aboutsummaryrefslogtreecommitdiff
path: root/Category/Instance/Preorder/Primitive
diff options
context:
space:
mode:
authorJacques Comeaux <jacquesrcomeaux@protonmail.com>2026-01-07 10:12:13 -0600
committerJacques Comeaux <jacquesrcomeaux@protonmail.com>2026-01-07 10:12:13 -0600
commit8ec259bb32b4339b27560f5ea13afa81b9b8febc (patch)
treef8b860c07c3da42f7ad078413700c347adbfd9d5 /Category/Instance/Preorder/Primitive
parentaecb9a5862a9082909c902307974e7ca85463bb9 (diff)
Differentiate lax and strong monoidal monotones
Diffstat (limited to 'Category/Instance/Preorder/Primitive')
-rw-r--r--Category/Instance/Preorder/Primitive/Monoidals/Lax.agda87
-rw-r--r--Category/Instance/Preorder/Primitive/Monoidals/Strong.agda92
-rw-r--r--Category/Instance/Preorder/Primitive/Monoidals/Symmetric/Lax.agda84
-rw-r--r--Category/Instance/Preorder/Primitive/Monoidals/Symmetric/Strong.agda84
-rw-r--r--Category/Instance/Preorder/Primitive/Preorders.agda58
5 files changed, 405 insertions, 0 deletions
diff --git a/Category/Instance/Preorder/Primitive/Monoidals/Lax.agda b/Category/Instance/Preorder/Primitive/Monoidals/Lax.agda
new file mode 100644
index 0000000..cbd4015
--- /dev/null
+++ b/Category/Instance/Preorder/Primitive/Monoidals/Lax.agda
@@ -0,0 +1,87 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Category.Instance.Preorder.Primitive.Monoidals.Lax where
+
+import Preorder.Primitive.MonotoneMap as MonotoneMap using (_≃_; module ≃)
+
+open import Categories.Category using (Category)
+open import Categories.Category.Helper using (categoryHelper)
+open import Category.Instance.Preorder.Primitive.Preorders using (Preorders)
+open import Level using (Level; suc; _⊔_)
+open import Preorder.Primitive.Monoidal using (MonoidalPreorder)
+open import Preorder.Primitive.MonotoneMap.Monoidal.Lax using (MonoidalMonotone)
+open import Relation.Binary using (IsEquivalence)
+
+module _ {c₁ c₂ ℓ₁ ℓ₂ : Level} {A : MonoidalPreorder c₁ ℓ₁} {B : MonoidalPreorder c₂ ℓ₂} where
+
+ -- Pointwise equality of monoidal monotone maps
+
+ open MonoidalMonotone using (F)
+
+ _≃_ : (f g : MonoidalMonotone A B) → Set (c₁ ⊔ ℓ₂)
+ f ≃ g = F f MonotoneMap.≃ F g
+
+ infix 4 _≃_
+
+ ≃-isEquivalence : IsEquivalence _≃_
+ ≃-isEquivalence = let open MonotoneMap.≃ in record
+ { refl = λ {x} → refl {x = F x}
+ ; sym = λ {f g} → sym {x = F f} {y = F g}
+ ; trans = λ {f g h} → trans {i = F f} {j = F g} {k = F h}
+ }
+
+ module ≃ = IsEquivalence ≃-isEquivalence
+
+private
+
+ identity : {c ℓ : Level} (A : MonoidalPreorder c ℓ) → MonoidalMonotone A A
+ identity A = let open MonoidalPreorder A in record
+ { F = Category.id (Preorders _ _)
+ ; ε = refl
+ ; ⊗-homo = λ p₁ p₂ → refl {p₁ ⊗ p₂}
+ }
+
+ compose
+ : {c ℓ : Level}
+ {P Q R : MonoidalPreorder c ℓ}
+ → MonoidalMonotone Q R
+ → MonoidalMonotone P Q
+ → MonoidalMonotone P R
+ compose {R = R} G F = record
+ { F = let open Category (Preorders _ _) in G.F ∘ F.F
+ ; ε = trans G.ε (G.mono F.ε)
+ ; ⊗-homo = λ p₁ p₂ → trans (G.⊗-homo (F.map p₁) (F.map p₂)) (G.mono (F.⊗-homo p₁ p₂))
+ }
+ where
+ module F = MonoidalMonotone F
+ module G = MonoidalMonotone G
+ open MonoidalPreorder R
+
+ compose-resp-≃
+ : {c ℓ : Level}
