diff options
| author | Jacques Comeaux <jacquesrcomeaux@protonmail.com> | 2025-10-28 17:20:33 -0500 |
|---|---|---|
| committer | Jacques Comeaux <jacquesrcomeaux@protonmail.com> | 2025-10-28 17:20:33 -0500 |
| commit | 0bf55c23ad3bee621d0e7425f5a5e875254e3450 (patch) | |
| tree | ea5dbac95aa1fa9449b785cb5be3078790a88aea /Data/Circuit | |
| parent | 2cd74f160389fe2ab2b30ab628fbb9b712f06faf (diff) | |
| parent | 2439066ad6901ed1e083f48fb7ac4fd7a7840d27 (diff) | |
Merge branch 'hypergraph-conversion'
Diffstat (limited to 'Data/Circuit')
| -rw-r--r-- | Data/Circuit/Convert.agda | 201 | ||||
| -rw-r--r-- | Data/Circuit/Gate.agda | 137 | ||||
| -rw-r--r-- | Data/Circuit/Typecheck.agda | 78 |
3 files changed, 416 insertions, 0 deletions
diff --git a/Data/Circuit/Convert.agda b/Data/Circuit/Convert.agda new file mode 100644 index 0000000..ce6de69 --- /dev/null +++ b/Data/Circuit/Convert.agda @@ -0,0 +1,201 @@ +{-# OPTIONS --without-K --safe #-} + +module Data.Circuit.Convert where + +open import Data.Nat.Base using (ℕ) +open import Data.Circuit.Gate using (Gate; GateLabel; cast-gate; cast-gate-is-id; subst-is-cast-gate) +open import Data.Fin.Base using (Fin) +open import Data.Hypergraph.Edge GateLabel using (Edge) +open import Data.Hypergraph.Base GateLabel using (Hypergraph; sortHypergraph; mkHypergraph) +open import Data.Hypergraph.Setoid GateLabel using (Hypergraph-Setoid; ≈-Hypergraph) +open import Data.Permutation using (fromList-↭; toList-↭) +open import Data.List using (length) +open import Data.Vec.Functional using (toVec; fromVec; toList; fromList) +open import Function.Bundles using (Equivalence; _↔_) +open import Function.Base using (_∘_; id) +open import Data.List.Relation.Binary.Permutation.Homogeneous using (Permutation) +open import Data.Product.Base using (proj₁; proj₂; _×_) +open import Data.Fin.Permutation using (flip; _⟨$⟩ˡ_) +open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_) + +import Function.Reasoning as →-Reasoning +import Data.List.Relation.Binary.Permutation.Propositional as L +import Data.Vec.Functional.Relation.Binary.Permutation as V +import DecorationFunctor.Hypergraph.Labeled as LabeledHypergraph + +open LabeledHypergraph using (Hypergraph-same) renaming (Hypergraph to Hypergraph′; Hypergraph-setoid to Hypergraph-Setoid′) + +to : {v : ℕ} → Hypergraph v → Hypergraph′ v +to H = record + { h = length edges + ; a = arity ∘ fromList edges + ; j = fromVec ∘ ports ∘ fromList edges + ; l = label ∘ fromList edges + } + where + open Edge using (arity; ports; label) + open Hypergraph H + +from : {v : ℕ} → Hypergraph′ v → Hypergraph v +from {v} H = record + { edges = toList asEdge + } + where + open Hypergraph′ H + asEdge : Fin h → Edge v + asEdge e = record { label = l e ; ports = toVec (j e) } + +to-cong : {v : ℕ} {H H′ : Hypergraph v} → ≈-Hypergraph H H′ → Hypergraph-same (to H) (to H′) +to-cong {v} {H} {H′} ≈H = record + { ↔h = flip ρ + ; ≗a = ≗a + ; ≗j = ≗j + ; ≗l = ≗l + } + where + open Edge using (arity; ports; label) + open ≈-Hypergraph ≈H + open import Data.Fin.Permutation using (_⟨$⟩ʳ_; _⟨$⟩ˡ_; Permutation′; inverseʳ) + open import Data.Fin.Base using (cast) + open import Data.Fin.Properties using (cast-is-id) + ρ : Fin (length H′.edges) ↔ Fin (length H.edges) + ρ = proj₁ (fromList-↭ ↭edges) + + open ≡.