diff options
| author | Jacques Comeaux <jacquesrcomeaux@protonmail.com> | 2025-04-23 10:09:32 -0500 | 
|---|---|---|
| committer | Jacques Comeaux <jacquesrcomeaux@protonmail.com> | 2025-04-23 10:09:32 -0500 | 
| commit | f7afdb1823fe8d785849f817d022efa100007560 (patch) | |
| tree | 34ebb6ee2b94c1ba8b0278f9d4458c62825fb3e5 /Category/Monoidal | |
| parent | df517e27a5a6d1740e7d982f3c01205d27aff347 (diff) | |
Category of decorated cospans is symmetric monoidal
Diffstat (limited to 'Category/Monoidal')
| -rw-r--r-- | Category/Monoidal/Instance/DecoratedCospans.agda | 415 | ||||
| -rw-r--r-- | Category/Monoidal/Instance/DecoratedCospans/Lift.agda | 114 | ||||
| -rw-r--r-- | Category/Monoidal/Instance/DecoratedCospans/Products.agda | 104 | 
3 files changed, 633 insertions, 0 deletions
| diff --git a/Category/Monoidal/Instance/DecoratedCospans.agda b/Category/Monoidal/Instance/DecoratedCospans.agda new file mode 100644 index 0000000..c570e54 --- /dev/null +++ b/Category/Monoidal/Instance/DecoratedCospans.agda @@ -0,0 +1,415 @@ +{-# OPTIONS --without-K --safe #-} +{-# OPTIONS --lossy-unification #-} + +open import Categories.Category.Monoidal.Bundle using (MonoidalCategory; SymmetricMonoidalCategory) +open import Categories.Functor.Monoidal.Symmetric using (module Lax) +open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory) + +open Lax using (SymmetricMonoidalFunctor) +open FinitelyCocompleteCategory +  using () +  renaming (symmetricMonoidalCategory to smc) + +module Category.Monoidal.Instance.DecoratedCospans +    {o o′ ℓ ℓ′ e e′} +    (𝒞 : FinitelyCocompleteCategory o ℓ e) +    {𝒟 : SymmetricMonoidalCategory o′ ℓ′ e′} +    (F : SymmetricMonoidalFunctor (smc 𝒞) 𝒟) where + +open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory) + + +import Categories.Category.Monoidal.Reasoning as ⊗-Reasoning +import Categories.Morphism as Morphism +import Categories.Morphism.Reasoning as ⇒-Reasoning +import Categories.Category.Monoidal.Properties as ⊗-Properties +import Categories.Category.Monoidal.Braided.Properties as σ-Properties + +open import Categories.Category using (_[_,_]; _[_≈_]; _[_∘_]; Category) +open import Categories.Category.BinaryProducts using (BinaryProducts) +open import Categories.Category.Cartesian using (Cartesian) +open import Categories.Category.Cartesian.Bundle using (CartesianCategory) +open import Categories.Category.Cocartesian using (module CocartesianMonoidal; module CocartesianSymmetricMonoidal) +open import Categories.Category.Monoidal.Braided using (Braided) +open import Categories.Category.Monoidal.Core using (Monoidal) +open import Categories.Category.Monoidal.Symmetric using (Symmetric) +open import Categories.Category.Monoidal.Utilities using (module Shorthands) +open import Categories.Functor using (Functor; _∘F_) renaming (id to idF) +open import Categories.Functor.Hom using (Hom[_][_,-]) +open import Categories.Functor.Properties using ([_]-resp-≅) +open import Categories.Functor.Monoidal.Construction.Product using (⁂-SymmetricMonoidalFunctor) +open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; _ⓘˡ_; niHelper) +open import Categories.NaturalTransformation.Core using (NaturalTransformation; _∘ᵥ_; ntHelper) +open import Categories.NaturalTransformation.Equivalence using () renaming (_≃_ to _≋_) +open import Category.Instance.DecoratedCospans 𝒞 F using (DecoratedCospans) +open import Category.Cartesian.Instance.FinitelyCocompletes {o} {ℓ} {e} using (module x+y; module y+x; [x+y]+z; x+[y+z]; assoc-≃) +open import Category.Monoidal.Instance.DecoratedCospans.Lift {o} {ℓ} {e} {o′} {ℓ′} {e′} using (module Square) +open import Cospan.Decorated 𝒞 F using (DecoratedCospan) +open import Data.Product.Base using (_,_) +open import Function.Base using () renaming (id to idf) +open import Functor.Instance.DecoratedCospan.Stack 𝒞 F using (⊗) +open import Functor.Instance.DecoratedCospan.Embed 𝒞 F using (L; L-resp-⊗; B₁) + +open import Category.Monoidal.Instance.DecoratedCospans.Products 𝒞 F +open CocartesianMonoidal 𝒞.U 𝒞.cocartesian using (⊥+--id; -+⊥-id; ⊥+A≅A; A+⊥≅A; +-monoidal) +open import Categories.Category.Monoidal.Utilities +-monoidal using (associator-naturalIsomorphism) + +module LiftUnitorˡ where +    module ⊗ = Functor ⊗ +    module F = SymmetricMonoidalFunctor F +    open 𝒞 using (⊥; _+-; i₂; _+_; _+₁_; ¡; +₁-cong₂; ¡-unique; -+-) +    open Shorthands 𝒟.monoidal using (ρ⇒; ρ⇐; λ⇒) +    ≃₁ : NaturalTransformation (Hom[ 𝒟.U ][ 𝒟.unit ,-] ∘F F.F) (Hom[ 𝒟.U ][ 𝒟.unit ,-] ∘F F.F ∘F (⊥ +-)) +    ≃₁ = ntHelper record +        { η = λ { X → record +            { to = λ { f → 𝒟.U [ F.