aboutsummaryrefslogtreecommitdiff
path: root/Category/Instance/Preorders.agda
diff options
context:
space:
mode:
authorJacques Comeaux <jacquesrcomeaux@protonmail.com>2026-01-04 15:53:23 -0600
committerJacques Comeaux <jacquesrcomeaux@protonmail.com>2026-01-04 15:53:23 -0600
commit3d7c5574124d3384ff942489feaa093618c309b9 (patch)
treed39033498bb1b84ff2f516a29a78bd1dd1ee151a /Category/Instance/Preorders.agda
parenta2225e97e0bb4de0d9ed9516e1a5515edb140e48 (diff)
Add category of monoidal preorders
Diffstat (limited to 'Category/Instance/Preorders.agda')
-rw-r--r--Category/Instance/Preorders.agda36
1 files changed, 18 insertions, 18 deletions
diff --git a/Category/Instance/Preorders.agda b/Category/Instance/Preorders.agda
index 7dde3af..6d69eda 100644
--- a/Category/Instance/Preorders.agda
+++ b/Category/Instance/Preorders.agda
@@ -24,27 +24,27 @@ module _ {c₁ c₂ ℓ₁ ℓ₂ e₁ e₂ : Level} {A : Preorder c₁ ℓ₁ e
≗-isEquivalence : IsEquivalence _≗_
≗-isEquivalence = record
- { refl = Eq.refl B
- ; sym = λ f≈g → Eq.sym B f≈g
- ; trans = λ f≈g g≈h → Eq.trans B f≈g g≈h
- }
+ { refl = Eq.refl B
+ ; sym = λ f≈g → Eq.sym B f≈g
+ ; trans = λ f≈g g≈h → Eq.trans B f≈g g≈h
+ }
module ≗ = IsEquivalence ≗-isEquivalence
-- The category of preorders and monotone maps
-Preorders : ∀ c ℓ e → Category (suc (c ⊔ ℓ ⊔ e)) (c ⊔ ℓ ⊔ e) (c ⊔ ℓ)
+Preorders : (c ℓ e : Level) → Category (suc (c ⊔ ℓ ⊔ e)) (c ⊔ ℓ ⊔ e) (c ⊔ ℓ)
Preorders c ℓ e = record
- { Obj = Preorder c ℓ e
- ; _⇒_ = PreorderHomomorphism
- ; _≈_ = _≗_
- ; id = λ {A} → Id.preorderHomomorphism A
- ; _∘_ = λ f g → Comp.preorderHomomorphism g f
- ; assoc = λ {_ _ _ D} → Eq.refl D
- ; sym-assoc = λ {_ _ _ D} → Eq.refl D
- ; identityˡ = λ {_ B} → Eq.refl B
- ; identityʳ = λ {_ B} → Eq.refl B
- ; identity² = λ {A} → Eq.refl A
- ; equiv = ≗-isEquivalence
- ; ∘-resp-≈ = λ {_ _ C _ h} f≈h g≈i → Eq.trans C f≈h (cong h g≈i)
- }
+ { Obj = Preorder c ℓ e
+ ; _⇒_ = PreorderHomomorphism
+ ; _≈_ = _≗_
+ ; id = λ {A} → Id.preorderHomomorphism A
+ ; _∘_ = λ f g → Comp.preorderHomomorphism g f
+ ; assoc = λ {_ _ _ D} → Eq.refl D
+ ; sym-assoc = λ {_ _ _ D} → Eq.refl D
+ ; identityˡ = λ {_ B} → Eq.refl B
+ ; identityʳ = λ {_ B} → Eq.refl B
+ ; identity² = λ {A} → Eq.refl A
+ ; equiv = ≗-isEquivalence
+ ; ∘-resp-≈ = λ {_ _ C _ h} f≈h g≈i → Eq.trans C f≈h (cong h g≈i)
+ }