≡-Reasoning + edges≗ρ∘edges′ : (i : Fin (length H.edges)) → fromList H.edges i ≡ fromList H′.edges (ρ ⟨$⟩ˡ i) + edges≗ρ∘edges′ i = begin + fromList H.edges i ≡⟨ ≡.cong (fromList H.edges) (inverseʳ ρ) ⟨ + fromList H.edges (ρ ⟨$⟩ʳ (ρ ⟨$⟩ˡ i)) ≡⟨ proj₂ (fromList-↭ ↭edges) (ρ ⟨$⟩ˡ i) ⟩ + fromList H′.edges (ρ ⟨$⟩ˡ i) ∎ + + ≗a : (e : Fin (Hypergraph′.h (to H))) + → Hypergraph′.a (to H) e + ≡ arity (fromList H′.edges (ρ ⟨$⟩ˡ e)) + ≗a = ≡.cong arity ∘ edges≗ρ∘edges′ + + ≗j : (e : Fin (Hypergraph′.h (to H))) + (i : Fin (Hypergraph′.a (to H) e)) + → fromVec (ports (fromList H.edges e)) i + ≡ fromVec (ports (fromList H′.edges (ρ ⟨$⟩ˡ e))) (cast (≗a e) i) + ≗j e i + rewrite edges≗ρ∘edges′ e + rewrite cast-is-id ≡.refl i = ≡.refl + + ≗l : (e : Fin (Hypergraph′.h (to H))) + → label (fromList H.edges e) + ≡ cast-gate (≡.sym (≗a e)) (label (fromList H′.edges (ρ ⟨$⟩ˡ e))) + ≗l e + rewrite edges≗ρ∘edges′ e + rewrite cast-gate-is-id ≡.refl (label (fromList H′.edges (ρ ⟨$⟩ˡ e))) = + ≡.refl + +module _ {v : ℕ} where + open import Data.Hypergraph.Edge GateLabel using (decTotalOrder; ≈-Edge; ≈-Edge-IsEquivalence; ≈-Edge⇒≡) + open import Data.List.Sort (decTotalOrder {v}) using (sort; sort-↭) + open import Data.Permutation.Sort (decTotalOrder {v}) using (sorted-≋) + open import Data.List.Relation.Binary.Pointwise using (Pointwise; Pointwise-≡⇒≡; map) + open import Data.Product.Base using (_,_) + open import Data.Hypergraph.Label using (HypergraphLabel) + open HypergraphLabel GateLabel using (isCastable) + open import Data.Castable using (IsCastable) + open IsCastable isCastable using (≈-reflexive; ≈-sym; ≈-trans) + from-cong + : {H H′ : Hypergraph′ v} + → Hypergraph-same H H′ + → ≈-Hypergraph (from H) (from H′) + from-cong {H} {H′} ≈H = record + { ≡sorted = ≡sorted + } + where + module H = Hypergraph′ H + module H′ = Hypergraph′ H′ + open Hypergraph′ + open Hypergraph-same ≈H using (↔h; ≗a; ≗l; ≗j; inverseˡ) renaming (from to f; to to t) + asEdge : (H : Hypergraph′ v) → Fin (h H) → Edge v + asEdge H e = record { label = l H e ; ports = toVec (j H e) } + + to-from : (e : Fin H′.h) → t (f e) ≡ e + to-from e = inverseˡ ≡.refl + + a∘to-from : (e : Fin H′.h) → H′.a (t (f e)) ≡ H′.a e + a∘to-from = ≡.cong H′.a ∘ to-from + + ≗a′ : (e : Fin H′.h) → H.a (f e) ≡ H′.a e + ≗a′ e = ≡.trans (≗a (f e)) (a∘to-from e) + + l≗ : (e : Fin H.h) → cast-gate (≗a e) (H.l e) ≡ H′.l (t e) + l≗ e = ≈-sym (≡.sym (≗l e)) + + l∘to-from : (e : Fin H′.h) → cast-gate (a∘to-from e) (H′.l (t (f e))) ≡ H′.l e + l∘to-from e rewrite to-from e = ≈-reflexive ≡.refl + + ≗l′ : (e : Fin H′.h) → cast-gate (≗a′ e) (H.l (f e)) ≡ H′.l e + ≗l′ e = ≈-trans {H.a _} (l≗ (f e)) (l∘to-from e) + + import Data.Vec.Relation.Binary.Equality.Cast as VecCast + open import Data.Vec using (cast) renaming (map to vecmap) + open import Data.Vec.Properties using (tabulate-cong; tabulate-∘; map-cast) + + open import Data.Fin.Base using () renaming (cast to fincast) + open import Data.Fin.Properties using () renaming (cast-trans to fincast-trans; cast-is-id to fincast-is-id) + + j∘to-from + : (e : Fin H′.h) (i : Fin (H′.a (t (f e)))) + → H′.j (t (f e)) i + ≡ H′.j e (fincast (a∘to-from e) i) + j∘to-from e i rewrite to-from e = ≡.cong (H′.j e) (≡.sym (fincast-is-id ≡.refl i)) + + open ≡.