreorder; MonoidalMonotone) +open import Relation.Binary using (IsEquivalence) + +module _ {c₁ c₂ ℓ₁ ℓ₂ : Level} {A : MonoidalPreorder c₁ ℓ₁} {B : MonoidalPreorder c₂ ℓ₂} where + + -- Pointwise equality of monoidal monotone maps + + open MonoidalMonotone using (F) + + _≃_ : (f g : MonoidalMonotone A B) → Set (c₁ ⊔ ℓ₂) + f ≃ g = F f MonotoneMap.≃ F g + + infix 4 _≃_ + + ≃-isEquivalence : IsEquivalence _≃_ + ≃-isEquivalence = let open MonotoneMap.≃ in record + { refl = λ {x} → refl {x = F x} + ; sym = λ {f g} → sym {x = F f} {y = F g} + ; trans = λ {f g h} → trans {i = F f} {j = F g} {k = F h} + } + + module ≃ = IsEquivalence ≃-isEquivalence + +private + + identity : {c ℓ : Level} (A : MonoidalPreorder c ℓ) → MonoidalMonotone A A + identity A = let open MonoidalPreorder A in record + { F = Category.id (Preorders _ _) + ; ε = refl + ; ⊗-homo = λ p₁ p₂ → refl {p₁ ⊗ p₂} + } + + compose + : {c ℓ : Level} + {P Q R : MonoidalPreorder c ℓ} + → MonoidalMonotone Q R + → MonoidalMonotone P Q + → MonoidalMonotone P R + compose {R = R} G F = record + { F = let open Category (Preorders _ _) in G.F ∘ F.F + ; ε = trans G.ε (G.mono F.ε) + ; ⊗-homo = λ p₁ p₂ → trans (G.⊗-homo (F.map p₁) (F.map p₂)) (G.mono (F.⊗-homo p₁ p₂)) + } + where + module F = MonoidalMonotone F + module G = MonoidalMonotone G + open MonoidalPreorder R + + compose-resp-≃ + : {c ℓ : Level} + {A B C : MonoidalPreorder c ℓ} + {f h : MonoidalMonotone B C} + {g i : MonoidalMonotone A B} + → f ≃ h + → g ≃ i + → compose f g ≃ compose h i + compose-resp-≃ {C = C} {f = f} {g} {h} {i} = ∘-resp-≈ {f = F f} {F g} {F h} {F i} + where + open Category (Preorders _ _) + open MonoidalMonotone using (F) + +MonoidalPreorders : (c ℓ : Level) → Category (suc (c ⊔ ℓ)) (c ⊔ ℓ) (c ⊔ ℓ) +MonoidalPreorders c ℓ = categoryHelper record + { Obj = MonoidalPreorder c ℓ + ; _⇒_ = MonoidalMonotone + ; _≈_ = _≃_ + ; id = λ {A} → identity A + ; _∘_ = compose + ; assoc = λ {f = f} {g h} → ≃.refl {x = compose (compose h g) f} + ; identityˡ = λ {f = f} → ≃.refl {x = f} + ; identityʳ = λ {f = f} → ≃.refl {x = f} + ; equiv = ≃-isEquivalence + ; ∘-resp-≈ = λ {f = f} {g h i} → compose-resp-≃ {f = f} {g} {h} {i} + } + where + open MonoidalMonotone using (F) |