⊗-homo.η (⊥ , X) ∘ 𝒟.U [ 𝒟.⊗.₁ (𝒟.U [ F.₁ 𝒞.initial.! ∘ F.ε ] , f) ∘ ρ⇐ ] ] } +            ; cong = λ { x → refl⟩∘⟨ refl⟩⊗⟨ x ⟩∘⟨refl } } +            } +        ; commute = ned +        } +      where +        open 𝒟.Equiv +        open 𝒟 using (sym-assoc; _∘_; id; _⊗₁_; identityʳ) +        open ⊗-Reasoning 𝒟.monoidal +        open ⇒-Reasoning 𝒟.U +        ned : {X Y : 𝒞.Obj} (f : X 𝒞.⇒ Y) {x : 𝒟.unit 𝒟.⇒ F.₀ X} +            → F.⊗-homo.η (⊥ , Y) ∘ (F.₁ ¡ 𝒟.∘ F.ε) ⊗₁ (F.F₁ f ∘ x ∘ id) ∘ ρ⇐ +            𝒟.≈ F.₁ (𝒞.id +₁ f) ∘ (F.⊗-homo.η (𝒞.⊥ , X) ∘ (F.₁ ¡ ∘ F.ε) ⊗₁ x ∘ ρ⇐) ∘ id +        ned {X} {Y} f {x} = begin +              F.⊗-homo.η (⊥ , Y) ∘ (F.₁ ¡ ∘ F.ε) ⊗₁ (F.₁ f ∘ x ∘ id) ∘ ρ⇐            ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ (refl⟩∘⟨ identityʳ) ⟩∘⟨refl ⟩ +              F.⊗-homo.η (⊥ , Y) ∘ (F.₁ ¡ ∘ F.ε) ⊗₁ (F.₁ f ∘ x) ∘ ρ⇐                 ≈⟨ push-center (sym split₂ˡ) ⟩ +              F.⊗-homo.η (⊥ , Y) ∘ id ⊗₁ F.₁ f ∘ (F.₁ ¡ ∘ F.ε) ⊗₁ x ∘ ρ⇐             ≈⟨ refl⟩∘⟨ F.identity ⟩⊗⟨refl ⟩∘⟨refl ⟨ +              F.⊗-homo.η (⊥ , Y) ∘ F.₁ 𝒞.id ⊗₁ F.₁ f ∘ (F.₁ ¡ ∘ F.ε) ⊗₁ x ∘ ρ⇐       ≈⟨ extendʳ (F.⊗-homo.commute (𝒞.id , f)) ⟩ +              F.₁ (𝒞.id +₁ f) ∘ F.⊗-homo.η (⊥ , X) ∘ (F.₁ ¡ ∘ F.ε) ⊗₁ x ∘ ρ⇐         ≈⟨ refl⟩∘⟨ identityʳ ⟨ +              F.₁ (𝒞.id +₁ f) ∘ (F.⊗-homo.η (⊥ , X) ∘ (F.₁ ¡ ∘ F.ε) ⊗₁ x ∘ ρ⇐) ∘ id  ∎ +    ≃₂ : NaturalTransformation (Hom[ 𝒟.U ][ 𝒟.unit ,-] ∘F F.F) (Hom[ 𝒟.U ][ 𝒟.unit ,-] ∘F F.F ∘F idF) +    ≃₂ = ntHelper record +        { η = λ { X → record { to = idf ; cong = idf } } +        ; commute = λ { f → refl } +        } +      where +        open 𝒟.Equiv +    open NaturalIsomorphism using (F⇐G) +    ≃₂≋≃₁ : (F⇐G (Hom[ 𝒟.U ][ 𝒟.unit ,-] ⓘˡ (F.F ⓘˡ ⊥+--id))) ∘ᵥ ≃₂ ≋ ≃₁ +    ≃₂≋≃₁ {X} {f} = begin +        F.₁ λ⇐ ∘ f ∘ id                                                 ≈⟨ refl⟩∘⟨ refl⟩∘⟨ 𝒟.unitorʳ.isoʳ ⟨ +        F.₁ λ⇐ ∘ f ∘ ρ⇒ ∘ ρ⇐                                            ≈⟨ refl⟩∘⟨ refl⟩∘⟨ coherence₃ ⟩∘⟨refl ⟨ +        F.₁ λ⇐ ∘ f ∘ λ⇒ ∘ ρ⇐                                            ≈⟨ refl⟩∘⟨ extendʳ 𝒟.unitorˡ-commute-from ⟨ +        F.₁ λ⇐ ∘ λ⇒ ∘ id ⊗₁ f ∘ ρ⇐                                      ≈⟨ pushˡ (introˡ F.identity) ⟩ +        F.₁ 𝒞.id ∘ F.₁ λ⇐ ∘ λ⇒ ∘ id ⊗₁ f ∘ ρ⇐                           ≈⟨ F.F-resp-≈ (-+-.identity) ⟩∘⟨refl ⟨ +        F.₁ (𝒞.id +₁ 𝒞.id) ∘ F.₁ λ⇐ ∘ λ⇒ ∘ id ⊗₁ f ∘ ρ⇐                 ≈⟨ F.F-resp-≈ (+₁-cong₂ (¡-unique 𝒞.id) 𝒞.Equiv.refl) ⟩∘⟨refl ⟨ +        F.₁ (¡ +₁ 𝒞.id) ∘ F.₁ λ⇐ ∘ λ⇒ ∘ id ⊗₁ f ∘ ρ⇐                    ≈⟨ refl⟩∘⟨ extendʳ (switch-fromtoˡ ([ F.F ]-resp-≅ unitorˡ) F.unitaryˡ)  ⟨ +        F.₁ (¡ +₁ 𝒞.id) ∘ F.⊗-homo.η (⊥ , X) ∘ F.ε ⊗₁ id ∘ id ⊗₁ f ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pullˡ (sym serialize₁₂) ⟩ +        F.₁ (¡ +₁ 𝒞.id) ∘ F.⊗-homo.η (⊥ , X) ∘ F.ε ⊗₁ f ∘ ρ⇐            ≈⟨ extendʳ (F.⊗-homo.commute (¡ , 𝒞.id)) ⟨ +        F.⊗-homo.η (⊥ , X) ∘ (F.₁ ¡ ⊗₁ F.₁ 𝒞.id) ∘ F.ε ⊗₁ f ∘ ρ⇐        ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ F.identity ⟩∘⟨refl ⟩ +        F.⊗-homo.η (⊥ , X) ∘ (F.₁ ¡ ⊗₁ id) ∘ F.ε ⊗₁ f ∘ ρ⇐              ≈⟨ pull-center (sym split₁ˡ) ⟩ +        F.⊗-homo.η (⊥ , X) ∘ (F.₁ ¡ ∘ F.ε) ⊗₁ f ∘ ρ⇐                    ∎ +      where +        open Shorthands 𝒞.monoidal using (λ⇐) +        open CocartesianMonoidal 𝒞.U 𝒞.cocartesian using (unitorˡ) +        open 𝒟.Equiv +        open 𝒟 using (sym-assoc; _∘_; id; _⊗₁_; identityʳ) +        open ⊗-Reasoning 𝒟.monoidal +        open ⊗-Properties 𝒟.monoidal using (coherence₃) +        open ⇒-Reasoning 𝒟.U +        module -+- = Functor -+- +    module Unitorˡ = Square {𝒞} {𝒞} {𝒟} {𝒟} {F} {F} ⊥+--id ≃₁ ≃₂ ≃₂≋≃₁ +open LiftUnitorˡ using (module Unitorˡ) + +module LiftUnitorʳ where +    module ⊗ = Functor ⊗ +    module F = SymmetricMonoidalFunctor F +    open 𝒞 using (⊥; -+_; i₁; _+_; _+₁_; ¡; +₁-cong₂; ¡-unique; -+-) +    open Shorthands 𝒟.monoidal using (ρ⇒; ρ⇐) +    ≃₁ : NaturalTransformation (Hom[ 𝒟.U ][ 𝒟.unit ,-] ∘F F.F) (Hom[ 𝒟.U ][ 𝒟.unit ,-] ∘F F.F ∘F (-+ ⊥)) +    ≃₁ = ntHelper record +        { η = λ { X → record +            { to = λ { f → 𝒟.U [ F.⊗-homo.η (X , ⊥) ∘ 𝒟.U [ 𝒟.⊗.₁ (f , 𝒟.U [ F.₁ 𝒞.initial.! ∘ F.ε ]) ∘ ρ⇐ ] ] } +            ; cong = λ { x → refl⟩∘⟨ x ⟩⊗⟨refl ⟩∘⟨refl } } +            } +        ; commute = ned +        } +      where +        open 𝒟.Equiv +        open 𝒟 using (sym-assoc; _∘_; id; _⊗₁_; identityʳ) +        open ⊗-Reasoning 𝒟.monoidal +        open ⇒-Reasoning 𝒟.U +        ned : {X Y : 𝒞.Obj} (f : X 𝒞.⇒ Y) {x : 𝒟.unit 𝒟.⇒ F.₀ X} +            → F.⊗-homo.η (Y , ⊥) ∘ (F.F₁ f ∘ x ∘ id) ⊗₁ (F.₁ ¡ ∘ F.