+ {A B C : MonoidalPreorder c ℓ}
+ {f h : MonoidalMonotone B C}
+ {g i : MonoidalMonotone A B}
+ → f ≃ h
+ → g ≃ i
+ → compose f g ≃ compose h i
+ compose-resp-≃ {C = C} {f = f} {g} {h} {i} = ∘-resp-≈ {f = F f} {F g} {F h} {F i}
+ where
+ open Category (Preorders _ _)
+ open MonoidalMonotone using (F)
+
+Monoidals : (c ℓ : Level) → Category (suc (c ⊔ ℓ)) (c ⊔ ℓ) (c ⊔ ℓ)
+Monoidals c ℓ = categoryHelper record
+ { Obj = MonoidalPreorder c ℓ
+ ; _⇒_ = MonoidalMonotone
+ ; _≈_ = _≃_
+ ; id = λ {A} → identity A
+ ; _∘_ = compose
+ ; assoc = λ {f = f} {g h} → ≃.refl {x = compose (compose h g) f}
+ ; identityˡ = λ {f = f} → ≃.refl {x = f}
+ ; identityʳ = λ {f = f} → ≃.refl {x = f}
+ ; equiv = ≃-isEquivalence
+ ; ∘-resp-≈ = λ {f = f} {g h i} → compose-resp-≃ {f = f} {g} {h} {i}
+ }
+ where
+ open MonoidalMonotone using (F)
diff --git a/Category/Instance/Preorder/Primitive/Monoidals/Strong.agda b/Category/Instance/Preorder/Primitive/Monoidals/Strong.agda
new file mode 100644
index 0000000..470db1c
--- /dev/null
+++ b/Category/Instance/Preorder/Primitive/Monoidals/Strong.agda
@@ -0,0 +1,92 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Category.Instance.Preorder.Primitive.Monoidals.Strong where
+
+import Preorder.Primitive.MonotoneMap as MonotoneMap using (_≃_; module ≃)
+
+open import Categories.Category using (Category)
+open import Categories.Category.Helper using (categoryHelper)
+open import Category.Instance.Preorder.Primitive.Preorders using (Preorders)
+open import Level using (Level; suc; _⊔_)
+open import Preorder.Primitive using (module Isomorphism)
+open import Preorder.Primitive.Monoidal using (MonoidalPreorder)
+open import Preorder.Primitive.MonotoneMap.Monoidal.Strong using (MonoidalMonotone)
+open import Relation.Binary using (IsEquivalence)
+
+module _ {c₁ c₂ ℓ₁ ℓ₂ : Level} {A : MonoidalPreorder c₁ ℓ₁} {B : MonoidalPreorder c₂ ℓ₂} where
+
+ -- Pointwise equality of monoidal monotone maps
+
+ open MonoidalMonotone using (F)
+
+ _≃_ : (f g : MonoidalMonotone A B) → Set (c₁ ⊔ ℓ₂)
+ f ≃ g = F f MonotoneMap.≃ F g
+
+ infix 4 _≃_
+
+ ≃-isEquivalence : IsEquivalence _≃_
+ ≃-isEquivalence = let open MonotoneMap.≃ in record
+ { refl = λ {x} → refl {x = F x}
+ ; sym = λ {f g} → sym {x = F f} {y = F g}
+ ; trans = λ {f g h} → trans {i = F f} {j = F g} {k = F h}
+ }
+
+ module ≃ = IsEquivalence ≃-isEquivalence
+
+private
+
+ identity : {c ℓ : Level} (A : MonoidalPreorder c ℓ) → MonoidalMonotone A A
+ identity A = record
+ { F = Category.id (Preorders _ _)
+ ; ε = ≅.refl
+ ; ⊗-homo = λ p₁ p₂ → ≅.refl {p₁ ⊗ p₂}
+ }
+ where
+ open MonoidalPreorder A
+ open Isomorphism U using (module ≅)
+
+ compose
+ : {c ℓ : Level}
+ {P Q R : MonoidalPreorder c ℓ}
+ → MonoidalMonotone Q R
+ → MonoidalMonotone P Q
+ → MonoidalMonotone P R
+ compose {R = R} G F = record
+ { F = let open Category (Preorders _ _) in G.F ∘ F.F
+ ; ε = ≅.trans G.ε (G.map-resp-≅ F.ε)
+ ; ⊗-homo = λ p₁ p₂ → ≅.trans (G.⊗-homo (F.map p₁) (F.map p₂)) (G.map-resp-≅ (F.⊗-homo p₁ p₂))
+ }
+ where
+ module F = MonoidalMonotone F
+ module G = MonoidalMonotone G
+ open MonoidalPreorder R
+ open Isomorphism U using (module ≅)
+
