aboutsummaryrefslogtreecommitdiff
path: root/Category/Instance/Properties/FinitelyCocompletes.agda
diff options
context:
space:
mode:
authorJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-04-23 10:09:32 -0500
committerJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-04-23 10:09:32 -0500
commitf7afdb1823fe8d785849f817d022efa100007560 (patch)
tree34ebb6ee2b94c1ba8b0278f9d4458c62825fb3e5 /Category/Instance/Properties/FinitelyCocompletes.agda
parentdf517e27a5a6d1740e7d982f3c01205d27aff347 (diff)
Category of decorated cospans is symmetric monoidal
Diffstat (limited to 'Category/Instance/Properties/FinitelyCocompletes.agda')
-rw-r--r--Category/Instance/Properties/FinitelyCocompletes.agda210
1 files changed, 0 insertions, 210 deletions
diff --git a/Category/Instance/Properties/FinitelyCocompletes.agda b/Category/Instance/Properties/FinitelyCocompletes.agda
deleted file mode 100644
index dedfa16..0000000
--- a/Category/Instance/Properties/FinitelyCocompletes.agda
+++ /dev/null
@@ -1,210 +0,0 @@
-{-# OPTIONS --without-K --safe #-}
-
-open import Level using (Level)
-module Category.Instance.Properties.FinitelyCocompletes {o ℓ e : Level} where
-
-import Categories.Morphism.Reasoning as ⇒-Reasoning
-
-open import Categories.Category.BinaryProducts using (BinaryProducts)
-open import Categories.Category.Cartesian.Bundle using (CartesianCategory)
-open import Categories.Category.Product using (Product) renaming (_⁂_ to _⁂′_)
-open import Categories.Diagram.Coequalizer using (IsCoequalizer)
-open import Categories.Functor.Core using (Functor)
-open import Categories.Functor using (_∘F_) renaming (id to idF)
-open import Categories.Object.Coproduct using (IsCoproduct; IsCoproduct⇒Coproduct; Coproduct)
-open import Categories.Object.Initial using (IsInitial)
-open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)
-open import Category.Instance.FinitelyCocompletes {o} {ℓ} {e} using (FinitelyCocompletes; FinitelyCocompletes-Cartesian; _×₁_)
-open import Data.Product.Base using (_,_) renaming (_×_ to _×′_)
-open import Functor.Exact using (IsRightExact; RightExactFunctor)
-open import Level using (_⊔_; suc)
-