ε) ∘ ρ⇐ +            𝒟.≈ F.₁ (f +₁ 𝒞.id) ∘ (F.⊗-homo.η (X , ⊥) ∘ x ⊗₁ (F.₁ ¡ ∘ F.ε) ∘ ρ⇐) ∘ id +        ned {X} {Y} f {x} = begin +              F.⊗-homo.η (Y , ⊥) ∘ (F.₁ f ∘ x ∘ id) ⊗₁ (F.₁ ¡ ∘ F.ε) ∘ ρ⇐             ≈⟨ refl⟩∘⟨ (refl⟩∘⟨ identityʳ) ⟩⊗⟨refl ⟩∘⟨refl ⟩ +              F.⊗-homo.η (Y , ⊥) ∘ (F.₁ f ∘ x) ⊗₁ (F.₁ ¡ ∘ F.ε) ∘ ρ⇐                  ≈⟨ push-center (sym split₁ˡ) ⟩ +              F.⊗-homo.η (Y , ⊥) ∘ F.₁ f ⊗₁ id ∘ x ⊗₁ (F.₁ ¡ ∘ F.ε) ∘ ρ⇐              ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ F.identity ⟩∘⟨refl ⟨ +              F.⊗-homo.η (Y , ⊥) ∘ F.₁ f ⊗₁ F.₁ 𝒞.id ∘ x ⊗₁ (F.₁ ¡ ∘ F.ε) ∘ ρ⇐        ≈⟨ extendʳ (F.⊗-homo.commute (f , 𝒞.id)) ⟩ +              F.₁ (f +₁ 𝒞.id) ∘ F.⊗-homo.η (X , ⊥) ∘ x ⊗₁ (F.₁ ¡ ∘ F.ε) ∘ ρ⇐          ≈⟨ refl⟩∘⟨ identityʳ ⟨ +              F.₁ (f +₁ 𝒞.id) ∘ (F.⊗-homo.η (X , ⊥) ∘ x ⊗₁ (F.₁ ¡ ∘ F.ε) ∘ ρ⇐) ∘ id   ∎ +    ≃₂ : NaturalTransformation (Hom[ 𝒟.U ][ 𝒟.unit ,-] ∘F F.F) (Hom[ 𝒟.U ][ 𝒟.unit ,-] ∘F F.F ∘F idF) +    ≃₂ = ntHelper record +        { η = λ { X → record { to = idf ; cong = idf } } +        ; commute = λ { f → refl } +        } +      where +        open 𝒟.Equiv +    open NaturalIsomorphism using (F⇐G) +    ≃₂≋≃₁ : (F⇐G (Hom[ 𝒟.U ][ 𝒟.unit ,-] ⓘˡ (F.F ⓘˡ -+⊥-id))) ∘ᵥ ≃₂ ≋ ≃₁ +    ≃₂≋≃₁ {X} {f} = begin +        F.₁ i₁ ∘ f ∘ id                                                 ≈⟨ refl⟩∘⟨ refl⟩∘⟨ 𝒟.unitorʳ.isoʳ ⟨ +        F.₁ ρ⇐′ ∘ f ∘ ρ⇒ ∘ ρ⇐                                           ≈⟨ refl⟩∘⟨ extendʳ 𝒟.unitorʳ-commute-from ⟨ +        F.₁ ρ⇐′ ∘ ρ⇒ ∘ f ⊗₁ id ∘ ρ⇐                                     ≈⟨ pushˡ (introˡ F.identity) ⟩ +        F.₁ 𝒞.id ∘ F.₁ ρ⇐′ ∘ ρ⇒ ∘ f ⊗₁ id ∘ ρ⇐                          ≈⟨ F.F-resp-≈ (-+-.identity) ⟩∘⟨refl ⟨ +        F.₁ (𝒞.id +₁ 𝒞.id) ∘ F.₁ ρ⇐′ ∘ ρ⇒ ∘ f ⊗₁ id ∘ ρ⇐                ≈⟨ F.F-resp-≈ (+₁-cong₂ 𝒞.Equiv.refl (¡-unique 𝒞.id)) ⟩∘⟨refl ⟨ +        F.₁ (𝒞.id +₁ ¡) ∘ F.₁ ρ⇐′ ∘ ρ⇒ ∘ f ⊗₁ id ∘ ρ⇐                   ≈⟨ refl⟩∘⟨ extendʳ (switch-fromtoˡ ([ F.F ]-resp-≅ unitorʳ) F.unitaryʳ)  ⟨ +        F.₁ (𝒞.id +₁ ¡) ∘ F.⊗-homo.η (X , ⊥) ∘ id ⊗₁ F.ε ∘ f ⊗₁ id ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pullˡ (sym serialize₂₁) ⟩ +        F.₁ (𝒞.id +₁ ¡) ∘ F.⊗-homo.η (X , ⊥) ∘ f ⊗₁ F.ε ∘ ρ⇐            ≈⟨ extendʳ (F.⊗-homo.commute (𝒞.id , ¡)) ⟨ +        F.⊗-homo.η (X , ⊥) ∘ (F.₁ 𝒞.id ⊗₁ F.₁ ¡) ∘ f ⊗₁ F.ε ∘ ρ⇐        ≈⟨ refl⟩∘⟨ F.identity ⟩⊗⟨refl ⟩∘⟨refl ⟩ +        F.⊗-homo.η (X , ⊥) ∘ (id ⊗₁ F.₁ ¡) ∘ f ⊗₁ F.ε ∘ ρ⇐              ≈⟨ pull-center (sym split₂ˡ) ⟩ +        F.⊗-homo.η (X , ⊥) ∘ f ⊗₁ (F.₁ ¡ ∘ F.ε) ∘ ρ⇐                    ∎ +      where +        open Shorthands 𝒞.monoidal using () renaming (ρ⇐ to ρ⇐′) +        open CocartesianMonoidal 𝒞.U 𝒞.cocartesian using (unitorʳ) +        open 𝒟.Equiv +        open 𝒟 using (sym-assoc; _∘_; id; _⊗₁_; identityʳ) +        open ⊗-Reasoning 𝒟.monoidal +        open ⇒-Reasoning 𝒟.U +        module -+- = Functor -+- +    module Unitorʳ = Square {𝒞} {𝒞} {𝒟} {𝒟} {F} {F} -+⊥-id ≃₁ ≃₂ ≃₂≋≃₁ +open LiftUnitorʳ using (module Unitorʳ) + +module LiftAssociator where +    module ⊗ = Functor ⊗ +    module F = SymmetricMonoidalFunctor F +    open 𝒞 using (⊥; -+_; i₁; _+_; _+₁_; ¡; +₁-cong₂; ¡-unique; -+-) +    open Shorthands 𝒟.monoidal using (ρ⇒; ρ⇐) +    ≃₁ : NaturalTransformation (Hom[ [𝒟×𝒟]×𝒟.U ][ [𝒟×𝒟]×𝒟.unit ,-] ∘F [F×F]×F.F) (Hom[ 𝒟.U ][ 𝒟.unit ,-] ∘F F.F ∘F ([x+y]+z.F {𝒞})) +    ≃₁ = ntHelper record +        { η = λ { ((X , Y) , Z) → record +            { to = λ { ((f , g) , h) → F.⊗-homo.η (X + Y , Z) ∘ ((F.⊗-homo.η (X , Y) ∘ f ⊗₁ g ∘ ρ⇐) ⊗₁ h) ∘ ρ⇐ } +            ; cong = λ { {(f , g) , h} {(f′ , g′) , h′} ((x , y) , z) → refl⟩∘⟨ (refl⟩∘⟨ x ⟩⊗⟨ y ⟩∘⟨refl) ⟩⊗⟨ z ⟩∘⟨refl } +            } } +        ; commute = λ { {(X , Y) , Z} {(X′ , Y′) , Z′} ((x , y) , z) {(f , g) , h} → commute x y z f g h } +        } +      where +        open 𝒟.Equiv +        open 𝒟 using (sym-assoc; _∘_; id; _⊗₁_; identityʳ; _≈_) +        open ⊗-Reasoning 𝒟.monoidal +        open ⇒-Reasoning 𝒟.U +        commute +            : {X Y Z X′ Y′ Z′ : 𝒞.Obj} +              (x : 𝒞.U [ X , X′ ]) +              (y : 𝒞.U [ Y , Y′ ]) +              (z : 𝒞.U [ Z , Z′ ]) +              (f : 𝒟.U [ 𝒟.unit , F.₀ X ]) +              (g : 𝒟.U [ 𝒟.unit , F.₀ Y ]) +              (h : 𝒟.U [ 𝒟.unit , F.₀ Z ]) +            → F.⊗-homo.η (X′ + Y′ , Z′) ∘ (F.⊗-homo.η (X′ , Y′) ∘ (F.₁ x ∘ f ∘ id) ⊗₁ (F.₁ y ∘ g ∘ id) ∘ ρ⇐) ⊗₁ (F.₁ z ∘ h ∘ id) ∘ ρ⇐ +            ≈ F.₁ ((x +₁ y) +₁ z) ∘ (F.⊗-homo.η (X + Y , Z) ∘ (F.⊗-homo.η (X , Y) ∘ f ⊗₁ g ∘ ρ⇐) ⊗₁ h ∘ ρ⇐) ∘ id +        commute {X} {Y} {Z} {X′} {Y′} {Z′} x y z f g h = begin +            F.