aboutsummaryrefslogtreecommitdiff
path: root/Category/Instance
diff options
context:
space:
mode:
authorJacques Comeaux <jacquesrcomeaux@protonmail.com>2024-10-16 17:23:21 -0500
committerJacques Comeaux <jacquesrcomeaux@protonmail.com>2024-10-16 17:23:21 -0500
commitf4bdceb3427ceb50ea118a9e4d494839b38dd04a (patch)
treefd7436d5e11e9d4e1cce791ebe55398b09f21262 /Category/Instance
parentf99ae520c259bf62dd6093ca6ef7ba9181ed13f3 (diff)
Switch decoration functor from strong to lax
Diffstat (limited to 'Category/Instance')
-rw-r--r--Category/Instance/DecoratedCospans.agda130
1 files changed, 65 insertions, 65 deletions
diff --git a/Category/Instance/DecoratedCospans.agda b/Category/Instance/DecoratedCospans.agda
index 92a1de9..3f9b6ee 100644
--- a/Category/Instance/DecoratedCospans.agda
+++ b/Category/Instance/DecoratedCospans.agda
@@ -1,18 +1,18 @@
{-# OPTIONS --without-K --safe #-}
open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory)
-open import Categories.Functor.Monoidal.Symmetric using (module Strong)
+open import Categories.Functor.Monoidal.Symmetric using (module Lax)
open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)
-open Strong using (SymmetricMonoidalFunctor)
+open Lax using (SymmetricMonoidalFunctor)
open FinitelyCocompleteCategory
using ()
renaming (symmetricMonoidalCategory to smc)
module Category.Instance.DecoratedCospans
- {o ℓ e}
+ {o o′ ℓ ℓ′ e e′}
(𝒞 : FinitelyCocompleteCategory o ℓ e)
- {𝒟 : SymmetricMonoidalCategory o ℓ e}
+ {𝒟 : SymmetricMonoidalCategory o′ ℓ′ e′}
(F : SymmetricMonoidalFunctor (smc 𝒞) 𝒟) where
module 𝒞 = FinitelyCocompleteCategory 𝒞
@@ -60,17 +60,17 @@ compose c₁ c₂ = record
module p = 𝒞.pushout C₁.f₂ C₂.f₁
open p using (i₁; i₂)
φ : F₀ C₁.N ⊗₀ F₀ C₂.N ⇒ F₀ (C₁.N + C₂.N)
- φ = ⊗-homo.⇒.η (C₁.N , C₂.N)
+ φ = ⊗-homo.η (C₁.N , C₂.N)
s⊗t : unit ⇒ F₀ C₁.N ⊗₀ F₀ C₂.N
s⊗t = C₁.decoration ⊗₁ C₂.decoration ∘ unitorʳ.to
identity : DecoratedCospan A A
identity = record
{ cospan = Cospans.identity
- ; decoration = 𝒟.U [ F₁ 𝒞.initial.! ∘ ε.from ]
+ ; decoration = 𝒟.U [ F₁ 𝒞.initial.! ∘ ε ]
}
-record Same (C₁ C₂ : DecoratedCospan A B) : Set (ℓ ⊔ e) where
+record Same (C₁ C₂ : DecoratedCospan A B) : Set (ℓ ⊔ e ⊔ e′) where
module C₁ = DecoratedCospan C₁
module C₂ = DecoratedCospan C₂
@@ -155,8 +155,8 @@ compose-assoc {_} {_} {_} {_} {c₁} {c₂} {c₃} = record
P = C₃.N
Q = P₁.Q
R = P₂.Q
- φ = ⊗-homo.⇒.η
- φ-commute = ⊗-homo.⇒.commute
+ φ = ⊗-homo.η
+ φ-commute = ⊗-homo.commute
a = C₁.f₂
b = C₂.f₁
@@ -406,8 +406,8 @@ compose-idʳ {A} {_} {C} = record
open ⊗-Reasoning monoidal
open ⇒-Reasoning U
- φ = ⊗-homo.⇒.η
- φ-commute = ⊗-homo.⇒.commute
+ φ = ⊗-homo.η