+ compose-resp-≃
+ : {c ℓ : Level}
+ {A B C : MonoidalPreorder c ℓ}
+ {f h : MonoidalMonotone B C}
+ {g i : MonoidalMonotone A B}
+ → f ≃ h
+ → g ≃ i
+ → compose f g ≃ compose h i
+ compose-resp-≃ {C = C} {f = f} {g} {h} {i} = ∘-resp-≈ {f = F f} {F g} {F h} {F i}
+ where
+ open Category (Preorders _ _)
+ open MonoidalMonotone using (F)
+
+Monoidals : (c ℓ : Level) → Category (suc (c ⊔ ℓ)) (c ⊔ ℓ) (c ⊔ ℓ)
+Monoidals c ℓ = categoryHelper record
+ { Obj = MonoidalPreorder c ℓ
+ ; _⇒_ = MonoidalMonotone
+ ; _≈_ = _≃_
+ ; id = λ {A} → identity A
+ ; _∘_ = compose
+ ; assoc = λ {f = f} {g h} → ≃.refl {x = compose (compose h g) f}
+ ; identityˡ = λ {f = f} → ≃.refl {x = f}
+ ; identityʳ = λ {f = f} → ≃.refl {x = f}
+ ; equiv = ≃-isEquivalence
+ ; ∘-resp-≈ = λ {f = f} {g h i} → compose-resp-≃ {f = f} {g} {h} {i}
+ }
+ where
+ open MonoidalMonotone using (F)
diff --git a/Category/Instance/Preorder/Primitive/Monoidals/Symmetric/Lax.agda b/Category/Instance/Preorder/Primitive/Monoidals/Symmetric/Lax.agda
new file mode 100644
index 0000000..c15ff29
--- /dev/null
+++ b/Category/Instance/Preorder/Primitive/Monoidals/Symmetric/Lax.agda
@@ -0,0 +1,84 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Category.Instance.Preorder.Primitive.Monoidals.Symmetric.Lax where
+
+import Category.Instance.Preorder.Primitive.Monoidals.Lax as MP using (_≃_; module ≃)
+
+open import Categories.Category using (Category)
+open import Categories.Category.Helper using (categoryHelper)
+open import Category.Instance.Preorder.Primitive.Monoidals.Lax using (Monoidals)
+open import Level using (Level; suc; _⊔_)
+open import Preorder.Primitive.Monoidal using (SymmetricMonoidalPreorder)
+open import Preorder.Primitive.MonotoneMap.Monoidal.Lax using (SymmetricMonoidalMonotone)
+open import Relation.Binary using (IsEquivalence)
+
+module _ {c₁ c₂ ℓ₁ ℓ₂ : Level} {A : SymmetricMonoidalPreorder c₁ ℓ₁} {B : SymmetricMonoidalPreorder c₂ ℓ₂} where
+
+ open SymmetricMonoidalMonotone using () renaming (monoidalMonotone to mM)
+
+ -- Pointwise isomorphism of symmetric monoidal monotone maps
+ _≃_ : (f g : SymmetricMonoidalMonotone A B) → Set (c₁ ⊔ ℓ₂)
+ f ≃ g = mM f MP.≃ mM g
+
+ infix 4 _≃_
+
+ ≃-isEquivalence : IsEquivalence _≃_
+ ≃-isEquivalence = let open MP.≃ in record
+ { refl = λ {x} → refl {x = mM x}
+ ; sym = λ {f g} → sym {x = mM f} {y = mM g}
+ ; trans = λ {f g h} → trans {i = mM f} {j = mM g} {k = mM h}
+ }
+
+ module ≃ = IsEquivalence ≃-isEquivalence
+
+private
+
+ identity : {c ℓ : Level} (A : SymmetricMonoidalPreorder c ℓ) → SymmetricMonoidalMonotone A A
+ identity {c} {ℓ} A = record
+ { monoidalMonotone = id {monoidalPreorder}
+ }
+ where
+ open SymmetricMonoidalPreorder A using (monoidalPreorder)
+ open Category (Monoidals c ℓ) using (id)
+
+ compose
+ : {c ℓ : Level}
+ {P Q R : SymmetricMonoidalPreorder c ℓ}
+ → SymmetricMonoidalMonotone Q R
+ → SymmetricMonoidalMonotone P Q
+ → SymmetricMonoidalMonotone P R
+ compose {c} {ℓ} {R = R} G F = record
+ { monoidalMonotone = G.monoidalMonotone ∘ F.monoidalMonotone
+ }
+ where
+ module G = SymmetricMonoidalMonotone G
+ module F = SymmetricMonoidalMonotone F
+ open Category (Monoidals c ℓ) using (_∘_)