⊗-homo.η (X′ + Y′ , Z′) ∘ (F.⊗-homo.η (X′ , Y′) ∘ (F.₁ x ∘ f ∘ id) ⊗₁ (F.₁ y ∘ g ∘ id) ∘ ρ⇐) ⊗₁ (F.₁ z ∘ h ∘ id) ∘ ρ⇐ +                ≈⟨ refl⟩∘⟨ (refl⟩∘⟨ (refl⟩∘⟨ identityʳ) ⟩⊗⟨ (refl⟩∘⟨ identityʳ) ⟩∘⟨refl) ⟩⊗⟨ (refl⟩∘⟨ identityʳ) ⟩∘⟨refl ⟩ +            F.⊗-homo.η (X′ + Y′ , Z′) ∘ (F.⊗-homo.η (X′ , Y′) ∘ (F.₁ x ∘ f) ⊗₁ (F.₁ y ∘ g) ∘ ρ⇐) ⊗₁ (F.₁ z ∘ h) ∘ ρ⇐ +                ≈⟨ refl⟩∘⟨ push-center (sym ⊗-distrib-over-∘) ⟩⊗⟨refl ⟩∘⟨refl ⟩ +            F.⊗-homo.η (X′ + Y′ , Z′) ∘ (F.⊗-homo.η (X′ , Y′) ∘ F.₁ x ⊗₁ F.₁ y ∘ f ⊗₁ g ∘ ρ⇐) ⊗₁ (F.₁ z ∘ h) ∘ ρ⇐ +                ≈⟨ refl⟩∘⟨ extendʳ (F.⊗-homo.commute (x , y)) ⟩⊗⟨refl ⟩∘⟨refl ⟩ +            F.⊗-homo.η (X′ + Y′ , Z′) ∘ (F.₁ (x +₁ y) ∘ F.⊗-homo.η (X , Y) ∘ f ⊗₁ g ∘ ρ⇐) ⊗₁ (F.₁ z ∘ h) ∘ ρ⇐ +                ≈⟨ push-center (sym ⊗-distrib-over-∘) ⟩ +            F.⊗-homo.η (X′ + Y′ , Z′) ∘ F.₁ (x +₁ y) ⊗₁ F.₁ z ∘ (F.⊗-homo.η (X , Y) ∘ f ⊗₁ g ∘ ρ⇐) ⊗₁ h ∘ ρ⇐ +                ≈⟨ extendʳ (F.⊗-homo.commute (x +₁ y , z)) ⟩ +            F.₁ ((x +₁ y) +₁ z) ∘ F.⊗-homo.η (X + Y , Z) ∘ (F.⊗-homo.η (X , Y) ∘ f ⊗₁ g ∘ ρ⇐) ⊗₁ h ∘ ρ⇐ +                ≈⟨ refl⟩∘⟨ identityʳ ⟨ +            F.₁ ((x +₁ y) +₁ z) ∘ (F.⊗-homo.η (X + Y , Z) ∘ (F.⊗-homo.η (X , Y) ∘ f ⊗₁ g ∘ ρ⇐) ⊗₁ h ∘ ρ⇐) ∘ id +                ∎ +    ≃₂ : NaturalTransformation (Hom[ [𝒟×𝒟]×𝒟.U ][ [𝒟×𝒟]×𝒟.unit ,-] ∘F [F×F]×F.F) (Hom[ 𝒟.U ][ 𝒟.unit ,-] ∘F F.F ∘F (x+[y+z].F {𝒞})) +    ≃₂ = ntHelper record +        { η = λ { ((X , Y) , Z) → record +            { to = λ { ((f , g) , h) → F.⊗-homo.η (X , Y + Z) ∘ (f ⊗₁ (F.⊗-homo.η (Y , Z) ∘ g ⊗₁ h ∘ ρ⇐)) ∘ ρ⇐ } +            ; cong = λ { {(f , g) , h} {(f′ , g′) , h′} ((x , y) , z) → refl⟩∘⟨ x ⟩⊗⟨ (refl⟩∘⟨ y ⟩⊗⟨ z ⟩∘⟨refl) ⟩∘⟨refl } +            } } +        ; commute = λ { {(X , Y) , Z} {(X′ , Y′) , Z′} ((x , y) , z) {(f , g) , h} → commute x y z f g h } +        } +      where +        open 𝒟.Equiv +        open 𝒟 using (sym-assoc; _∘_; id; _⊗₁_; identityʳ; _≈_) +        open ⊗-Reasoning 𝒟.monoidal +        open ⇒-Reasoning 𝒟.U +        commute +            : {X Y Z X′ Y′ Z′ : 𝒞.Obj} +              (x : 𝒞.U [ X , X′ ]) +              (y : 𝒞.U [ Y , Y′ ]) +              (z : 𝒞.U [ Z , Z′ ]) +              (f : 𝒟.U [ 𝒟.unit , F.₀ X ]) +              (g : 𝒟.U [ 𝒟.unit , F.₀ Y ]) +              (h : 𝒟.U [ 𝒟.unit , F.₀ Z ]) +            → F.⊗-homo.η (X′ , Y′ + Z′) ∘ (F.₁ x ∘ f ∘ id) ⊗₁ (F.⊗-homo.η (Y′ , Z′) ∘ (F.₁ y ∘ g ∘ id) ⊗₁ (F.₁ z ∘ h ∘ id) ∘ ρ⇐) ∘ ρ⇐ +            ≈ F.₁ (x +₁ (y +₁ z)) ∘ (F.⊗-homo.η (X , Y + Z) ∘ f ⊗₁ (F.⊗-homo.η (Y , Z) ∘ g ⊗₁ h ∘ ρ⇐) ∘ ρ⇐) ∘ id +        commute {X} {Y} {Z} {X′} {Y′} {Z′} x y z f g h = begin +            F.⊗-homo.η (X′ , Y′ + Z′) ∘ (F.₁ x ∘ f ∘ id) ⊗₁ (F.⊗-homo.η (Y′ , Z′) ∘ (F.₁ y ∘ g ∘ id) ⊗₁ (F.₁ z ∘ h ∘ id) ∘ ρ⇐) ∘ ρ⇐ +                ≈⟨ refl⟩∘⟨ (refl⟩∘⟨ identityʳ) ⟩⊗⟨ (refl⟩∘⟨ (refl⟩∘⟨ identityʳ) ⟩⊗⟨ (refl⟩∘⟨ identityʳ) ⟩∘⟨refl) ⟩∘⟨refl ⟩ +            F.⊗-homo.η (X′ , Y′ + Z′) ∘ (F.₁ x ∘ f) ⊗₁ (F.⊗-homo.η (Y′ , Z′) ∘ (F.₁ y ∘ g) ⊗₁ (F.₁ z ∘ h) ∘ ρ⇐) ∘ ρ⇐ +                ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ push-center (sym ⊗-distrib-over-∘) ⟩∘⟨refl ⟩ +            F.⊗-homo.η (X′ , Y′ + Z′) ∘ (F.₁ x ∘ f) ⊗₁ (F.⊗-homo.η (Y′ , Z′) ∘ F.₁ y ⊗₁ F.₁ z ∘ g ⊗₁ h ∘ ρ⇐) ∘ ρ⇐ +                ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ extendʳ (F.⊗-homo.commute (y , z)) ⟩∘⟨refl ⟩ +            F.⊗-homo.η (X′ , Y′ + Z′) ∘ (F.₁ x ∘ f) ⊗₁ (F.₁ (y +₁ z) ∘ F.⊗-homo.η (Y , Z) ∘ g ⊗₁ h ∘ ρ⇐) ∘ ρ⇐ +                ≈⟨ push-center (sym ⊗-distrib-over-∘) ⟩ +            F.⊗-homo.η (X′ , Y′ + Z′) ∘ F.₁ x ⊗₁ F.₁ (y +₁ z) ∘ f ⊗₁ (F.⊗-homo.η (Y , Z) ∘ g ⊗₁ h ∘ ρ⇐) ∘ ρ⇐ +                ≈⟨ extendʳ (F.⊗-homo.commute (x , y +₁ z)) ⟩ +            F.₁ (x +₁ (y +₁ z)) ∘ F.⊗-homo.η (X , Y + Z) ∘ f ⊗₁ (F.⊗-homo.η (Y , Z) ∘ g ⊗₁ h ∘ ρ⇐) ∘ ρ⇐ +                ≈⟨ refl⟩∘⟨ identityʳ ⟨ +            F.₁ (x +₁ (y +₁ z)) ∘ (F.⊗-homo.η (X , Y + Z) ∘ f ⊗₁ (F.⊗-homo.η (Y , Z) ∘ g ⊗₁ h ∘ ρ⇐) ∘ ρ⇐) ∘ id +                ∎ +    open NaturalIsomorphism using (F⇐G) +    ≃₂≋≃₁ : (F⇐G (Hom[ 𝒟.U ][ 𝒟.unit ,-] ⓘˡ (F.F ⓘˡ assoc-≃))) ∘ᵥ ≃₂ ≋ ≃₁ +    ≃₂≋≃₁ {(X , Y) , Z} {(f , g) , h} = begin +        F.₁ α⇐′ ∘ (F.⊗-homo.η (X , Y + Z) ∘ (f ⊗₁ _) ∘ ρ⇐) ∘ id                                               ≈⟨ refl⟩∘⟨ identityʳ ⟩ +        F.₁ α⇐′ ∘ F.⊗-homo.η (X , Y + Z) ∘ f ⊗₁ (F.⊗-homo.η (Y , Z) ∘ g ⊗₁ h ∘ ρ⇐) ∘ ρ⇐                       ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩⊗⟨ sym-assoc ⟩∘⟨refl ⟩ +        F.₁ α⇐′ ∘ F.⊗-homo.η (X , Y + Z) ∘ f ⊗₁ ((F.⊗-homo.η (Y , Z) ∘ g ⊗₁ h) ∘ ρ⇐) ∘ ρ⇐                     ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ split₂ʳ ⟩ +        F.