aboutsummaryrefslogtreecommitdiff
path: root/Data/CMonoid.agda
diff options
context:
space:
mode:
authorJacques Comeaux <jacquesrcomeaux@protonmail.com>2026-01-01 14:31:42 -0600
committerJacques Comeaux <jacquesrcomeaux@protonmail.com>2026-01-01 14:31:42 -0600
commitf84a8d1bf9525aa9a005c1a31045b7685c6ac059 (patch)
treecfb443dfa8f1084a699ee32be55a6fc1200741e0 /Data/CMonoid.agda
parentdb3f4ec746f270cab4142dda8ea3f3c1a25d2dd6 (diff)
Update push, pull, and sys functors
Diffstat (limited to 'Data/CMonoid.agda')
-rw-r--r--Data/CMonoid.agda25
1 files changed, 8 insertions, 17 deletions
diff --git a/Data/CMonoid.agda b/Data/CMonoid.agda
index 8aaf869..dd0277c 100644
--- a/Data/CMonoid.agda
+++ b/Data/CMonoid.agda
@@ -3,19 +3,16 @@
open import Level using (Level)
module Data.CMonoid {c ℓ : Level} where
-open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory)
+import Algebra.Bundles as Alg
+
+open import Algebra.Morphism using (IsMonoidHomomorphism)
+open import Categories.Object.Monoid using (Monoid)
open import Category.Instance.Setoids.SymmetricMonoidal {c} {ℓ} using (Setoids-×; ×-symmetric′)
+open import Data.Monoid {c} {ℓ} using (toMonoid; fromMonoid; toMonoid⇒; module FromMonoid)
+open import Data.Product using (_,_; Σ)
+open import Function using (Func; _⟨$⟩_; _⟶ₛ_)
open import Object.Monoid.Commutative using (CommutativeMonoid; CommutativeMonoid⇒)
-open import Categories.Object.Monoid using (Monoid)
-
-open import Data.Monoid {c} {ℓ} using (toMonoid; fromMonoid; toMonoid⇒)
-import Algebra.Bundles as Alg
-
-open import Data.Setoid using (∣_∣)
-open import Relation.Binary using (Setoid)
-open import Function using (Func; _⟨$⟩_)
-open import Data.Product using (curry′; uncurry′; _,_)
open Func
-- A commutative monoid object in the (symmetric monoidal) category of setoids
@@ -37,9 +34,6 @@ toCMonoid M = record
comm : (x y : M.Carrier) → x M.∙ y M.≈ y M.∙ x
comm x y = commutative {x , y}
-open import Function.Construct.Constant using () renaming (function to Const)
-open import Data.Setoid.Unit using (⊤ₛ)
-
fromCMonoid : Alg.CommutativeMonoid c ℓ → CommutativeMonoid Setoids-×.symmetric
fromCMonoid M = record
{ M
@@ -53,7 +47,7 @@ fromCMonoid M = record
module M = Monoid (fromMonoid monoid)
open Setoids-× using (_≈_; _∘_; module braiding)
opaque
- unfolding toMonoid
+ unfolding FromMonoid.μ
commutative : M.μ ≈ M.μ ∘ braiding.⇒.η _
commutative {x , y} = comm x y
@@ -64,9 +58,6 @@ module _ (M N : CommutativeMonoid Setoids-×.symmetric) where
module M = Alg.CommutativeMonoid (toCMonoid M)
module N = Alg.CommutativeMonoid (toCMonoid N)
- open import Data.Product using (Σ; _,_)
- open import Function using (_⟶ₛ_)
- open import Algebra.Morphism using (IsMonoidHomomorphism)
open CommutativeMonoid
open CommutativeMonoid⇒