-FinitelyCocompletes-CC : CartesianCategory (suc (o ⊔ ℓ ⊔ e)) (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e)
-FinitelyCocompletes-CC = record
- { U = FinitelyCocompletes
- ; cartesian = FinitelyCocompletes-Cartesian
- }
-
-module FinCoCom = CartesianCategory FinitelyCocompletes-CC
-open BinaryProducts (FinCoCom.products) using (_×_; π₁; π₂; _⁂_; assocˡ) -- hiding (unique)
-
-module _ (𝒞 : FinitelyCocompleteCategory o ℓ e) where
-
- private
- module 𝒞 = FinitelyCocompleteCategory 𝒞
- module 𝒞×𝒞 = FinitelyCocompleteCategory (𝒞 × 𝒞)
-
- open 𝒞 using ([_,_]; +-unique; i₁; i₂; _∘_; _+_; module Equiv; _⇒_; _+₁_; -+-)
- open Equiv
-
- private
- module -+- = Functor -+-
-
- +-resp-⊥
- : {(A , B) : 𝒞×𝒞.Obj}
- → IsInitial 𝒞×𝒞.U (A , B)
- → IsInitial 𝒞.U (A + B)
- +-resp-⊥ {A , B} A,B-isInitial = record
- { ! = [ A-isInitial.! , B-isInitial.! ]
- ; !-unique = λ { f → +-unique (sym (A-isInitial.!-unique (f ∘ i₁))) (sym (B-isInitial.!-unique (f ∘ i₂))) }
- }
- where
- open IsRightExact
- open RightExactFunctor
- module A-isInitial = IsInitial (F-resp-⊥ (isRightExact (π₁ {𝒞} {𝒞})) A,B-isInitial)
- module B-isInitial = IsInitial (F-resp-⊥ (isRightExact (π₂ {𝒞} {𝒞})) A,B-isInitial)
-
- +-resp-+
- : {(A₁ , A₂) (B₁ , B₂) (C₁ , C₂) : 𝒞×𝒞.Obj}
- {(i₁-₁ , i₁-₂) : (A₁ ⇒ C₁) ×′ (A₂ ⇒ C₂)}
- {(i₂-₁ , i₂-₂) : (B₁ ⇒ C₁) ×′ (B₂ ⇒ C₂)}
- → IsCoproduct 𝒞×𝒞.U (i₁-₁ , i₁-₂) (i₂-₁ , i₂-₂)
- → IsCoproduct 𝒞.U (i₁-₁ +₁ i₁-₂) (i₂-₁ +₁ i₂-₂)
- +-resp-+ {A₁ , A₂} {B₁ , B₂} {C₁ , C₂} {i₁-₁ , i₁-₂} {i₂-₁ , i₂-₂} isCoproduct = record
- { [_,_] = λ { h₁ h₂ → [ Coprod₁.[ h₁ ∘ i₁ , h₂ ∘ i₁ ] , Coprod₂.[ h₁ ∘ i₂ , h₂ ∘ i₂ ] ] }
- ; inject₁ = inject₁
- ; inject₂ = inject₂
- ; unique = unique
- }
- where
- open IsRightExact
- open RightExactFunctor
- module Coprod₁ = Coproduct (IsCoproduct⇒Coproduct 𝒞.U (F-resp-+ (isRightExact (π₁ {𝒞} {𝒞})) isCoproduct))
- module Coprod₂ = Coproduct (IsCoproduct⇒Coproduct 𝒞.U (F-resp-+ (isRightExact (π₂ {𝒞} {𝒞})) isCoproduct))
- open 𝒞 using ([]-cong₂; []∘+₁; +-g-η; +₁∘i₁; +₁∘i₂)
- open 𝒞 using (Obj; _≈_; module HomReasoning; assoc)
- open HomReasoning
- open ⇒-Reasoning 𝒞.U
- inject₁
- : {X : Obj}
- {h₁ : A₁ + A₂ ⇒ X}
- {h₂ : B₁ + B₂ ⇒ X}