₁ α⇐′ ∘ F.⊗-homo.η (X , Y + Z) ∘ f ⊗₁ (F.⊗-homo.η (Y , Z) ∘ g ⊗₁ h) ∘ id ⊗₁ ρ⇐ ∘ ρ⇐                 ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ coherence-inv₃ ⟨ +        F.₁ α⇐′ ∘ F.⊗-homo.η (X , Y + Z) ∘ f ⊗₁ (F.⊗-homo.η (Y , Z) ∘ g ⊗₁ h) ∘ id ⊗₁ ρ⇐ ∘ λ⇐                 ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ unitorˡ-commute-to ⟨ +        F.₁ α⇐′ ∘ F.⊗-homo.η (X , Y + Z) ∘ f ⊗₁ (F.⊗-homo.η (Y , Z) ∘ g ⊗₁ h) ∘ λ⇐ ∘ ρ⇐                       ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ (switch-tofromˡ α coherence-inv₁) ⟩ +        F.₁ α⇐′ ∘ F.⊗-homo.η (X , Y + Z) ∘ f ⊗₁ (F.⊗-homo.η (Y , Z) ∘ g ⊗₁ h) ∘ α⇒ ∘ λ⇐ ⊗₁ id ∘ ρ⇐            ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ split₂ˡ ⟩ +        F.₁ α⇐′ ∘ F.⊗-homo.η (X , Y + Z) ∘ id ⊗₁ F.⊗-homo.η (Y , Z) ∘ f ⊗₁ (g ⊗₁ h) ∘ α⇒ ∘ λ⇐ ⊗₁ id ∘ ρ⇐      ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ coherence-inv₃ ⟩⊗⟨refl ⟩∘⟨refl ⟩ +        F.₁ α⇐′ ∘ F.⊗-homo.η (X , Y + Z) ∘ id ⊗₁ F.⊗-homo.η (Y , Z) ∘ f ⊗₁ (g ⊗₁ h) ∘ α⇒ ∘ ρ⇐ ⊗₁ id ∘ ρ⇐      ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ extendʳ assoc-commute-from ⟨ +        F.₁ α⇐′ ∘ F.⊗-homo.η (X , Y + Z) ∘ id ⊗₁ F.⊗-homo.η (Y , Z) ∘ α⇒ ∘ (f ⊗₁ g) ⊗₁ h ∘ ρ⇐ ⊗₁ id ∘ ρ⇐      ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ pullˡ (sym split₁ʳ) ⟩ +        F.₁ α⇐′ ∘ F.⊗-homo.η (X , Y + Z) ∘ id ⊗₁ F.⊗-homo.η (Y , Z) ∘ α⇒ ∘ (f ⊗₁ g ∘ ρ⇐) ⊗₁ h ∘ ρ⇐            ≈⟨ refl⟩∘⟨ refl⟩∘⟨ sym-assoc ⟩ +        F.₁ α⇐′ ∘ F.⊗-homo.η (X , Y + Z) ∘ (id ⊗₁ F.⊗-homo.η (Y , Z) ∘ α⇒) ∘ (f ⊗₁ g ∘ ρ⇐) ⊗₁ h ∘ ρ⇐          ≈⟨ refl⟩∘⟨ sym-assoc ⟩ +        F.₁ α⇐′ ∘ (F.⊗-homo.η (X , Y + Z) ∘ id ⊗₁ F.⊗-homo.η (Y , Z) ∘ α⇒) ∘ (f ⊗₁ g ∘ ρ⇐) ⊗₁ h ∘ ρ⇐          ≈⟨ extendʳ (switch-fromtoˡ ([ F.F ]-resp-≅ α′) F.associativity) ⟨ +        F.⊗-homo.η (X + Y , Z) ∘ F.⊗-homo.η (X , Y) ⊗₁ id ∘ (f ⊗₁ g ∘ ρ⇐) ⊗₁ h ∘ ρ⇐                           ≈⟨ refl⟩∘⟨ pullˡ (sym split₁ˡ) ⟩ +        F.⊗-homo.η (X + Y , Z) ∘ (F.⊗-homo.η (X , Y) ∘ (f ⊗₁ g) ∘ ρ⇐) ⊗₁ h ∘ ρ⇐                               ∎ +      where +        open Shorthands 𝒞.monoidal using () renaming (α⇐ to α⇐′) +        open Shorthands 𝒟.monoidal using (α⇒; λ⇐) +        open 𝒟.Equiv +        open 𝒟 using (sym-assoc; _∘_; id; _⊗₁_; identityʳ; assoc-commute-from; unitorˡ-commute-to) renaming (unitorˡ to ƛ; associator to α) +        open ⊗-Reasoning 𝒟.monoidal +        open ⇒-Reasoning 𝒟.U +        open CocartesianMonoidal 𝒞.U 𝒞.cocartesian using () renaming (associator to α′) +        open ⊗-Properties 𝒟.monoidal using (coherence-inv₁; coherence-inv₃) +    module Associator = Square {[𝒞×𝒞]×𝒞} {𝒞} {[𝒟×𝒟]×𝒟} {𝒟} {[F×F]×F} {F} {[x+y]+z.F {𝒞}} {x+[y+z].F {𝒞}} (assoc-≃ {𝒞}) ≃₁ ≃₂ ≃₂≋≃₁ +open LiftAssociator using (module Associator) + +module LiftBraiding where +    module ⊗ = Functor ⊗ +    module F = SymmetricMonoidalFunctor F +    open 𝒞 using (⊥; -+_; i₁; _+_; _+₁_; ¡; +₁-cong₂; ¡-unique; -+-) +    open Shorthands 𝒟.monoidal using (ρ⇒; ρ⇐) +    ≃₁ : NaturalTransformation (Hom[ 𝒟×𝒟.U ][ 𝒟×𝒟.unit ,-] ∘F F×F.F) (Hom[ 𝒟.U ][ 𝒟.unit ,-] ∘F F.F ∘F (x+y.F {𝒞})) +    ≃₁ = ntHelper record +        { η = λ { (X , Y) → record +            { to = λ { (x , y) → F.⊗-homo.η (X , Y) ∘ x ⊗₁ y ∘ ρ⇐} +            ; cong = λ { {x , y} {x′ , y′} (≈x , ≈y) → refl⟩∘⟨ ≈x ⟩⊗⟨ ≈y ⟩∘⟨refl } +            } } +        ; commute = λ { {X , Y} {X′ , Y′} (x , y) {f , g} → +            (extendʳ +                (refl⟩∘⟨ (refl⟩∘⟨ identityʳ) ⟩⊗⟨ (refl⟩∘⟨ identityʳ) +                ○ refl⟩∘⟨ ⊗-distrib-over-∘ +                ○ extendʳ (F.⊗-homo.commute (x , y)))) +            ○ refl⟩∘⟨ extendˡ (sym identityʳ) } +        } +      where +        open 𝒟.Equiv +        open 𝒟 using (sym-assoc; _∘_; id; _⊗₁_; identityʳ; _≈_; assoc) +        open ⊗-Reasoning 𝒟.monoidal +        open ⇒-Reasoning 𝒟.U +    ≃₂ : NaturalTransformation (Hom[ 𝒟×𝒟.U ][ 𝒟×𝒟.unit ,-] ∘F F×F.F) (Hom[ 𝒟.U ][ 𝒟.unit ,-] ∘F F.F ∘F (y+x.F {𝒞})) +    ≃₂ = ntHelper record +        { η = λ { (X , Y) → record +            { to = λ { (x , y) → F.⊗-homo.η (Y , X) ∘ y ⊗₁ x ∘ ρ⇐} +            ; cong = λ { {x , y} {x′ , y′} (≈x , ≈y) → refl⟩∘⟨ ≈y ⟩⊗⟨ ≈x ⟩∘⟨refl } +            } } +        ; commute = λ { {X , Y} {X′ , Y′} (x , y) {f , g} → +            (extendʳ +                (refl⟩∘⟨ (refl⟩∘⟨ identityʳ) ⟩⊗⟨ (refl⟩∘⟨ identityʳ) +                ○ refl⟩∘⟨ ⊗-distrib-over-∘ +                ○ extendʳ (F.