aboutsummaryrefslogtreecommitdiff
path: root/Data/Hypergraph/Edge.agda
diff options
context:
space:
mode:
authorJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-07-09 12:15:51 -0500
committerJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-07-09 12:15:51 -0500
commitee5c56a58154840f08a18d581983d6f6f3630970 (patch)
treecbd6bfa78690ce708667e0195d5675d4d0879ae4 /Data/Hypergraph/Edge.agda
parent273b12e8f016fe1a716164d514af0b2683711fd2 (diff)
Split hypergraph label and edge into separate files
Diffstat (limited to 'Data/Hypergraph/Edge.agda')
-rw-r--r--Data/Hypergraph/Edge.agda326
1 files changed, 326 insertions, 0 deletions
diff --git a/Data/Hypergraph/Edge.agda b/Data/Hypergraph/Edge.agda
new file mode 100644
index 0000000..3c2a3a1
--- /dev/null
+++ b/Data/Hypergraph/Edge.agda
@@ -0,0 +1,326 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Data.Hypergraph.Label using (HypergraphLabel)
+
+module Data.Hypergraph.Edge (HL : HypergraphLabel) where
+
+
+open import Relation.Binary using (Rel; IsStrictTotalOrder; Tri; Trichotomous; _Respects_)
+open import Data.Castable using (IsCastable)
+open import Data.Fin using (Fin)
+open import Data.Fin.Show using () renaming (show to showFin)
+open import Data.Nat.Base using (ℕ; _<_)
+open import Data.Nat.Properties using (<-irrefl; <-trans; <-resp₂-≡; <-cmp)
+open import Data.Product.Base using (_,_; proj₁; proj₂)
+open import Data.String using (String; _<+>_)
+open import Data.Vec.Relation.Binary.Pointwise.Inductive using (≡⇒Pointwise-≡; Pointwise-≡⇒≡)
+open import Data.Vec.Show using () renaming (show to showVec)
+open import Level using (0ℓ)
+open import Relation.Binary.Bundles using (DecTotalOrder; StrictTotalOrder)
+open import Relation.Binary.Structures using (IsEquivalence)
+open import Relation.Nullary using (¬_)
+
+import Data.Fin.Base as Fin
+import Data.Fin.Properties as FinProp
+import Data.Vec.Base as VecBase
+import Data.Vec.Relation.Binary.Equality.Cast as VecCast
+import Data.Vec.Relation.Binary.Lex.Strict as Lex
+import Relation.Binary.PropositionalEquality as ≡
+import Relation.Binary.Properties.DecTotalOrder as DTOP
+import Relation.Binary.Properties.StrictTotalOrder as STOP
+
+module HL = HypergraphLabel HL
+open HL using (Label; cast; cast-is-id)
+open VecBase using (Vec)
+
+record Edge (v : ℕ) : Set where
+ field
+ {arity} : ℕ
+ label : Label arity
+ ports : Vec (Fin v) arity
+
+open ≡ using (_≡_)
+open VecCast using (_≈[_]_)
+
+record ≈-Edge {n : ℕ} (E E′ : Edge n) : Set where