+ φ-commute = ⊗-homo.commute
module λ≅ = unitorˡ
λ⇒ = λ≅.from
@@ -420,33 +420,33 @@ compose-idʳ {A} {_} {C} = record
s : unit ⇒ F₀ N
s = decoration
- cohere-s : φ (⊥ , N) ∘ (ε.from ⊗₁ s) ∘ ρ⇐ ≈ F₁ ⊥+A≅A.to ∘ s
+ cohere-s : φ (⊥ , N) ∘ (ε ⊗₁ s) ∘ ρ⇐ ≈ F₁ ⊥+A≅A.to ∘ s
cohere-s = begin
- φ (⊥ , N) ∘ (ε.from ⊗₁ s) ∘ ρ⇐ ≈⟨ identityˡ ⟨
- id ∘ φ (⊥ , N) ∘ (ε.from ⊗₁ s) ∘ ρ⇐ ≈⟨ F-identity ⟩∘⟨refl ⟨
- F₁ id′ ∘ φ (⊥ , N) ∘ (ε.from ⊗₁ s) ∘ ρ⇐ ≈⟨ F-resp-≈ ⊥+A≅A.isoˡ ⟩∘⟨refl ⟨
- F₁ (⊥+A≅A.to ∘′ ⊥+A≅A.from) ∘ φ (⊥ , N) ∘ (ε.from ⊗₁ s) ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟩
- F₁ ⊥+A≅A.to ∘ F₁ ⊥+A≅A.from ∘ φ (⊥ , N) ∘ (ε.from ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ serialize₁₂ ⟩
- F₁ ⊥+A≅A.to ∘ F₁ ⊥+A≅A.from ∘ φ (⊥ , N) ∘ (ε.from ⊗₁ id) ∘ (id ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ sym-assoc ⟩
- F₁ ⊥+A≅A.to ∘ F₁ ⊥+A≅A.from ∘ (φ (⊥ , N) ∘ (ε.from ⊗₁ id)) ∘ (id ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ pullˡ unitaryˡ ⟩
- F₁ ⊥+A≅A.to ∘ λ⇒ ∘ (id ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ λ₁≅ρ₁⇐ ⟨
- F₁ ⊥+A≅A.to ∘ λ⇒ ∘ (id ⊗₁ s) ∘ λ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ 𝒟.unitorˡ-commute-to ⟨
- F₁ ⊥+A≅A.to ∘ λ⇒ ∘ λ⇐ ∘ s ≈⟨ refl⟩∘⟨ cancelˡ λ≅.isoʳ ⟩
- F₁ ⊥+A≅A.to ∘ s ∎
-
- deco-id : F₁ ≅P.from ∘ F₁ [ i₁ , i₂ ] ∘ φ (A , N) ∘ (F₁ ¡ ∘ ε.from) ⊗₁ s ∘ ρ⇐ ≈ s
+ φ (⊥ , N) ∘ (ε ⊗₁ s) ∘ ρ⇐ ≈⟨ identityˡ ⟨
+ id ∘ φ (⊥ , N) ∘ (ε ⊗₁ s) ∘ ρ⇐ ≈⟨ F-identity ⟩∘⟨refl ⟨
+ F₁ id′ ∘ φ (⊥ , N) ∘ (ε ⊗₁ s) ∘ ρ⇐ ≈⟨ F-resp-≈ ⊥+A≅A.isoˡ ⟩∘⟨refl ⟨
+ F₁ (⊥+A≅A.to ∘′ ⊥+A≅A.from) ∘ φ (⊥ , N) ∘ (ε ⊗₁ s) ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟩
+ F₁ ⊥+A≅A.to ∘ F₁ ⊥+A≅A.from ∘ φ (⊥ , N) ∘ (ε ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ serialize₁₂ ⟩
+ F₁ ⊥+A≅A.to ∘ F₁ ⊥+A≅A.from ∘ φ (⊥ , N) ∘ (ε ⊗₁ id) ∘ (id ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ sym-assoc ⟩
+ F₁ ⊥+A≅A.to ∘ F₁ ⊥+A≅A.from ∘ (φ (⊥ , N) ∘ (ε ⊗₁ id)) ∘ (id ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ pullˡ unitaryˡ ⟩
+ F₁ ⊥+A≅A.to ∘ λ⇒ ∘ (id ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ λ₁≅ρ₁⇐ ⟨
+ F₁ ⊥+A≅A.to ∘ λ⇒ ∘ (id ⊗₁ s) ∘ λ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ 𝒟.unitorˡ-commute-to ⟨
+ F₁ ⊥+A≅A.to ∘ λ⇒ ∘ λ⇐ ∘ s ≈⟨ refl⟩∘⟨ cancelˡ λ≅.isoʳ ⟩
+ F₁ ⊥+A≅A.to ∘ s ∎
+
+ deco-id : F₁ ≅P.from ∘ F₁ [ i₁ , i₂ ] ∘ φ (A , N) ∘ (F₁ ¡ ∘ ε) ⊗₁ s ∘ ρ⇐ ≈ s
deco-id = begin
- F₁ ≅P.from ∘ F₁ [ i₁ , i₂ ] ∘ φ (A , N) ∘ (F₁ ¡ ∘ ε.from) ⊗₁ s ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟨
- F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ (A , N) ∘ (F₁ ¡ ∘ ε.from) ⊗₁ s ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ split₁ˡ ⟩