⊗-homo.commute (y , x)))) +            ○ refl⟩∘⟨ extendˡ (sym identityʳ) } +        } +      where +        open 𝒟.Equiv +        open 𝒟 using (sym-assoc; _∘_; id; _⊗₁_; identityʳ; _≈_; assoc) +        open ⊗-Reasoning 𝒟.monoidal +        open ⇒-Reasoning 𝒟.U +    open NaturalIsomorphism using (F⇐G) +    open Symmetric 𝒞.symmetric using (braiding) +    ≃₂≋≃₁ : (F⇐G (Hom[ 𝒟.U ][ 𝒟.unit ,-] ⓘˡ F.F ⓘˡ braiding)) ∘ᵥ ≃₂ ≋ ≃₁ +    ≃₂≋≃₁ {X , Y} {f , g} = +        refl⟩∘⟨ (identityʳ ○ sym-assoc) +        ○ extendʳ +            (extendʳ F.braiding-compat +            ○ refl⟩∘⟨ (𝒟.braiding.⇒.commute (g , f))) +        ○ refl⟩∘⟨ pullʳ (sym (switch-tofromˡ 𝒟.braiding.FX≅GX braiding-coherence-inv) ○ coherence-inv₃) +      where +        open σ-Properties 𝒟.braided using (braiding-coherence-inv) +        open 𝒟.Equiv +        open 𝒟 using (sym-assoc; identityʳ) +        open ⊗-Reasoning 𝒟.monoidal +        open ⊗-Properties 𝒟.monoidal using (coherence-inv₃) +        open ⇒-Reasoning 𝒟.U +    module Braiding = Square {𝒞×𝒞} {𝒞} {𝒟×𝒟} {𝒟} {F×F} {F} {x+y.F {𝒞}} {y+x.F {𝒞}} braiding ≃₁ ≃₂ ≃₂≋≃₁ +open LiftBraiding using (module Braiding) + +CospansMonoidal : Monoidal DecoratedCospans +CospansMonoidal = record +    { ⊗ = ⊗ +    ; unit = ⊥ +    ; unitorˡ = [ L ]-resp-≅ ⊥+A≅A +    ; unitorʳ = [ L ]-resp-≅ A+⊥≅A +    ; associator = [ L ]-resp-≅ (≅.sym +-assoc) +    ; unitorˡ-commute-from = λ { {X} {Y} {f} → Unitorˡ.from f } +    ; unitorˡ-commute-to = λ { {X} {Y} {f} → Unitorˡ.to f } +    ; unitorʳ-commute-from = λ { {X} {Y} {f} → Unitorʳ.from f } +    ; unitorʳ-commute-to = λ { {X} {Y} {f} → Unitorʳ.to f } +    ; assoc-commute-from = λ { {X} {X′} {f} {Y} {Y′} {g} {Z} {Z′} {h} → Associator.from _ } +    ; assoc-commute-to = λ { {X} {X′} {f} {Y} {Y′} {g} {Z} {Z′} {h} → Associator.to _ } +    ; triangle = triangle +    ; pentagon = pentagon +    } +  where +    module ⊗ = Functor ⊗ +    open Category DecoratedCospans using (id; module Equiv; module HomReasoning) +    open Equiv +    open HomReasoning +    open 𝒞 using (⊥; Obj; U; +-assoc) +    λ⇒ = Unitorˡ.FX≅GX′.from +    ρ⇒ = Unitorʳ.FX≅GX′.from +    α⇒ = Associator.FX≅GX′.from +    open Morphism U using (module ≅) +    open Monoidal +-monoidal using () renaming (triangle to tri; pentagon to pent) +    triangle : {X Y : Obj} → DecoratedCospans [ DecoratedCospans [ ⊗.₁ (id {X} , λ⇒) ∘ α⇒ ] ≈ ⊗.₁ (ρ⇒ , id {Y}) ] +    triangle = sym L-resp-⊗ ⟩∘⟨refl ○ sym L.homomorphism ○ L.F-resp-≈ tri ○ L-resp-⊗ +    pentagon +        : {W X Y Z : Obj} +        → DecoratedCospans +            [ DecoratedCospans [ ⊗.₁ (id {W} , α⇒ {(X , Y) , Z}) ∘ DecoratedCospans [ α⇒ ∘ ⊗.₁ (α⇒ , id) ] ] +            ≈ DecoratedCospans [ α⇒ ∘ α⇒ ] ] +    pentagon = sym L-resp-⊗ ⟩∘⟨ refl ⟩∘⟨ sym L-resp-⊗ ○ refl⟩∘⟨ sym L.homomorphism ○ sym L.homomorphism ○ L.F-resp-≈ pent ○ L.homomorphism + +CospansBraided : Braided CospansMonoidal +CospansBraided = record +    { braiding = niHelper record +        { η = λ { (X , Y) → Braiding.FX≅GX′.from {X , Y} } +        ; η⁻¹ = λ { (Y , X) → Braiding.FX≅GX′.to {Y , X} } +        ; commute = λ { {X , Y} {X′ , Y′} (f , g) → Braiding.from (record { cospan = record { f₁ = f₁ f , f₁ g ; f₂ = f₂ f , f₂ g } ; decoration = decoration f , decoration g}) } +        ; iso = λ { (X , Y) → Braiding.FX≅GX′.iso {X , Y} } +        } +    ; hexagon₁ = sym L-resp-⊗ ⟩∘⟨ refl ⟩∘⟨ sym L-resp-⊗ ○ refl⟩∘⟨ sym L.homomorphism ○ sym L.homomorphism ○ L-resp-≈ hex₁ ○ L.homomorphism ○ refl⟩∘⟨ L.homomorphism +    ; hexagon₂ = sym L-resp-⊗ ⟩∘⟨refl ⟩∘⟨ sym L-resp-⊗ ○ sym L.homomorphism ⟩∘⟨refl ○ sym L.homomorphism ○ L-resp-≈ hex₂ ○ L.homomorphism ○ L.homomorphism ⟩∘⟨refl +    } +  where +    open Symmetric 𝒞.symmetric renaming (hexagon₁ to hex₁; hexagon₂ to hex₂) +    open DecoratedCospan +    module Cospans = Category DecoratedCospans +    open Cospans.Equiv +    open Cospans.HomReasoning +    open Functor L renaming (F-resp-≈ to L-resp-≈) + +CospansSymmetric : Symmetric CospansMonoidal +CospansSymmetric = record +    { braided = CospansBraided +    ; commutative = sym homomorphism ○ L-resp-≈ comm ○ identity +    } +  where +    open Symmetric 𝒞.symmetric renaming (commutative to comm) +    module Cospans = Category DecoratedCospans +    open Cospans.Equiv +    open Cospans.HomReasoning +    open Functor L renaming (F-resp-≈ to L-resp-≈) diff --git a/Category/Monoidal/Instance/DecoratedCospans/Lift.agda b/Category/Monoidal/Instance/DecoratedCospans/Lift.agda new file mode 100644 index 0000000..70795dd --- /dev/null +++ b/Category/Monoidal/Instance/DecoratedCospans/Lift.agda @@ -0,0 +1,114 @@ +{-# OPTIONS --without-K --safe #-} + +module Category.Monoidal.Instance.DecoratedCospans.Lift {o ℓ e o′ ℓ′ e′} where + +import Categories.Diagram.Pushout as PushoutDiagram +import Categories.Diagram.Pushout.Properties