+ module E = Edge E
+ module E′ = Edge E′
+ field
+ ≡arity : E.arity ≡ E′.arity
+ ≡label : cast ≡arity E.label ≡ E′.label
+ ≡ports : E.ports ≈[ ≡arity ] E′.ports
+
+≈-Edge-refl : {v : ℕ} {x : Edge v} → ≈-Edge x x
+≈-Edge-refl {_} {x} = record
+ { ≡arity = ≡.refl
+ ; ≡label = HL.≈-reflexive ≡.refl
+ ; ≡ports = VecCast.≈-reflexive ≡.refl
+ }
+ where
+ open Edge x using (arity; label)
+ open DecTotalOrder (HL.decTotalOrder arity) using (module Eq)
+
+≈-Edge-sym : {v : ℕ} {x y : Edge v} → ≈-Edge x y → ≈-Edge y x
+≈-Edge-sym {_} {x} {y} x≈y = record
+ { ≡arity = ≡.sym ≡arity
+ ; ≡label = HL.≈-sym ≡label
+ ; ≡ports = VecCast.≈-sym ≡ports
+ }
+ where
+ open ≈-Edge x≈y
+ open DecTotalOrder (HL.decTotalOrder E.arity) using (module Eq)
+
+≈-Edge-trans : {v : ℕ} {i j k : Edge v} → ≈-Edge i j → ≈-Edge j k → ≈-Edge i k
+≈-Edge-trans {_} {i} {j} {k} i≈j j≈k = record
+ { ≡arity = ≡.trans i≈j.≡arity j≈k.≡arity
+ ; ≡label = HL.≈-trans i≈j.≡label j≈k.≡label
+ ; ≡ports = VecCast.≈-trans i≈j.≡ports j≈k.≡ports
+ }
+ where
+ module i≈j = ≈-Edge i≈j
+ module j≈k = ≈-Edge j≈k
+
+open HL using (_[_<_])
+_<<_ : {v a : ℕ} → Rel (Vec (Fin v) a) 0ℓ
+_<<_ {v} = Lex.Lex-< _≡_ (Fin._<_ {v})
+data <-Edge {v : ℕ} : Edge v → Edge v → Set where
+ <-arity
+ : {x y : Edge v}
+ → Edge.arity x < Edge.arity y
+ → <-Edge x y
+ <-label
+ : {x y : Edge v}
+ (≡a : Edge.arity x ≡ Edge.arity y)
+ → Edge.arity y [ cast ≡a (Edge.label x) < Edge.label y ]
+ → <-Edge x y
+ <-ports
+ : {x y : Edge v}
+ (≡a : Edge.arity x ≡ Edge.arity y)
+ (≡l : Edge.label x HL.≈[ ≡a ] Edge.label y)
+ → VecBase.cast ≡a (Edge.ports x) << Edge.ports y
+ → <-Edge x y
+
+<-Edge-irrefl : {v : ℕ} {x y : Edge v} → ≈-Edge x y → ¬ <-Edge x y
+<-Edge-irrefl record { ≡arity = ≡a } (<-arity n<m) = <-irrefl ≡a n<m
+<-Edge-irrefl record { ≡label = ≡l } (<-label _ (_ , x≉y)) = x≉y ≡l
+<-Edge-irrefl record { ≡ports = ≡p } (<-ports ≡.refl ≡l x<y)
+ = Lex.<-irrefl FinProp.<-irrefl (≡⇒Pointwise-≡ ≡p) x<y
+
+<-Edge-trans : {v : ℕ} {i j k : Edge v} → <-Edge i j → <-Edge j k → <-Edge i k
+<-Edge-trans (<-arity i<j) (<-arity j<k) = <-arity (<-trans i<j j<k)
+<-Edge-trans (<-arity i<j) (<-label ≡.refl j<k) = <-arity i<j
+<-Edge-trans (<-arity i<j) (<-ports ≡.refl _ j<k) = <-arity i<j
+<-Edge-trans (<-label ≡.refl i<j) (<-arity j<k) = <-arity j<k
+<-Edge-trans {_} {i} (<-label ≡.refl i<j) (<-label ≡.refl j<k)
+ = <-label ≡.refl (<-label-trans i<j (<-respˡ-≈ (HL.≈-reflexive ≡.refl) j<k))
+ where