- F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ (A , N) ∘ (F₁ ¡ ⊗₁ id) ∘ (ε.from ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩⊗⟨ F-identity ⟩∘⟨refl ⟨
- F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ (A , N) ∘ (F₁ ¡ ⊗₁ F₁ id′) ∘ (ε.from ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ (φ-commute (¡ , id′)) ⟩
- F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ F₁ (¡ +₁ id′) ∘ φ (⊥ , N) ∘ (ε.from ⊗₁ s) ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟨
- F₁ ((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (¡ +₁ id′)) ∘ φ (⊥ , N) ∘ (ε.from ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ cohere-s ⟩
- F₁ ((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (¡ +₁ id′)) ∘ F₁ ⊥+A≅A.to ∘ s ≈⟨ pushˡ homomorphism ⟨
- F₁ (((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (¡ +₁ id′)) ∘′ ⊥+A≅A.to) ∘ s ≈⟨ F-resp-≈ copairing-id ⟩∘⟨refl ⟩
- F₁ id′ ∘ s ≈⟨ F-identity ⟩∘⟨refl ⟩
- id ∘ s ≈⟨ identityˡ ⟩
- s ∎
+ F₁ ≅P.from ∘ F₁ [ i₁ , i₂ ] ∘ φ (A , N) ∘ (F₁ ¡ ∘ ε) ⊗₁ s ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟨
+ F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ (A , N) ∘ (F₁ ¡ ∘ ε) ⊗₁ s ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ split₁ˡ ⟩
+ F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ (A , N) ∘ (F₁ ¡ ⊗₁ id) ∘ (ε ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩⊗⟨ F-identity ⟩∘⟨refl ⟨
+ F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ (A , N) ∘ (F₁ ¡ ⊗₁ F₁ id′) ∘ (ε ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ (φ-commute (¡ , id′)) ⟩
+ F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ F₁ (¡ +₁ id′) ∘ φ (⊥ , N) ∘ (ε ⊗₁ s) ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟨
+ F₁ ((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (¡ +₁ id′)) ∘ φ (⊥ , N) ∘ (ε ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ cohere-s ⟩
+ F₁ ((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (¡ +₁ id′)) ∘ F₁ ⊥+A≅A.to ∘ s ≈⟨ pushˡ homomorphism ⟨
+ F₁ (((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (¡ +₁ id′)) ∘′ ⊥+A≅A.to) ∘ s ≈⟨ F-resp-≈ copairing-id ⟩∘⟨refl ⟩
+ F₁ id′ ∘ s ≈⟨ F-identity ⟩∘⟨refl ⟩
+ id ∘ s ≈⟨ identityˡ ⟩
+ s ∎
compose-idˡ : {C : DecoratedCospan A B} → Same (compose C identity) C
compose-idˡ {_} {B} {C} = record
@@ -522,8 +522,8 @@ compose-idˡ {_} {B} {C} = record
open ⊗-Reasoning monoidal
open ⇒-Reasoning U
- φ = ⊗-homo.⇒.η
- φ-commute = ⊗-homo.⇒.commute
+ φ = ⊗-homo.η
+ φ-commute = ⊗-homo.commute
module ρ≅ = unitorʳ
ρ⇒ = ρ≅.from
@@ -532,32 +532,32 @@ compose-idˡ {_} {B} {C} = record
s : unit ⇒ F₀ N
s = decoration
- cohere-s : φ (N , ⊥) ∘ (s ⊗₁ ε.from) ∘ ρ⇐ ≈ F₁ A+⊥≅A.to ∘ s