as PushoutProperties +import Categories.Morphism as Morphism +import Categories.Morphism.Reasoning as ⇒-Reasoning +import Category.Diagram.Pushout as PushoutDiagram′ +import Functor.Instance.DecoratedCospan.Embed as CospanEmbed + +open import Categories.Category using (Category; _[_,_]; _[_≈_]; _[_∘_]; module Definitions) +open import Categories.Functor using (Functor; _∘F_) +open import Categories.Functor.Hom using (Hom[_][_,-]) +open import Categories.Functor.Properties using ([_]-resp-≅) +open import Categories.NaturalTransformation using (NaturalTransformation; _∘ᵥ_) +open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; _≃_; _ⓘˡ_) +open import Categories.NaturalTransformation.Equivalence using () renaming (_≃_ to _≋_) +open import Function.Bundles using (_⟨$⟩_) +open import Function.Construct.Composition using () renaming (function to _∘′_) +open import Functor.Exact using (RightExactFunctor; IsPushout⇒Pushout) + +open import Categories.Category.Monoidal.Bundle using (MonoidalCategory; SymmetricMonoidalCategory) +open import Categories.Functor.Monoidal.Symmetric using (module Lax) +open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory) +open import Category.Instance.Cospans using (Cospans; Cospan) +open import Category.Instance.DecoratedCospans using (DecoratedCospans) +open import Category.Monoidal.Instance.Cospans.Lift {o} {ℓ} {e} using () renaming (module Square to Square′) +open import Cospan.Decorated using (DecoratedCospan) + +open Lax using (SymmetricMonoidalFunctor) +open FinitelyCocompleteCategory +  using () +  renaming (symmetricMonoidalCategory to smc) + +module _ +  {𝒞 : FinitelyCocompleteCategory o ℓ e} +  {𝒟 : FinitelyCocompleteCategory o ℓ e} +  {𝒥 : SymmetricMonoidalCategory o′ ℓ′ e′} +  {𝒦 : SymmetricMonoidalCategory o′ ℓ′ e′} +  {H : SymmetricMonoidalFunctor (smc 𝒞) 𝒥} +  {I : SymmetricMonoidalFunctor (smc 𝒟) 𝒦} where + +  module 𝒞 = FinitelyCocompleteCategory 𝒞 +  module 𝒟 = FinitelyCocompleteCategory 𝒟 +  module 𝒥 = SymmetricMonoidalCategory 𝒥 +  module 𝒦 = SymmetricMonoidalCategory 𝒦 +  module H = SymmetricMonoidalFunctor H +  module I = SymmetricMonoidalFunctor I + +  open CospanEmbed 𝒟 I using (L; B₁; B∘L; R∘B; ≅-L-R) +  open NaturalIsomorphism using (F⇐G) + +  module Square +    {F G : Functor 𝒞.U 𝒟.U} +    (F≃G : F ≃ G) +    (⇒H≃I∘F : NaturalTransformation (Hom[ 𝒥.U ][ 𝒥.unit ,-] ∘F H.F) (Hom[ 𝒦.U ][ 𝒦.unit ,-] ∘F I.F ∘F F)) +    (⇒H≃I∘G : NaturalTransformation (Hom[ 𝒥.U ][ 𝒥.unit ,-] ∘F H.F) (Hom[ 𝒦.U ][ 𝒦.unit ,-] ∘F I.F ∘F G)) +    (≋ : (F⇐G (Hom[ 𝒦.U ][ 𝒦.unit ,-] ⓘˡ (I.F ⓘˡ F≃G))) ∘ᵥ ⇒H≃I∘G ≋ ⇒H≃I∘F) +    where + +    module F = Functor F +    module G = Functor G +    module ⇒H≃I∘F = NaturalTransformation ⇒H≃I∘F +    module ⇒H≃I∘G = NaturalTransformation ⇒H≃I∘G + +    open NaturalIsomorphism F≃G + +    IF≃IG : I.F ∘F F ≃ I.F ∘F G +    IF≃IG = I.F ⓘˡ F≃G + +    open Morphism using (module ≅) renaming (_≅_ to _[_≅_]) +    FX≅GX′ : ∀ {Z : 𝒞.Obj} → DecoratedCospans 𝒟 I [ F.₀ Z ≅ G.₀ Z ] +    FX≅GX′ = [ L ]-resp-≅ FX≅GX +    module FX≅GX {Z} = _[_≅_] (FX≅GX {Z}) +    module FX≅GX′ {Z} = _[_≅_] (FX≅GX′ {Z}) + +    module _ {X Y : 𝒞.Obj} (fg : DecoratedCospans 𝒞 H [ X , Y ]) where + +      open DecoratedCospan fg renaming (f₁ to f; f₂ to g; decoration to s) +      open 𝒟 using (_∘_) + +      squares⇒cospan +          : DecoratedCospans 𝒟 I +              [ B₁ (G.₁ f ∘ FX≅GX.from) (G.₁ g ∘ FX≅GX.from) (⇒H≃I∘G.η N ⟨$⟩ s) +              ≈ B₁ (F.₁ f) (F.₁ g) (⇒H≃I∘F.η N ⟨$⟩ s) +              ] +      squares⇒cospan = record +          { cospans-≈ = Square′.squares⇒cospan F≃G cospan +          ; same-deco = refl⟩∘⟨ sym 𝒦.identityʳ ○ ≋ +          } +        where +          open 𝒦.HomReasoning +          open 𝒦.Equiv + +      module Cospans = Category (DecoratedCospans 𝒟 I) + +      from : DecoratedCospans 𝒟 I +          [ DecoratedCospans 𝒟 I [ L.₁ (⇒.η Y) ∘ B₁ (F.₁ f) (F.₁ g) (⇒H≃I∘F.η N ⟨$⟩ s) ] +          ≈ DecoratedCospans 𝒟 I [ B₁ (G.₁ f) (G.₁ g) (⇒H≃I∘G.η N ⟨$⟩ s) ∘ L.₁ (⇒.η X) ] +          ] +      from = sym (switch-tofromˡ FX≅GX′ (refl⟩∘⟨ B∘L ○ ≅-L-R FX≅GX ⟩∘⟨refl ○ R∘B ○ squares⇒cospan)) +        where +          open Cospans.Equiv using (sym) +          open ⇒-Reasoning (DecoratedCospans 𝒟 I) using (switch-tofromˡ) +          open Cospans.HomReasoning using (refl⟩∘⟨_; _○_; _⟩∘⟨refl) + +      to : DecoratedCospans 𝒟 I +          [ DecoratedCospans 𝒟 I [ L.₁ (⇐.η Y) ∘ B₁ (G.₁ f) (G.₁ g) (⇒H≃I∘G.η N ⟨$⟩ s) ] ≈ DecoratedCospans 𝒟 I [ B₁ (F.₁ f) (F.₁ g) (⇒H≃I∘F.η N ⟨$⟩ s) ∘ L.₁ (⇐.