≡-Reasoning + + ≗j′ : (e : Fin H′.h) (i : Fin (H.a (f e))) → H.j (f e) i ≡ H′.j e (fincast (≗a′ e) i) + ≗j′ e i = begin + H.j (f e) i ≡⟨ ≗j (f e) i ⟩ + H′.j (t (f e)) (fincast _ i) ≡⟨ j∘to-from e (fincast _ i) ⟩ + H′.j e (fincast (a∘to-from e) (fincast _ i)) ≡⟨ ≡.cong (H′.j e) (fincast-trans (≗a (f e)) _ i) ⟩ + H′.j e (fincast (≗a′ e) i) ∎ + + cast-toVec + : {n m : ℕ} + {A : Set} + (m≡n : m ≡ n) + (f : Fin n → A) + → cast m≡n (toVec (f ∘ fincast m≡n)) ≡ toVec f + cast-toVec m≡n f rewrite m≡n = begin + cast _ (toVec (f ∘ (fincast _))) ≡⟨ VecCast.cast-is-id ≡.refl (toVec (f ∘ fincast ≡.refl)) ⟩ + toVec (f ∘ fincast _) ≡⟨ tabulate-∘ f (fincast ≡.refl) ⟩ + vecmap f (toVec (fincast _)) ≡⟨ ≡.cong (vecmap f) (tabulate-cong (fincast-is-id ≡.refl)) ⟩ + vecmap f (toVec id) ≡⟨ tabulate-∘ f id ⟨ + toVec f ∎ + + ≗p′ : (e : Fin H′.h) → cast (≗a′ e) (toVec (H.j (f e))) ≡ toVec (H′.j e) + ≗p′ e = begin + cast (≗a′ e) (toVec (H.j (f e))) ≡⟨ ≡.cong (cast (≗a′ e)) (tabulate-cong (≗j′ e)) ⟩ + cast _ (toVec (H′.j e ∘ fincast _)) ≡⟨ cast-toVec (≗a′ e) (H′.j e) ⟩ + toVec (H′.j e) ∎ + + H∘ρ≗H′ : (e : Fin H′.h) → asEdge H (↔h ⟨$⟩ˡ e) ≡ asEdge H′ e + H∘ρ≗H′ e = ≈-Edge⇒≡ record + { ≡arity = ≗a′ e + ; ≡label = ≗l′ e + ; ≡ports = ≗p′ e + } + + open Hypergraph using (edges) + open →-Reasoning + ≡sorted : sortHypergraph (from H) ≡ sortHypergraph (from H′) + ≡sorted = + flip ↔h , H∘ρ≗H′ ∶ asEdge H V.↭ asEdge H′ + |> toList-↭ ∶ toList (asEdge H) L.↭ toList (asEdge H′) + |> L.↭⇒↭ₛ′ ≈-Edge-IsEquivalence ∶ Permutation ≈-Edge (edges (from H)) (edges (from H′)) + |> sorted-≋ ∶ Pointwise ≈-Edge (sort (edges (from H))) (sort (edges (from H′))) + |> map ≈-Edge⇒≡ ∶ Pointwise _≡_ (sort (edges (from H))) (sort (edges (from H′))) + |> Pointwise-≡⇒≡ ∶ sort (edges (from H)) ≡ sort (edges (from H′)) + |> ≡.cong mkHypergraph ∶ sortHypergraph (from H) ≡ sortHypergraph (from H′) + +equiv : (v : ℕ) → Equivalence (Hypergraph-Setoid v) (Hypergraph-Setoid′ v) +equiv v = record + { to = to + ; from = from + ; to-cong = to-cong + ; from-cong = from-cong + } diff --git a/Data/Circuit/Gate.agda b/Data/Circuit/Gate.agda new file mode 100644 index 0000000..8ce7e0a --- /dev/null +++ b/Data/Circuit/Gate.agda @@ -0,0 +1,137 @@ +{-# OPTIONS --without-K --safe #-} + +module Data.Circuit.Gate where + +open import Level using (0ℓ) +open import Data.Castable using (Castable) +open import Data.Hypergraph.Label using (HypergraphLabel) +open import Data.String using (String) +open import Data.Nat.Base using (ℕ; _≤_) +open import Data.Nat.Properties using (≤-refl; ≤-trans; ≤-antisym; ≤-total) +open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst; isEquivalence; cong) +import Relation.Binary.PropositionalEquality as ≡ + +import Data.Nat as Nat +import Data.Fin as Fin + +data Gate : ℕ → Set where + ZERO : Gate 1 + ONE : Gate 1 + ID : Gate 2 + NOT : Gate 2 + AND : Gate 3 + OR : Gate 3 + XOR : Gate 3 + NAND : Gate 3 + NOR : Gate 3 + XNOR : Gate 3 + +cast-gate : {e e′ : ℕ} → .