aboutsummaryrefslogtreecommitdiff
path: root/Category/Instance/SymMonPre.agda
diff options
context:
space:
mode:
authorJacques Comeaux <jacquesrcomeaux@protonmail.com>2026-01-04 16:15:11 -0600
committerJacques Comeaux <jacquesrcomeaux@protonmail.com>2026-01-04 16:15:11 -0600
commit3386254cb6f5fc36c5cb18b7240edde3210a376c (patch)
treecfe3eb553afab97c12634e62931f9fa1d378397b /Category/Instance/SymMonPre.agda
parent3d7c5574124d3384ff942489feaa093618c309b9 (diff)
Add category of symmetric monoidal preorders
Diffstat (limited to 'Category/Instance/SymMonPre.agda')
-rw-r--r--Category/Instance/SymMonPre.agda73
1 files changed, 73 insertions, 0 deletions
diff --git a/Category/Instance/SymMonPre.agda b/Category/Instance/SymMonPre.agda
new file mode 100644
index 0000000..a792c6d
--- /dev/null
+++ b/Category/Instance/SymMonPre.agda
@@ -0,0 +1,73 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Category.Instance.SymMonPre where
+
+import Category.Instance.MonoidalPreorders as MP using (_≗_; module ≗)
+
+open import Categories.Category using (Category)
+open import Categories.Category.Helper using (categoryHelper)
+open import Category.Instance.MonoidalPreorders using (MonoidalPreorders)
+open import Level using (Level; suc; _⊔_)
+open import Preorder.Monoidal using (SymmetricMonoidalPreorder; SymmetricMonoidalMonotone)
+open import Relation.Binary using (IsEquivalence)
+
+private
+
+ identity : {c ℓ e : Level} (A : SymmetricMonoidalPreorder c ℓ e) → SymmetricMonoidalMonotone A A
+ identity {c} {ℓ} {e} A = record
+ { monoidalMonotone = id {monoidalPreorder}
+ }
+ where
+ open SymmetricMonoidalPreorder A using (monoidalPreorder)
+ open Category (MonoidalPreorders c ℓ e) using (id)
+
+ compose
+ : {c ℓ e : Level}
+ {P Q R : SymmetricMonoidalPreorder c ℓ e}
+ → SymmetricMonoidalMonotone Q R
+ → SymmetricMonoidalMonotone P Q
+ → SymmetricMonoidalMonotone P R
+ compose {c} {ℓ} {e} {R = R} G F = record
+ { monoidalMonotone = G.monoidalMonotone ∘ F.monoidalMonotone
+ }
+ where
+ module G = SymmetricMonoidalMonotone G
+ module F = SymmetricMonoidalMonotone F
+ open Category (MonoidalPreorders c ℓ e) using (_∘_)
+
+module _ {c₁ c₂ ℓ₁ ℓ₂ e₁ e₂ : Level} {A : SymmetricMonoidalPreorder c₁ ℓ₁ e₁} {B : SymmetricMonoidalPreorder c₂ ℓ₂ e₂} where
+
+ open SymmetricMonoidalMonotone using () renaming (monoidalMonotone to mM)
+
+ -- Pointwise equality of symmetric monoidal monotone maps
+ _≗_ : (f g : SymmetricMonoidalMonotone A B) → Set (c₁ ⊔ ℓ₂)
+ f ≗ g = mM f MP.≗ mM g
+
+ infix 4 _≗_
+
+ ≗-isEquivalence : IsEquivalence _≗_
+ ≗-isEquivalence = let open MP.≗ in record
+ { refl = λ {x} → refl {x = mM x}
+ ; sym = λ {f g} → sym {x = mM f} {y = mM g}
+ ; trans = λ {f g h} → trans {i = mM f} {j = mM g} {k = mM h}
+ }
+
+ module ≗ = IsEquivalence ≗-isEquivalence
+
+-- The category of symmetric monoidal preorders
+SymMonPre : (c ℓ e : Level) → Category (suc (c ⊔ ℓ ⊔ e)) (c ⊔ ℓ ⊔ e) (c ⊔ ℓ)
+SymMonPre c ℓ e = categoryHelper record
+ { Obj = SymmetricMonoidalPreorder c ℓ e
+ ; _⇒_ = SymmetricMonoidalMonotone
+ ; _≈_ = _≗_
+ ; id = λ {A} → identity A
+ ; _∘_ = λ {A B C} f g → compose f g
+ ; assoc = λ {_ _ _ D _ _ _ _} → Eq.refl D
+ ; identityˡ = λ {_ B _ _} → Eq.refl B
+ ; identityʳ = λ {_ B _ _} → Eq.refl B
+ ; equiv = ≗-isEquivalence
+ ; ∘-resp-≈ = λ {_ _ C _ h} f≈h g≈i → Eq.trans C f≈h (cong h g≈i)
+ }
+ where
+ open SymmetricMonoidalMonotone using (cong)
+ open SymmetricMonoidalPreorder using (refl; module Eq)