+
+ compose-resp-≃
+ : {c ℓ : Level}
+ {A B C : SymmetricMonoidalPreorder c ℓ}
+ {f h : SymmetricMonoidalMonotone B C}
+ {g i : SymmetricMonoidalMonotone A B}
+ → f ≃ h
+ → g ≃ i
+ → compose f g ≃ compose h i
+ compose-resp-≃ {C = C} {f = f} {g} {h} {i} = ∘-resp-≈ {f = mM f} {mM g} {mM h} {mM i}
+ where
+ open Category (Monoidals _ _)
+ open SymmetricMonoidalMonotone using () renaming (monoidalMonotone to mM)
+
+-- The category of symmetric monoidal preorders and lax symmetric monoidal monotone
+SymMonPre : (c ℓ : Level) → Category (suc (c ⊔ ℓ)) (c ⊔ ℓ) (c ⊔ ℓ)
+SymMonPre c ℓ = categoryHelper record
+ { Obj = SymmetricMonoidalPreorder c ℓ
+ ; _⇒_ = SymmetricMonoidalMonotone
+ ; _≈_ = _≃_
+ ; id = λ {A} → identity A
+ ; _∘_ = compose
+ ; assoc = λ {f = f} {g h} → ≃.refl {x = compose (compose h g) f}
+ ; identityˡ = λ {f = f} → ≃.refl {x = f}
+ ; identityʳ = λ {f = f} → ≃.refl {x = f}
+ ; equiv = ≃-isEquivalence
+ ; ∘-resp-≈ = λ {f = f} {g h i} → compose-resp-≃ {f = f} {g} {h} {i}
+ }
diff --git a/Category/Instance/Preorder/Primitive/Monoidals/Symmetric/Strong.agda b/Category/Instance/Preorder/Primitive/Monoidals/Symmetric/Strong.agda
new file mode 100644
index 0000000..b584ed7
--- /dev/null
+++ b/Category/Instance/Preorder/Primitive/Monoidals/Symmetric/Strong.agda
@@ -0,0 +1,84 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Category.Instance.Preorder.Primitive.Monoidals.Symmetric.Strong where
+
+import Category.Instance.Preorder.Primitive.Monoidals.Strong as MP using (_≃_; module ≃)
+
+open import Categories.Category using (Category)
+open import Categories.Category.Helper using (categoryHelper)
+open import Category.Instance.Preorder.Primitive.Monoidals.Strong using (Monoidals)
+open import Level using (Level; suc; _⊔_)
+open import Preorder.Primitive.Monoidal using (SymmetricMonoidalPreorder)
+open import Preorder.Primitive.MonotoneMap.Monoidal.Strong using (SymmetricMonoidalMonotone)
+open import Relation.Binary using (IsEquivalence)
+
+module _ {c₁ c₂ ℓ₁ ℓ₂ : Level} {A : SymmetricMonoidalPreorder c₁ ℓ₁} {B : SymmetricMonoidalPreorder c₂ ℓ₂} where
+
+ open SymmetricMonoidalMonotone using () renaming (monoidalMonotone to mM)
+
+ -- Pointwise isomorphism of symmetric monoidal monotone maps
+ _≃_ : (f g : SymmetricMonoidalMonotone A B) → Set (c₁ ⊔ ℓ₂)
+ f ≃ g = mM f MP.≃ mM g
+
+ infix 4 _≃_
+
+ ≃-isEquivalence : IsEquivalence _≃_
+ ≃-isEquivalence = let open MP.≃ in record
+ { refl = λ {x} → refl {x = mM x}
+ ; sym = λ {f g} → sym {x = mM f} {y = mM g}
+ ; trans = λ {f g h} → trans {i = mM f} {j = mM g} {k = mM h}
+ }
+
+ module ≃ = IsEquivalence ≃-isEquivalence
+
+private
+
+ identity : {c ℓ : Level} (A : SymmetricMonoidalPreorder c ℓ) → SymmetricMonoidalMonotone A A
+ identity {c} {ℓ} A = record
+ { monoidalMonotone = id {monoidalPreorder}
+ }
+ where
+ open SymmetricMonoidalPreorder A using (monoidalPreorder)
+ open Category (Monoidals c ℓ) using (id)
+
+ compose
+ : {c ℓ : Level}
+ {P Q R : SymmetricMonoidalPreorder c ℓ}
+ → SymmetricMonoidalMonotone Q R
+ → SymmetricMonoidalMonotone P Q
+ → SymmetricMonoidalMonotone P R
+ compose {c} {ℓ} {R = R} G F = record