(e ≡ e′) → Gate e → Gate e′ +cast-gate {1} {1} eq g = g +cast-gate {2} {2} eq g = g +cast-gate {3} {3} eq g = g + +cast-gate-trans + : {m n o : ℕ} + → .(eq₁ : m ≡ n) + .(eq₂ : n ≡ o) + (g : Gate m) + → cast-gate eq₂ (cast-gate eq₁ g) ≡ cast-gate (trans eq₁ eq₂) g +cast-gate-trans {1} {1} {1} eq₁ eq₂ g = refl +cast-gate-trans {2} {2} {2} eq₁ eq₂ g = refl +cast-gate-trans {3} {3} {3} eq₁ eq₂ g = refl + +cast-gate-is-id : {m : ℕ} .(eq : m ≡ m) (g : Gate m) → cast-gate eq g ≡ g +cast-gate-is-id {1} eq g = refl +cast-gate-is-id {2} eq g = refl +cast-gate-is-id {3} eq g = refl + +subst-is-cast-gate : {m n : ℕ} (eq : m ≡ n) (g : Gate m) → subst Gate eq g ≡ cast-gate eq g +subst-is-cast-gate refl g = sym (cast-gate-is-id refl g) + +GateCastable : Castable +GateCastable = record + { B = Gate + ; isCastable = record + { cast = cast-gate + ; cast-trans = cast-gate-trans + ; cast-is-id = cast-gate-is-id + ; subst-is-cast = subst-is-cast-gate + } + } + +showGate : (n : ℕ) → Gate n → String +showGate _ ZERO = "ZERO" +showGate _ ONE = "ONE" +showGate _ ID = "ID" +showGate _ NOT = "NOT" +showGate _ AND = "AND" +showGate _ OR = "OR" +showGate _ XOR = "XOR" +showGate _ NAND = "NAND" +showGate _ NOR = "NOR" +showGate _ XNOR = "XNOR" + +toℕ : (n : ℕ) → Gate n → ℕ +toℕ 1 ZERO = 0 +toℕ 1 ONE = 1 +toℕ 2 ID = 0 +toℕ 2 NOT = 1 +toℕ 3 AND = 0 +toℕ 3 OR = 1 +toℕ 3 XOR = 2 +toℕ 3 NAND = 3 +toℕ 3 NOR = 4 +toℕ 3 XNOR = 5 + +toℕ-injective : {n : ℕ} {x y : Gate n} → toℕ n x ≡ toℕ n y → x ≡ y +toℕ-injective {1} {ZERO} {ZERO} refl = refl +toℕ-injective {1} {ONE} {ONE} refl = refl +toℕ-injective {2} {ID} {ID} refl = refl +toℕ-injective {2} {NOT} {NOT} refl = refl +toℕ-injective {3} {AND} {AND} refl = refl +toℕ-injective {3} {OR} {OR} refl = refl +toℕ-injective {3} {XOR} {XOR} refl = refl +toℕ-injective {3} {NAND} {NAND} refl = refl +toℕ-injective {3} {NOR} {NOR} refl = refl +toℕ-injective {3} {XNOR} {XNOR} refl = refl + +open import Relation.Binary using (Rel; Decidable; DecidableEquality) +import Relation.Nullary.Decidable as Dec + +_[_≤_] : (n : ℕ) → Rel (Gate n) 0ℓ +_[_≤_] n x y = toℕ n x ≤ toℕ n y + +_≟_ : {n : ℕ} → DecidableEquality (Gate n) +_≟_ {n} x y = Dec.map′ toℕ-injective (cong (toℕ n)) (toℕ n x Nat.≟ toℕ n y) + +_≤?_ : {n : ℕ} → Decidable (n [_≤_]) +_≤?_ {n} x y = toℕ n x Nat.≤? toℕ n y + +GateLabel : HypergraphLabel +GateLabel = record + { Label = Gate + ; showLabel = showGate + ; isCastable = record + { cast = cast-gate + ; cast-trans = cast-gate-trans + ; cast-is-id = cast-gate-is-id + ; subst-is-cast = subst-is-cast-gate + } + ; _[_≤_] = λ n x y → toℕ n x ≤ toℕ n y + ; isDecTotalOrder = λ n → record + { isTotalOrder = record + { isPartialOrder = record + { isPreorder = record + { isEquivalence = isEquivalence + ; reflexive = λ { refl → ≤-refl } + ; trans = ≤-trans + } + ; antisym = λ i≤j j≤i → toℕ-injective (≤-antisym i≤j j≤i) + } + ; total = λ { x y → ≤-total (toℕ n x) (toℕ n y) } + } + ; _≟_ = _≟_ + ; _≤?_ = _≤?