+ open DTOP (HL.decTotalOrder (Edge.arity i)) using (<-respˡ-≈) renaming (<-trans to <-label-trans)
+<-Edge-trans {k = k} (<-label ≡.refl i<j) (<-ports ≡.refl ≡.refl _)
+ = <-label ≡.refl (<-respʳ-≈ (≡.sym (HL.≈-reflexive ≡.refl)) i<j)
+ where
+ open DTOP (HL.decTotalOrder (Edge.arity k)) using (<-respʳ-≈)
+<-Edge-trans (<-ports ≡.refl _ _) (<-arity j<k) = <-arity j<k
+<-Edge-trans {k = k} (<-ports ≡.refl ≡.refl _) (<-label ≡.refl j<k)
+ = <-label ≡.refl (<-respˡ-≈ (≡.cong (cast _) (HL.≈-reflexive ≡.refl)) j<k)
+ where
+ open DTOP (HL.decTotalOrder (Edge.arity k)) using (<-respˡ-≈)
+<-Edge-trans {j = j} (<-ports ≡.refl ≡l₁ i<j) (<-ports ≡.refl ≡l₂ j<k)
+ rewrite (VecCast.cast-is-id ≡.refl (Edge.ports j))
+ = <-ports ≡.refl
+ (HL.≈-trans ≡l₁ ≡l₂)
+ (Lex.<-trans ≡-isPartialEquivalence FinProp.<-resp₂-≡ FinProp.<-trans i<j j<k)
+ where
+ open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence)
+
+<-Edge-respˡ-≈ : {v : ℕ} {y : Edge v} → (λ x → <-Edge x y) Respects ≈-Edge
+<-Edge-respˡ-≈ ≈x (<-arity x₁<y) = <-arity (proj₂ <-resp₂-≡ ≡arity x₁<y)
+ where
+ open ≈-Edge ≈x using (≡arity)
+<-Edge-respˡ-≈ {_} {y} record { ≡arity = ≡.refl ; ≡label = ≡.refl } (<-label ≡.refl x₁<y)
+ = <-label ≡.refl (<-respˡ-≈ (≡.sym (HL.≈-reflexive ≡.refl)) x₁<y)
+ where
+ module y = Edge y
+ open DTOP (HL.decTotalOrder y.arity) using (<-respˡ-≈)
+<-Edge-respˡ-≈ record { ≡arity = ≡.refl ; ≡label = ≡.refl; ≡ports = ≡.refl} (<-ports ≡.refl ≡.refl x₁<y)
+ = <-ports
+ ≡.refl
+ (≡.cong (cast _) (HL.≈-reflexive ≡.refl))
+ (Lex.<-respectsˡ
+ ≡-isPartialEquivalence
+ FinProp.<-respˡ-≡
+ (≡⇒Pointwise-≡ (≡.sym (VecCast.≈-reflexive ≡.refl)))
+ x₁<y)
+ where
+ open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence)
+
+<-Edge-respʳ-≈ : {v : ℕ} {x : Edge v} → <-Edge x Respects ≈-Edge
+<-Edge-respʳ-≈ record { ≡arity = ≡a } (<-arity x<y₁) = <-arity (proj₁ <-resp₂-≡ ≡a x<y₁)
+<-Edge-respʳ-≈ {_} {x} record { ≡arity = ≡.refl ; ≡label = ≡.refl } (<-label ≡.refl x<y₁)
+ = <-label ≡.refl (<-respʳ-≈ (≡.sym (HL.≈-reflexive ≡.refl)) x<y₁)
+ where
+ module x = Edge x
+ open DTOP (HL.decTotalOrder x.arity) using (<-respʳ-≈)
+<-Edge-respʳ-≈ record { ≡arity = ≡.refl ; ≡label = ≡.refl; ≡ports = ≡.refl} (<-ports ≡.refl ≡.refl x<y₁)
+ = <-ports
+ ≡.refl
+ (≡.cong (cast _) (≡.sym (HL.≈-reflexive ≡.refl)))
+ (Lex.<-respectsʳ
+ ≡-isPartialEquivalence
+ FinProp.<-respʳ-≡
+ (≡⇒Pointwise-≡ (≡.sym (VecCast.≈-reflexive ≡.refl)))
+ x<y₁)
+ where
+ open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence)