+ cohere-s : φ (N , ⊥) ∘ (s ⊗₁ ε) ∘ ρ⇐ ≈ F₁ A+⊥≅A.to ∘ s
cohere-s = begin
- φ (N , ⊥) ∘ (s ⊗₁ ε.from) ∘ ρ⇐ ≈⟨ identityˡ ⟨
- id ∘ φ (N , ⊥) ∘ (s ⊗₁ ε.from) ∘ ρ⇐ ≈⟨ F-identity ⟩∘⟨refl ⟨
- F₁ id′ ∘ φ (N , ⊥) ∘ (s ⊗₁ ε.from) ∘ ρ⇐ ≈⟨ F-resp-≈ A+⊥≅A.isoˡ ⟩∘⟨refl ⟨
- F₁ (A+⊥≅A.to ∘′ A+⊥≅A.from) ∘ φ (N , ⊥) ∘ (s ⊗₁ ε.from) ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟩
- F₁ A+⊥≅A.to ∘ F₁ A+⊥≅A.from ∘ φ (N , ⊥) ∘ (s ⊗₁ ε.from) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ serialize₂₁ ⟩
- F₁ A+⊥≅A.to ∘ F₁ A+⊥≅A.from ∘ φ (N , ⊥) ∘ (id ⊗₁ ε.from) ∘ (s ⊗₁ id) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ sym-assoc ⟩
- F₁ A+⊥≅A.to ∘ F₁ A+⊥≅A.from ∘ (φ (N , ⊥) ∘ (id ⊗₁ ε.from)) ∘ (s ⊗₁ id) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ pullˡ unitaryʳ ⟩
- F₁ A+⊥≅A.to ∘ ρ⇒ ∘ (s ⊗₁ id) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ unitorʳ-commute-to ⟨
- F₁ A+⊥≅A.to ∘ ρ⇒ ∘ ρ⇐ ∘ s ≈⟨ refl⟩∘⟨ cancelˡ ρ≅.isoʳ ⟩
- F₁ A+⊥≅A.to ∘ s ∎
-
- deco-id : F₁ ≅P.from ∘ F₁ [ i₁ , i₂ ] ∘ φ (N , B) ∘ s ⊗₁ (F₁ ¡ ∘ ε.from) ∘ ρ⇐ ≈ s
+ φ (N , ⊥) ∘ (s ⊗₁ ε) ∘ ρ⇐ ≈⟨ identityˡ ⟨
+ id ∘ φ (N , ⊥) ∘ (s ⊗₁ ε) ∘ ρ⇐ ≈⟨ F-identity ⟩∘⟨refl ⟨
+ F₁ id′ ∘ φ (N , ⊥) ∘ (s ⊗₁ ε) ∘ ρ⇐ ≈⟨ F-resp-≈ A+⊥≅A.isoˡ ⟩∘⟨refl ⟨
+ F₁ (A+⊥≅A.to ∘′ A+⊥≅A.from) ∘ φ (N , ⊥) ∘ (s ⊗₁ ε) ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟩
+ F₁ A+⊥≅A.to ∘ F₁ A+⊥≅A.from ∘ φ (N , ⊥) ∘ (s ⊗₁ ε) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ serialize₂₁ ⟩
+ F₁ A+⊥≅A.to ∘ F₁ A+⊥≅A.from ∘ φ (N , ⊥) ∘ (id ⊗₁ ε) ∘ (s ⊗₁ id) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ sym-assoc ⟩
+ F₁ A+⊥≅A.to ∘ F₁ A+⊥≅A.from ∘ (φ (N , ⊥) ∘ (id ⊗₁ ε)) ∘ (s ⊗₁ id) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ pullˡ unitaryʳ ⟩
+ F₁ A+⊥≅A.to ∘ ρ⇒ ∘ (s ⊗₁ id) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ unitorʳ-commute-to ⟨
+ F₁ A+⊥≅A.to ∘ ρ⇒ ∘ ρ⇐ ∘ s ≈⟨ refl⟩∘⟨ cancelˡ ρ≅.isoʳ ⟩
+ F₁ A+⊥≅A.to ∘ s ∎
+
+ deco-id : F₁ ≅P.from ∘ F₁ [ i₁ , i₂ ] ∘ φ (N , B) ∘ s ⊗₁ (F₁ ¡ ∘ ε) ∘ ρ⇐ ≈ s
deco-id = begin
- F₁ ≅P.from ∘ F₁ [ i₁ , i₂ ] ∘ φ (N , B) ∘ s ⊗₁ (F₁ ¡ ∘ ε.from) ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟨
- F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ (N , B) ∘ s ⊗₁ (F₁ ¡ ∘ ε.from) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ split₂ˡ ⟩
- F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ (N , B) ∘ (id ⊗₁ F₁ ¡) ∘ (s ⊗₁ ε.from) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ F-identity ⟩⊗⟨refl ⟩∘⟨refl ⟨
- F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ (N , B) ∘ (F₁ id′ ⊗₁ F₁ ¡) ∘ (s ⊗₁ ε.from) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ (φ-commute (id′ , ¡)) ⟩