_ + } + } diff --git a/Data/Circuit/Typecheck.agda b/Data/Circuit/Typecheck.agda new file mode 100644 index 0000000..e34ea44 --- /dev/null +++ b/Data/Circuit/Typecheck.agda @@ -0,0 +1,78 @@ +{-# OPTIONS --without-K --safe #-} + +module Data.Circuit.Typecheck where + +open import Data.SExp using (SExp) +open import Data.Circuit.Gate using (GateLabel; Gate) +open import Data.Hypergraph.Label using (HypergraphLabel) +open import Data.Hypergraph.Edge GateLabel using (Edge) +open import Data.Hypergraph.Base GateLabel using (Hypergraph) + +open import Data.List using (List; length) renaming (map to mapL) +open import Data.List.Effectful using () renaming (module TraversableA to ListTraversable) +open import Data.Maybe using (Maybe) renaming (map to mapM) +open import Data.Nat using (ℕ; _<?_; _≟_) +open import Data.String using (String) +open import Data.Product using (_×_; _,_; Σ) +open import Data.Vec using (Vec; []; _∷_; fromList) renaming (map to mapV) +open import Data.Vec.Effectful using () renaming (module TraversableA to VecTraversable) +open import Data.Maybe.Effectful using (applicative) +open import Data.Fin using (Fin; #_; fromℕ<) +open import Level using (0ℓ) + +import Relation.Binary.PropositionalEquality as ≡ + +open List +open SExp +open Gate +open Maybe + +gate : {n a : ℕ} (g : Gate a) → Vec (Fin n) a → Edge n +gate g p = record { label = g; ports = p } + +typeCheckGateLabel : SExp → Maybe (Σ ℕ Gate) +typeCheckGateLabel (Atom "one") = just (1 , ONE) +typeCheckGateLabel (Atom "zero") = just (1 , ZERO) +typeCheckGateLabel (Atom "not") = just (2 , NOT) +typeCheckGateLabel (Atom "id") = just (2 , ID) +typeCheckGateLabel (Atom "and") = just (3 , AND) +typeCheckGateLabel (Atom "or") = just (3 , OR) +typeCheckGateLabel (Atom "xor") = just (3 , XOR) +typeCheckGateLabel (Atom "nand") = just (3 , NAND) +typeCheckGateLabel (Atom "nor") = just (3 , NOR) +typeCheckGateLabel (Atom "xnor") = just (3 , XNOR) +typeCheckGateLabel _ = nothing + +open import Relation.Nullary.Decidable using (Dec; yes; no) +open Dec +open VecTraversable {0ℓ} applicative using () renaming (sequenceA to vecSequenceA) +open ListTraversable {0ℓ} applicative using () renaming (sequenceA to listSequenceA) + +typeCheckPort : (v : ℕ) → SExp → Maybe (Fin v) +typeCheckPort v (Nat n) with n <? v +... | yes n<v = just (fromℕ< n<v) +... | no _ = nothing +typeCheckPort _ _ = nothing + +typeCheckPorts : (v n : ℕ) → List SExp → Maybe (Vec (Fin v) n) +typeCheckPorts v n xs with length xs ≟ n +... | yes ≡.refl = vecSequenceA (mapV (typeCheckPort v) (fromList xs)) +... | no _ = nothing + +typeCheckGate : (v : ℕ) → SExp → Maybe (Edge v) +typeCheckGate v (SExps (labelString ∷ ports)) with typeCheckGateLabel labelString +... | just (n , label) = mapM (gate label) (typeCheckPorts v n ports) +... | nothing = nothing +typeCheckGate v _ = nothing + +typeCheckHeader : SExp → Maybe ℕ +typeCheckHeader (SExps (Atom "hypergraph" ∷ Nat n ∷ [])) = just n +typeCheckHeader _ = nothing + +typeCheckHypergraph : SExp → Maybe (Σ ℕ Hypergraph) +typeCheckHypergraph (SExps (x ∷ xs)) with typeCheckHeader x +... | nothing = nothing +... | just n with listSequenceA (mapL (typeCheckGate n) xs) +... | just e = just (n , record { edges = e }) +... | nothing = nothing +typeCheckHypergraph _ = nothing |