+ { monoidalMonotone = G.monoidalMonotone ∘ F.monoidalMonotone
+ }
+ where
+ module G = SymmetricMonoidalMonotone G
+ module F = SymmetricMonoidalMonotone F
+ open Category (Monoidals c ℓ) using (_∘_)
+
+ compose-resp-≃
+ : {c ℓ : Level}
+ {A B C : SymmetricMonoidalPreorder c ℓ}
+ {f h : SymmetricMonoidalMonotone B C}
+ {g i : SymmetricMonoidalMonotone A B}
+ → f ≃ h
+ → g ≃ i
+ → compose f g ≃ compose h i
+ compose-resp-≃ {C = C} {f = f} {g} {h} {i} = ∘-resp-≈ {f = mM f} {mM g} {mM h} {mM i}
+ where
+ open Category (Monoidals _ _)
+ open SymmetricMonoidalMonotone using () renaming (monoidalMonotone to mM)
+
+-- The category of symmetric monoidal preorders and strong symmetric monoidal monotone
+SymMonPre : (c ℓ : Level) → Category (suc (c ⊔ ℓ)) (c ⊔ ℓ) (c ⊔ ℓ)
+SymMonPre c ℓ = categoryHelper record
+ { Obj = SymmetricMonoidalPreorder c ℓ
+ ; _⇒_ = SymmetricMonoidalMonotone
+ ; _≈_ = _≃_
+ ; id = λ {A} → identity A
+ ; _∘_ = compose
+ ; assoc = λ {f = f} {g h} → ≃.refl {x = compose (compose h g) f}
+ ; identityˡ = λ {f = f} → ≃.refl {x = f}
+ ; identityʳ = λ {f = f} → ≃.refl {x = f}
+ ; equiv = ≃-isEquivalence
+ ; ∘-resp-≈ = λ {f = f} {g h i} → compose-resp-≃ {f = f} {g} {h} {i}
+ }
diff --git a/Category/Instance/Preorder/Primitive/Preorders.agda b/Category/Instance/Preorder/Primitive/Preorders.agda
new file mode 100644
index 0000000..9832376
--- /dev/null
+++ b/Category/Instance/Preorder/Primitive/Preorders.agda
@@ -0,0 +1,58 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Category.Instance.Preorder.Primitive.Preorders where
+
+open import Categories.Category using (Category)
+open import Categories.Category.Helper using (categoryHelper)
+open import Function using (id; _∘_)
+open import Level using (Level; _⊔_; suc)
+open import Preorder.Primitive using (Preorder; module Isomorphism)
+open import Preorder.Primitive.MonotoneMap using (MonotoneMap; _≃_; ≃-isEquivalence; module ≃)
+
+-- The category of primitive preorders and monotone maps
+
+private
+
+ module _ {c ℓ : Level} where
+
+ identity : {A : Preorder c ℓ} → MonotoneMap A A
+ identity = record
+ { map = id
+ ; mono = id
+ }
+
+ compose : {A B C : Preorder c ℓ} → MonotoneMap B C → MonotoneMap A B → MonotoneMap A C
+ compose f g = record
+ { map = f.map ∘ g.map
+ ; mono = f.mono ∘ g.mono
+ }
+ where
+ module f = MonotoneMap f
+ module g = MonotoneMap g
+
+ compose-resp-≃
+ : {A B C : Preorder c ℓ}
+ {f h : MonotoneMap B C}
+ {g i : MonotoneMap A B}
+ → f ≃ h
+ → g ≃ i
+ → compose f g ≃ compose h i
+ compose-resp-≃ {C = C} {h = h} {g} f≃h g≃i x = ≅.trans (f≃h (map g x)) (map-resp-≅ h (g≃i x))
+ where
+ open MonotoneMap using (map; mono; map-resp-≅)
+ open Preorder C
+ open Isomorphism C
+
+Preorders : (c ℓ : Level) → Category (suc (c ⊔ ℓ)) (c ⊔ ℓ) (c ⊔ ℓ)
+Preorders c ℓ = categoryHelper record
+ { Obj = Preorder c ℓ
+ ; _⇒_ = MonotoneMap
+ ; _≈_ = _≃_
+ ; id = identity
+ ; _∘_ = compose
+ ; assoc = λ {f = f} {g h} → ≃.refl {x = compose (compose h g) f}
+ ; identityˡ = λ {f = f} → ≃.refl {x = f}
+ ; identityʳ = λ {f = f} → ≃.refl {x = f}
+ ; equiv = ≃-isEquivalence
+ ; ∘-resp-≈ = λ {f = f} {g h i} → compose-resp-≃ {f = f} {g} {h} {i}
+ }