- → [ Coprod₁.[ h₁ ∘ i₁ , h₂ ∘ i₁ ] , Coprod₂.[ h₁ ∘ i₂ , h₂ ∘ i₂ ] ] ∘ (i₁-₁ +₁ i₁-₂) ≈ h₁
- inject₁ {_} {h₁} {h₂} = begin
- [ Coprod₁.[ h₁ ∘ i₁ , h₂ ∘ i₁ ] , Coprod₂.[ h₁ ∘ i₂ , h₂ ∘ i₂ ] ] ∘ (i₁-₁ +₁ i₁-₂) ≈⟨ []∘+₁ ⟩
- [ Coprod₁.[ h₁ ∘ i₁ , h₂ ∘ i₁ ] ∘ i₁-₁ , Coprod₂.[ h₁ ∘ i₂ , h₂ ∘ i₂ ] ∘ i₁-₂ ] ≈⟨ []-cong₂ Coprod₁.inject₁ Coprod₂.inject₁ ⟩
- [ h₁ ∘ i₁ , h₁ ∘ i₂ ] ≈⟨ +-g-η ⟩
- h₁ ∎
- inject₂
- : {X : Obj}
- {h₁ : A₁ + A₂ ⇒ X}
- {h₂ : B₁ + B₂ ⇒ X}
- → [ Coprod₁.[ h₁ ∘ i₁ , h₂ ∘ i₁ ] , Coprod₂.[ h₁ ∘ i₂ , h₂ ∘ i₂ ] ] ∘ (i₂-₁ +₁ i₂-₂) ≈ h₂
- inject₂ {_} {h₁} {h₂} = begin
- [ Coprod₁.[ h₁ ∘ i₁ , h₂ ∘ i₁ ] , Coprod₂.[ h₁ ∘ i₂ , h₂ ∘ i₂ ] ] ∘ (i₂-₁ +₁ i₂-₂) ≈⟨ []∘+₁ ⟩
- [ Coprod₁.[ h₁ ∘ i₁ , h₂ ∘ i₁ ] ∘ i₂-₁ , Coprod₂.[ h₁ ∘ i₂ , h₂ ∘ i₂ ] ∘ i₂-₂ ] ≈⟨ []-cong₂ Coprod₁.inject₂ Coprod₂.inject₂ ⟩
- [ h₂ ∘ i₁ , h₂ ∘ i₂ ] ≈⟨ +-g-η ⟩
- h₂ ∎
- unique
- : {X : Obj}
- {i : C₁ + C₂ ⇒ X}
- {h₁ : A₁ + A₂ ⇒ X}
- {h₂ : B₁ + B₂ ⇒ X}
- (eq₁ : i ∘ (i₁-₁ +₁ i₁-₂) ≈ h₁)
- (eq₂ : i ∘ (i₂-₁ +₁ i₂-₂) ≈ h₂)
- → [ Coprod₁.[ h₁ ∘ i₁ , h₂ ∘ i₁ ] , Coprod₂.[ h₁ ∘ i₂ , h₂ ∘ i₂ ] ] ≈ i
- unique {X} {i} {h₁} {h₂} eq₁ eq₂ = begin
- [ Coprod₁.[ h₁ ∘ i₁ , h₂ ∘ i₁ ] , Coprod₂.[ h₁ ∘ i₂ , h₂ ∘ i₂ ] ] ≈⟨ []-cong₂ (Coprod₁.unique eq₁-₁ eq₂-₁) (Coprod₂.unique eq₁-₂ eq₂-₂) ⟩
- [ i ∘ i₁ , i ∘ i₂ ] ≈⟨ +-g-η ⟩
- i ∎
- where
- eq₁-₁ : (i ∘ i₁) ∘ i₁-₁ ≈ h₁ ∘ i₁
- eq₁-₁ = begin
- (i ∘ i₁) ∘ i₁-₁ ≈⟨ pushʳ +₁∘i₁ ⟨
- i ∘ (i₁-₁ +₁ i₁-₂) ∘ i₁ ≈⟨ pullˡ eq₁ ⟩
- h₁ ∘ i₁ ∎
- eq₂-₁ : (i ∘ i₁) ∘ i₂-₁ ≈ h₂ ∘ i₁
- eq₂-₁ = begin
- (i ∘ i₁) ∘ i₂-₁ ≈⟨ pushʳ +₁∘i₁ ⟨
- i ∘ (i₂-₁ +₁ i₂-₂) ∘ i₁ ≈⟨ pullˡ eq₂ ⟩
- h₂ ∘ i₁ ∎
- eq₁-₂ : (i ∘ i₂) ∘ i₁-₂ ≈ h₁ ∘ i₂
- eq₁-₂ = begin
- (i ∘ i₂) ∘ i₁-₂ ≈⟨ pushʳ +₁∘i₂ ⟨
- i ∘ (i₁-₁ +₁ i₁-₂) ∘ i₂ ≈⟨ pullˡ eq₁ ⟩
- h₁ ∘ i₂ ∎
- eq₂-₂ : (i ∘ i₂) ∘ i₂-₂ ≈ h₂ ∘ i₂
- eq₂-₂ = begin
- (i ∘ i₂) ∘ i₂-₂ ≈⟨ pushʳ +₁∘i₂ ⟨
- i ∘ (i₂-₁ +₁ i₂-₂) ∘ i₂ ≈⟨ pullˡ eq₂ ⟩
- h₂ ∘ i₂ ∎
-
- +-resp-coeq
- : {(A₁ , A₂) (B₁ , B₂) (C₁ , C₂) : 𝒞×𝒞.Obj}
- {(f₁ , f₂) (g₁ , g₂) : (A₁ ⇒ B₁) ×′ (A₂ ⇒ B₂)}
- {(h₁ , h₂) : (B₁ ⇒ C₁) ×′ (B₂ ⇒ C₂)}
- → IsCoequalizer 𝒞×𝒞.U (f₁ , f₂) (g₁ , g₂) (h₁ , h₂)
- → IsCoequalizer 𝒞.U (f₁ +₁ f₂) (g₁ +₁ g₂) (h₁ +₁ h₂)
- +-resp-coeq {A₁ , A₂} {B₁ , B₂} {C₁ , C₂} {f₁ , f₂} {g₁ , g₂} {h₁ , h₂} isCoeq = record