+
+open Tri
+open ≈-Edge
+tri : {v : ℕ} → Trichotomous (≈-Edge {v}) (<-Edge {v})
+tri x y with <-cmp x.arity y.arity
+ where
+ module x = Edge x
+ module y = Edge y
+tri x y | tri< x<y x≢y y≮x = tri< (<-arity x<y) (λ x≡y → x≢y (≡arity x≡y)) ¬y<x
+ where
+ ¬y<x : ¬ <-Edge y x
+ ¬y<x (<-arity y<x) = y≮x y<x
+ ¬y<x (<-label ≡a _) = x≢y (≡.sym ≡a)
+ ¬y<x (<-ports ≡a _ _) = x≢y (≡.sym ≡a)
+tri x y | tri≈ x≮y ≡.refl y≮x = compare-label
+ where
+ module x = Edge x
+ module y = Edge y
+ open StrictTotalOrder (HL.strictTotalOrder x.arity) using (compare)
+ import Relation.Binary.Properties.DecTotalOrder
+ open DTOP (HL.decTotalOrder x.arity) using (<-respˡ-≈)
+ compare-label : Tri (<-Edge x y) (≈-Edge x y) (<-Edge y x)
+ compare-label with compare x.label y.label
+ ... | tri< x<y x≢y y≮x′ = tri<
+ (<-label ≡.refl (<-respˡ-≈ (≡.sym (HL.≈-reflexive ≡.refl)) x<y))
+ (λ x≡y → x≢y (≡.trans (≡.sym (HL.≈-reflexive ≡.refl)) (≡label x≡y)))
+ ¬y<x
+ where
+ ¬y<x : ¬ <-Edge y x
+ ¬y<x (<-arity y<x) = y≮x y<x
+ ¬y<x (<-label _ y<x) = y≮x′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) y<x)
+ ¬y<x (<-ports _ ≡l _) = x≢y (≡.trans (≡.sym ≡l) (cast-is-id ≡.refl y.label))
+ ... | tri≈ x≮y′ x≡y′ y≮x′ = compare-ports
+ where
+ compare-ports : Tri (<-Edge x y) (≈-Edge x y) (<-Edge y x)
+ compare-ports with Lex.<-cmp ≡.sym FinProp.<-cmp x.ports y.ports
+ ... | tri< x<y x≢y y≮x″ =
+ tri<
+ (<-ports ≡.refl
+ (HL.≈-reflexive x≡y′)
+ (Lex.<-respectsˡ
+ ≡-isPartialEquivalence
+ FinProp.<-respˡ-≡
+ (≡⇒Pointwise-≡ (≡.sym (VecCast.≈-reflexive ≡.refl)))
+ x<y))
+ (λ x≡y → x≢y (≡⇒Pointwise-≡ (≡.trans (≡.sym (VecCast.≈-reflexive ≡.refl)) (≡ports x≡y))))
+ ¬y<x
+ where
+ open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence)
+ ¬y<x : ¬ <-Edge y x
+ ¬y<x (<-arity y<x) = y≮x y<x
+ ¬y<x (<-label _ y<x) = y≮x′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) y<x)
+ ¬y<x (<-ports _ _ y<x) =
+ y≮x″
+ (Lex.<-respectsˡ
+ ≡-isPartialEquivalence
+ FinProp.<-respˡ-≡
+ (≡⇒Pointwise-≡ (VecCast.≈-reflexive ≡.refl))
+ y<x)
+ ... | tri≈ x≮y″ x≡y″ y≮x″ = tri≈
+ ¬x<y
+ (record { ≡arity = ≡.refl ; ≡label = HL.≈-reflexive x≡y′ ; ≡ports = VecCast.≈-reflexive (Pointwise-≡⇒≡ x≡y″) })
+ ¬y<x
+ where
+ open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence)
+ ¬x<y : ¬ <-Edge x y
+ ¬x<y (<-arity x<y) = x≮y x<y
+ ¬x<y (<-label _ x<y) = x≮y′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) x<y)
+ ¬x<y (<-ports _ _ x<y) =
+ x≮y″
+ (Lex.<-respectsˡ