η X) ] +          ] +      to = switch-fromtoʳ FX≅GX′ (pullʳ B∘L ○ ≅-L-R FX≅GX ⟩∘⟨refl ○ R∘B ○ squares⇒cospan) +        where +          open ⇒-Reasoning (DecoratedCospans 𝒟 I) using (pullʳ; switch-fromtoʳ) +          open Cospans.HomReasoning using (refl⟩∘⟨_; _○_; _⟩∘⟨refl) diff --git a/Category/Monoidal/Instance/DecoratedCospans/Products.agda b/Category/Monoidal/Instance/DecoratedCospans/Products.agda new file mode 100644 index 0000000..f8ef542 --- /dev/null +++ b/Category/Monoidal/Instance/DecoratedCospans/Products.agda @@ -0,0 +1,104 @@ +{-# OPTIONS --without-K --safe #-} +{-# OPTIONS --lossy-unification #-} + +open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory) +open import Categories.Functor.Monoidal.Symmetric using (module Lax) +open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory) + +open Lax using (SymmetricMonoidalFunctor) +open FinitelyCocompleteCategory +  using () +  renaming (symmetricMonoidalCategory to smc) + +module Category.Monoidal.Instance.DecoratedCospans.Products +    {o o′ ℓ ℓ′ e e′} +    (𝒞 : FinitelyCocompleteCategory o ℓ e) +    {𝒟 : SymmetricMonoidalCategory o′ ℓ′ e′} +    (F : SymmetricMonoidalFunctor (smc 𝒞) 𝒟) where + +import Categories.Morphism as Morphism +import Categories.Morphism.Reasoning as ⇒-Reasoning + +open import Categories.Category using (_[_,_]; _[_≈_]; _[_∘_]; Category) +open import Categories.Category.Core using (Category) +open import Categories.Category.BinaryProducts using (BinaryProducts) +open import Categories.Category.Cartesian using (Cartesian) +open import Categories.Category.Cartesian.Bundle using (CartesianCategory) +open import Categories.Functor using (Functor; _∘F_) renaming (id to idF) +open import Categories.Functor.Monoidal.Properties using (∘-SymmetricMonoidal) +open import Categories.Functor.Monoidal.Construction.Product using (⁂-SymmetricMonoidalFunctor) +open import Categories.NaturalTransformation.Core using (NaturalTransformation; _∘ᵥ_; ntHelper) +open import Category.Instance.Properties.SymMonCat {o} {ℓ} {e} using (SymMonCat-Cartesian) +open import Category.Instance.Properties.SymMonCat {o′} {ℓ′} {e′} using () renaming (SymMonCat-Cartesian to SymMonCat-Cartesian′) +open import Category.Cartesian.Instance.FinitelyCocompletes {o} {ℓ} {e} using (FinitelyCocompletes-CC) +open import Category.Cartesian.Instance.SymMonCat {o} {ℓ} {e} using (SymMonCat-CC) +open import Data.Product.Base using (_,_) +open import Categories.Functor.Cartesian using (CartesianF) +open import Functor.Cartesian.Instance.Underlying.SymmetricMonoidal.FinitelyCocomplete {o} {ℓ} {e} using (Underlying) + +module SMC = CartesianF Underlying +module SymMonCat-CC = CartesianCategory SymMonCat-CC + +module 𝒞 = FinitelyCocompleteCategory 𝒞 +module 𝒟 = SymmetricMonoidalCategory 𝒟 + +module _ where + +  open CartesianCategory FinitelyCocompletes-CC using (products) +  open BinaryProducts products using (_×_) + +  𝒞×𝒞 : FinitelyCocompleteCategory o ℓ e +  𝒞×𝒞 = 𝒞 × 𝒞 + +  [𝒞×𝒞]×𝒞 : FinitelyCocompleteCategory o ℓ e +  [𝒞×𝒞]×𝒞 = (𝒞 × 𝒞) × 𝒞 + +module _ where + +  module _ where + +    open Cartesian SymMonCat-Cartesian′ using (products) +    open BinaryProducts products using (_×_; _⁂_) + +    𝒟×𝒟 : SymmetricMonoidalCategory o′ ℓ′ e′ +    𝒟×𝒟 = 𝒟 × 𝒟 +    module 𝒟×𝒟 = SymmetricMonoidalCategory 𝒟×𝒟 + +    [𝒟×𝒟]×𝒟 : SymmetricMonoidalCategory o′ ℓ′ e′ +    [𝒟×𝒟]×𝒟 = (𝒟 × 𝒟) × 𝒟 +    module [𝒟×𝒟]×𝒟 = SymmetricMonoidalCategory [𝒟×𝒟]×𝒟 + +  module _ where + +    open Cartesian SymMonCat-Cartesian using (products) +    open BinaryProducts products using (_×_; _⁂_) + +    smc𝒞×𝒞 : SymmetricMonoidalCategory o ℓ e +    smc𝒞×𝒞 = smc 𝒞 × smc 𝒞 + +    smc[𝒞×𝒞]×𝒞 : SymmetricMonoidalCategory o ℓ e +    smc[𝒞×𝒞]×𝒞 = (smc 𝒞×𝒞) × smc 𝒞 + +  F×F′ : SymmetricMonoidalFunctor smc𝒞×𝒞 𝒟×𝒟 +  F×F′ = ⁂-SymmetricMonoidalFunctor {o′} {ℓ′} {e′} {o′} {ℓ′} {e′} {𝒟} {𝒟} {o} {ℓ} {e} {o} {ℓ} {e} {smc 𝒞} {smc 𝒞} F F + +  F×F : SymmetricMonoidalFunctor (smc 𝒞×𝒞) 𝒟×𝒟 +  F×F = ∘-SymmetricMonoidal F×F′ from +    where +      open Morphism SymMonCat-CC.U using (_≅_) +      ≅ : smc 𝒞×𝒞 ≅ smc𝒞×𝒞 +      ≅ = SMC.×-iso 𝒞 𝒞 +      open _≅_ ≅ +  module F×F = SymmetricMonoidalFunctor F×F + +  [F×F]×F′ : SymmetricMonoidalFunctor smc[𝒞×𝒞]×𝒞 [𝒟×𝒟]×𝒟 +  [F×F]×F′ = ⁂-SymmetricMonoidalFunctor {o′} {ℓ′} {e′} {o′} {ℓ′} {e′} {𝒟×𝒟} {𝒟} {o} {ℓ} {e} {o} {ℓ} {e} {smc 𝒞×𝒞} {smc 𝒞} F×F F + +  [F×F]×F : SymmetricMonoidalFunctor (smc [𝒞×𝒞]×𝒞) [𝒟×𝒟]×𝒟 +  [F×F]×F = ∘-SymmetricMonoidal [F×F]×F′ from +    where +      open Morphism SymMonCat-CC.U using (_≅_) +      ≅ : smc [𝒞×𝒞]×𝒞 ≅ smc[𝒞×𝒞]×𝒞 +      ≅ = SMC.×-iso 𝒞×𝒞 𝒞 +      open _≅_ ≅ +  module [F×F]×F = SymmetricMonoidalFunctor [F×F]×F | 