- { equality = sym -+-.homomorphism ○ []-cong₂ (refl⟩∘⟨ Coeq₁.equality) (refl⟩∘⟨ Coeq₂.equality) ○ -+-.homomorphism
- ; coequalize = coequalize
- ; universal = universal _
- ; unique = uniq _
- }
- where
- open IsRightExact
- open RightExactFunctor
- module Coeq₁ = IsCoequalizer (F-resp-coeq (isRightExact (π₁ {𝒞} {𝒞})) isCoeq)
- module Coeq₂ = IsCoequalizer (F-resp-coeq (isRightExact (π₂ {𝒞} {𝒞})) isCoeq)
- open 𝒞 using ([]-cong₂; +₁∘i₁; +₁∘i₂; []∘+₁; +-g-η)
- open 𝒞 using (Obj; _≈_; module HomReasoning; assoc; sym-assoc)
- open 𝒞.HomReasoning
- open ⇒-Reasoning 𝒞.U
-
- module _ {X : Obj} {k : B₁ + B₂ ⇒ X} (eq : k ∘ (f₁ +₁ f₂) ≈ k ∘ (g₁ +₁ g₂)) where
-
- eq₁ : (k ∘ i₁) ∘ f₁ ≈ (k ∘ i₁) ∘ g₁
- eq₁ = begin
- (k ∘ i₁) ∘ f₁ ≈⟨ pushʳ +₁∘i₁ ⟨
- k ∘ (f₁ +₁ f₂) ∘ i₁ ≈⟨ extendʳ eq ⟩
- k ∘ (g₁ +₁ g₂) ∘ i₁ ≈⟨ pushʳ +₁∘i₁ ⟩
- (k ∘ i₁) ∘ g₁ ∎
-
- eq₂ : (k ∘ i₂) ∘ f₂ ≈ (k ∘ i₂) ∘ g₂
- eq₂ = begin
- (k ∘ i₂) ∘ f₂ ≈⟨ pushʳ +₁∘i₂ ⟨
- k ∘ (f₁ +₁ f₂) ∘ i₂ ≈⟨ extendʳ eq ⟩
- k ∘ (g₁ +₁ g₂) ∘ i₂ ≈⟨ pushʳ +₁∘i₂ ⟩
- (k ∘ i₂) ∘ g₂ ∎
-
- coequalize : C₁ + C₂ ⇒ X
- coequalize = [ Coeq₁.coequalize eq₁ , Coeq₂.coequalize eq₂ ]
-
- universal : k ≈ coequalize ∘ (h₁ +₁ h₂)
- universal = begin
- k ≈⟨ +-g-η ⟨
- [ k ∘ i₁ , k ∘ i₂ ] ≈⟨ []-cong₂ Coeq₁.universal Coeq₂.universal ⟩
- [ Coeq₁.coequalize eq₁ ∘ h₁ , Coeq₂.coequalize eq₂ ∘ h₂ ] ≈⟨ []∘+₁ ⟨
- coequalize ∘ (h₁ +₁ h₂) ∎
-
- uniq : {i : C₁ + C₂ ⇒ X} → k ≈ i ∘ (h₁ +₁ h₂) → i ≈ coequalize
- uniq {i} eq′ = begin
- i ≈⟨ +-g-η ⟨
- [ i ∘ i₁ , i ∘ i₂ ] ≈⟨ []-cong₂ (Coeq₁.unique eq₁′) (Coeq₂.unique eq₂′) ⟩
- [ Coeq₁.coequalize eq₁ , Coeq₂.coequalize eq₂ ] ∎
- where
- eq₁′ : k ∘ i₁ ≈ (i ∘ i₁) ∘ h₁
- eq₁′ = eq′ ⟩∘⟨refl ○ extendˡ +₁∘i₁
- eq₂′ : k ∘ i₂ ≈ (i ∘ i₂) ∘ h₂
- eq₂′ = eq′ ⟩∘⟨refl ○ extendˡ +₁∘i₂
-
-module _ {𝒞 : FinitelyCocompleteCategory o ℓ e} where
-
- open FinCoCom using (_⇒_; _∘_; id)
- module 𝒞 = FinitelyCocompleteCategory 𝒞
-
- -+- : 𝒞 × 𝒞 ⇒ 𝒞
- -+- = record
- { F = 𝒞.-+-
- ; isRightExact = record
- { F-resp-⊥ = +-resp-⊥ 𝒞
- ; F-resp-+ = +-resp-+ 𝒞
- ; F-resp-coeq = +-resp-coeq 𝒞
- }
- }
-
- [x+y]+z : (𝒞 × 𝒞) × 𝒞 ⇒ 𝒞
- [x+y]+z = -+- ∘ (-+- ×₁ id)
-
- x+[y+z] : (𝒞 × 𝒞) × 𝒞 ⇒ 𝒞
- x+[y+z] = -+- ∘ (id ×₁ -+-) ∘ assocˡ