+ ≡-isPartialEquivalence
+ FinProp.<-respˡ-≡
+ (≡⇒Pointwise-≡ (VecCast.≈-reflexive ≡.refl))
+ x<y)
+ ¬y<x : ¬ <-Edge y x
+ ¬y<x (<-arity y<x) = y≮x y<x
+ ¬y<x (<-label _ y<x) = y≮x′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) y<x)
+ ¬y<x (<-ports _ _ y<x) =
+ y≮x″
+ (Lex.<-respectsˡ
+ ≡-isPartialEquivalence
+ FinProp.<-respˡ-≡
+ (≡⇒Pointwise-≡ (VecCast.≈-reflexive ≡.refl))
+ y<x)
+
+ ... | tri> x≮y″ x≢y y<x =
+ tri>
+ ¬x<y
+ (λ x≡y → x≢y (≡⇒Pointwise-≡ (≡.trans (≡.sym (VecCast.≈-reflexive ≡.refl)) (≡ports x≡y))))
+ (<-ports
+ ≡.refl
+ (HL.≈-sym (HL.≈-reflexive x≡y′))
+ (Lex.<-respectsˡ
+ ≡-isPartialEquivalence
+ FinProp.<-respˡ-≡
+ (≡⇒Pointwise-≡ (≡.sym (VecCast.≈-reflexive ≡.refl)))
+ y<x))
+ where
+ open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence)
+ ¬x<y : ¬ <-Edge x y
+ ¬x<y (<-arity x<y) = x≮y x<y
+ ¬x<y (<-label _ x<y) = x≮y′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) x<y)
+ ¬x<y (<-ports _ _ x<y) =
+ x≮y″
+ (Lex.<-respectsˡ
+ ≡-isPartialEquivalence
+ FinProp.<-respˡ-≡
+ (≡⇒Pointwise-≡ (VecCast.≈-reflexive ≡.refl))
+ x<y)
+ ... | tri> x≮y′ x≢y y<x = tri>
+ ¬x<y
+ (λ x≡y → x≢y (≡.trans (≡.sym (HL.≈-reflexive ≡.refl)) (≡label x≡y)))
+ (<-label ≡.refl (<-respˡ-≈ (≡.sym (HL.≈-reflexive ≡.refl)) y<x))
+ where
+ ¬x<y : ¬ <-Edge x y
+ ¬x<y (<-arity x<y) = x≮y x<y
+ ¬x<y (<-label ≡a x<y) = x≮y′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) x<y)
+ ¬x<y (<-ports _ ≡l _) = x≢y (≡.trans (≡.sym (HL.≈-reflexive ≡.refl)) ≡l)
+tri x y | tri> x≮y x≢y y<x = tri> ¬x<y (λ x≡y → x≢y (≡arity x≡y)) (<-arity y<x)
+ where
+ ¬x<y : ¬ <-Edge x y
+ ¬x<y (<-arity x<y) = x≮y x<y
+ ¬x<y (<-label ≡a x<y) = x≢y ≡a
+ ¬x<y (<-ports ≡a _ _) = x≢y ≡a
+
+isStrictTotalOrder : {v : ℕ} → IsStrictTotalOrder (≈-Edge {v}) (<-Edge {v})
+isStrictTotalOrder = record
+ { isStrictPartialOrder = record
+ { isEquivalence = record
+ { refl = ≈-Edge-refl
+ ; sym = ≈-Edge-sym
+ ; trans = ≈-Edge-trans
+ }
+ ; irrefl = <-Edge-irrefl
+ ; trans = <-Edge-trans
+ ; <-resp-≈ = <-Edge-respʳ-≈ , <-Edge-respˡ-≈
+ }
+ ; compare = tri
+ }
+
+strictTotalOrder : {v : ℕ} → StrictTotalOrder 0ℓ 0ℓ 0ℓ
+strictTotalOrder {v} = record
+ { Carrier = Edge v
+ ; _≈_ = ≈-Edge {v}
+ ; _<_ = <-Edge {v}
+ ; isStrictTotalOrder = isStrictTotalOrder {v}
+ }
+
+showEdge : {v : ℕ} → Edge v → String
+showEdge record { arity = a ; label = l ; ports = p} = HL.showLabel a l <+> showVec showFin p
+
+open module STOP′ {v} = STOP (strictTotalOrder {v}) using (decTotalOrder) public