- F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ F₁ (id′ +₁ ¡) ∘ φ (N , ⊥) ∘ (s ⊗₁ ε.from) ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟨
- F₁ ((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (id′ +₁ ¡)) ∘ φ (N , ⊥) ∘ (s ⊗₁ ε.from) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ cohere-s ⟩
- F₁ ((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (id′ +₁ ¡)) ∘ F₁ A+⊥≅A.to ∘ s ≈⟨ pushˡ homomorphism ⟨
- F₁ (((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (id′ +₁ ¡)) ∘′ A+⊥≅A.to) ∘ s ≈⟨ F-resp-≈ copairing-id ⟩∘⟨refl ⟩
- F₁ id′ ∘ s ≈⟨ F-identity ⟩∘⟨refl ⟩
- id ∘ s ≈⟨ identityˡ ⟩
- s ∎
+ F₁ ≅P.from ∘ F₁ [ i₁ , i₂ ] ∘ φ (N , B) ∘ s ⊗₁ (F₁ ¡ ∘ ε) ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟨
+ F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ (N , B) ∘ s ⊗₁ (F₁ ¡ ∘ ε) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ split₂ˡ ⟩
+ F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ (N , B) ∘ (id ⊗₁ F₁ ¡) ∘ (s ⊗₁ ε) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ F-identity ⟩⊗⟨refl ⟩∘⟨refl ⟨
+ F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ (N , B) ∘ (F₁ id′ ⊗₁ F₁ ¡) ∘ (s ⊗₁ ε) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ (φ-commute (id′ , ¡)) ⟩
+ F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ F₁ (id′ +₁ ¡) ∘ φ (N , ⊥) ∘ (s ⊗₁ ε) ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟨
+ F₁ ((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (id′ +₁ ¡)) ∘ φ (N , ⊥) ∘ (s ⊗₁ ε) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ cohere-s ⟩
+ F₁ ((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (id′ +₁ ¡)) ∘ F₁ A+⊥≅A.to ∘ s ≈⟨ pushˡ homomorphism ⟨
+ F₁ (((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (id′ +₁ ¡)) ∘′ A+⊥≅A.to) ∘ s ≈⟨ F-resp-≈ copairing-id ⟩∘⟨refl ⟩
+ F₁ id′ ∘ s ≈⟨ F-identity ⟩∘⟨refl ⟩
+ id ∘ s ≈⟨ identityˡ ⟩
+ s ∎
compose-id² : Same {A} (compose identity identity) identity
compose-id² = compose-idˡ
@@ -595,8 +595,8 @@ compose-equiv {_} {_} {_} {c₂} {c₂′} {c₁} {c₁′} ≅C₂ ≅C₁ = re
N′ = C₁′.N
M′ = C₂′.N
- φ = ⊗-homo.⇒.η
- φ-commute = ⊗-homo.⇒.commute
+ φ = ⊗-homo.η
+ φ-commute = ⊗-homo.commute
Q⇒ = ≅C₂∘C₁.≅N.from
N⇒ = ≅C₁.≅N.from
@@ -629,7 +629,7 @@ compose-equiv {_} {_} {_} {c₂} {c₂′} {c₁} {c₁′} ≅C₂ ≅C₁ = re
F₁ [ P′.i₁ , P′.i₂ ] ∘ φ (N′ , M′) ∘ (F₁ N⇒ ∘ s) ⊗₁ (F₁ M⇒ ∘ t) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ ≅C₁.same-deco ⟩⊗⟨ ≅C₂.same-deco ⟩∘⟨refl ⟩
F₁ [ P′.i₁ , P′.i₂ ] ∘ φ (N′ , M′) ∘ s′ ⊗₁ t′ ∘ ρ⇐ ∎
-Cospans : Category o (o ⊔ ℓ) (ℓ ⊔ e)
+Cospans : Category o (o ⊔ ℓ ⊔ ℓ′) (ℓ ⊔ e ⊔ e′)
Cospans = record
{ Obj = 𝒞.Obj
; _⇒_ = DecoratedCospan