aboutsummaryrefslogtreecommitdiff
path: root/Category/Instance/Preorders/Primitive.agda
diff options
context:
space:
mode:
authorJacques Comeaux <jacquesrcomeaux@protonmail.com>2026-01-07 10:12:13 -0600
committerJacques Comeaux <jacquesrcomeaux@protonmail.com>2026-01-07 10:12:13 -0600
commit8ec259bb32b4339b27560f5ea13afa81b9b8febc (patch)
treef8b860c07c3da42f7ad078413700c347adbfd9d5 /Category/Instance/Preorders/Primitive.agda
parentaecb9a5862a9082909c902307974e7ca85463bb9 (diff)
Differentiate lax and strong monoidal monotones
Diffstat (limited to 'Category/Instance/Preorders/Primitive.agda')
-rw-r--r--Category/Instance/Preorders/Primitive.agda58
1 files changed, 0 insertions, 58 deletions
diff --git a/Category/Instance/Preorders/Primitive.agda b/Category/Instance/Preorders/Primitive.agda
deleted file mode 100644
index 9c36d03..0000000
--- a/Category/Instance/Preorders/Primitive.agda
+++ /dev/null
@@ -1,58 +0,0 @@
-{-# OPTIONS --without-K --safe #-}
-
-module Category.Instance.Preorders.Primitive where
-
-open import Categories.Category using (Category)
-open import Categories.Category.Helper using (categoryHelper)
-open import Function using (id; _∘_)
-open import Level using (Level; _⊔_; suc)
-open import Preorder.Primitive using (Preorder; module Isomorphism)
-open import Preorder.Primitive.MonotoneMap using (MonotoneMap; _≃_; ≃-isEquivalence; module ≃)
-
--- The category of primitive preorders and monotone maps
-
-private
-
- module _ {c ℓ : Level} where
-
- identity : {A : Preorder c ℓ} → MonotoneMap A A
- identity = record
- { map = id
- ; mono = id
- }
-
- compose : {A B C : Preorder c ℓ} → MonotoneMap B C → MonotoneMap A B → MonotoneMap A C
- compose f g = record
- { map = f.map ∘ g.map
- ; mono = f.mono ∘ g.mono
- }
- where
- module f = MonotoneMap f
- module g = MonotoneMap g
-
- compose-resp-≃
- : {A B C : Preorder c ℓ}
- {f h : MonotoneMap B C}
- {g i : MonotoneMap A B}
- → f ≃ h
- → g ≃ i
- → compose f g ≃ compose h i
- compose-resp-≃ {C = C} {h = h} {g} f≃h g≃i x = ≅.trans (f≃h (map g x)) (map-resp-≅ h (g≃i x))
- where
- open MonotoneMap using (map; mono; map-resp-≅)
- open Preorder C
- open Isomorphism C
-
-Preorders : (c ℓ : Level) → Category (suc (c ⊔ ℓ)) (c ⊔ ℓ) (c ⊔ ℓ)
-Preorders c ℓ = categoryHelper record
- { Obj = Preorder c ℓ
- ; _⇒_ = MonotoneMap
- ; _≈_ = _≃_
- ; id = identity
- ; _∘_ = compose
- ; assoc = λ {f = f} {g h} → ≃.refl {x = compose (compose h g) f}
- ; identityˡ = λ {f = f} → ≃.refl {x = f}
- ; identityʳ = λ {f = f} → ≃.refl {x = f}
- ; equiv = ≃-isEquivalence
- ; ∘-resp-≈ = λ {f = f} {g h i} → compose-resp-≃ {f = f} {g} {h} {i}
- }