diff options
| author | Jacques Comeaux <jacquesrcomeaux@protonmail.com> | 2025-11-03 23:29:21 -0600 |
|---|---|---|
| committer | Jacques Comeaux <jacquesrcomeaux@protonmail.com> | 2025-11-03 23:29:21 -0600 |
| commit | 298baf2b69620106e95b52206e02d58ad8cb9fc8 (patch) | |
| tree | ab34ff8ed5274d7e6dae0e7d1cc17654d1ebaf22 /Data/Hypergraph | |
| parent | d2ce2675b5e0331b6bf5647a4fc195e458d9b5ee (diff) | |
Use permutation for equivalence of hypergraphs
Diffstat (limited to 'Data/Hypergraph')
| -rw-r--r-- | Data/Hypergraph/Base.agda | 25 | ||||
| -rw-r--r-- | Data/Hypergraph/Edge.agda | 368 | ||||
| -rw-r--r-- | Data/Hypergraph/Edge/Order.agda | 280 | ||||
| -rw-r--r-- | Data/Hypergraph/Setoid.agda | 59 |
4 files changed, 338 insertions, 394 deletions
diff --git a/Data/Hypergraph/Base.agda b/Data/Hypergraph/Base.agda deleted file mode 100644 index 0910e02..0000000 --- a/Data/Hypergraph/Base.agda +++ /dev/null @@ -1,25 +0,0 @@ -{-# OPTIONS --without-K --safe #-} - -open import Level using (Level) -open import Data.Hypergraph.Label using (HypergraphLabel) - -module Data.Hypergraph.Base {ℓ : Level} (HL : HypergraphLabel) where - -import Data.Hypergraph.Edge HL as Edge - -open import Data.List using (List; map) -open import Data.Nat.Base using (ℕ) -open import Data.String using (String; unlines) - -open Edge using (Edge) - -record Hypergraph (v : ℕ) : Set ℓ where - constructor mkHypergraph - field - edges : List (Edge v) - -normalize : {v : ℕ} → Hypergraph v → Hypergraph v -normalize (mkHypergraph e) = mkHypergraph (Edge.sort e) - -show : {v : ℕ} → Hypergraph v → String -show (mkHypergraph e) = unlines (map Edge.show e) diff --git a/Data/Hypergraph/Edge.agda b/Data/Hypergraph/Edge.agda index ee32393..1e24559 100644 --- a/Data/Hypergraph/Edge.agda +++ b/Data/Hypergraph/Edge.agda @@ -4,43 +4,32 @@ open import Data.Hypergraph.Label using (HypergraphLabel) module Data.Hypergraph.Edge (HL : HypergraphLabel) where -import Data.List.Sort as ListSort -import Data.Fin as Fin -import Data.Fin.Properties as FinProp import Data.Vec as Vec import Data.Vec.Relation.Binary.Equality.Cast as VecCast -import Data.Vec.Relation.Binary.Lex.Strict as Lex import Relation.Binary.PropositionalEquality as ≡ -import Relation.Binary.Properties.DecTotalOrder as DTOP -import Relation.Binary.Properties.StrictTotalOrder as STOP -open import Relation.Binary using (Rel; IsStrictTotalOrder; Tri; Trichotomous; _Respects_) -open import Data.Castable using (IsCastable) open import Data.Fin using (Fin) open import Data.Fin.Show using () renaming (show to showFin) -open import Data.Nat using (ℕ; _<_) -open import Data.Nat.Properties using (<-irrefl; <-trans; <-resp₂-≡; <-cmp) -open import Data.Product.Base using (_,_; proj₁; proj₂) +open import Data.Nat using (ℕ) open import Data.String using (String; _<+>_) -open import Data.Vec.Relation.Binary.Pointwise.Inductive using (≡⇒Pointwise-≡; Pointwise-≡⇒≡) open import Data.Vec.Show using () renaming (show to showVec) open import Level using (0ℓ) -open import Relation.Binary using (Setoid; DecTotalOrder; StrictTotalOrder; IsEquivalence) -open import Relation.Nullary using (¬_) - +open import Relation.Binary using (Setoid; IsEquivalence) module HL = HypergraphLabel HL + open HL using (Label; cast; cast-is-id) open Vec using (Vec) record Edge (v : ℕ) : Set where + constructor mkEdge field {arity} : ℕ label : Label arity ports : Vec (Fin v) arity map : {n m : ℕ} → (Fin n → Fin m) → Edge n → Edge m -map {n} {m} f edge = record +map f edge = record { label = label ; ports = Vec.map f ports } @@ -50,299 +39,58 @@ map {n} {m} f edge = record open ≡ using (_≡_) open VecCast using (_≈[_]_) -record ≈-Edge {n : ℕ} (E E′ : Edge n) : Set where - module E = Edge E - module E′ = Edge E′ - field - ≡arity : E.arity ≡ E′.arity - ≡label : cast ≡arity E.label ≡ E′.label - ≡ports : E.ports ≈[ ≡arity ] E′.ports - -≈-Edge-refl : {v : ℕ} {x : Edge v} → ≈-Edge x x -≈-Edge-refl {_} {x} = record - { ≡arity = ≡.refl - ; ≡label = HL.≈-reflexive ≡.refl - ; ≡ports = VecCast.≈-reflexive ≡.refl - } - where - open Edge x using (arity; label) - open DecTotalOrder (HL.decTotalOrder arity) using (module Eq) - -≈-Edge-sym : {v : ℕ} {x y : Edge v} → ≈-Edge x y → ≈-Edge y x -≈-Edge-sym {_} {x} {y} x≈y = record - { ≡arity = ≡.sym ≡arity - ; ≡label = HL.≈-sym ≡label - ; ≡ports = VecCast.≈-sym ≡ports - } - where - open ≈-Edge x≈y - open DecTotalOrder (HL.decTotalOrder E.arity) using (module Eq) - -≈-Edge-trans : {v : ℕ} {i j k : Edge v} → ≈-Edge i j → ≈-Edge j k → ≈-Edge i k -≈-Edge-trans {_} {i} {j} {k} i≈j j≈k = record - { ≡arity = ≡.trans i≈j.≡arity j≈k.≡arity - ; ≡label = HL.≈-trans i≈j.≡label j≈k.≡label - ; ≡ports = VecCast.≈-trans i≈j.≡ports j≈k.≡ports - } - where - module i≈j = ≈-Edge i≈j - module j≈k = ≈-Edge j≈k - -≈-Edge-IsEquivalence : {v : ℕ} → IsEquivalence (≈-Edge {v}) -≈-Edge-IsEquivalence = record - { refl = ≈-Edge-refl - ; sym = ≈-Edge-sym - ; trans = ≈-Edge-trans - } - -open HL using (_[_<_]) -_<<_ : {v a : ℕ} → Rel (Vec (Fin v) a) 0ℓ -_<<_ {v} = Lex.Lex-< _≡_ (Fin._<_ {v}) -data <-Edge {v : ℕ} : Edge v → Edge v → Set where - <-arity - : {x y : Edge v} - → Edge.arity x < Edge.arity y - → <-Edge x y - <-label - : {x y : Edge v} - (≡a : Edge.arity x ≡ Edge.arity y) - → Edge.arity y [ cast ≡a (Edge.label x) < Edge.label y ] - → <-Edge x y - <-ports - : {x y : Edge v} - (≡a : Edge.arity x ≡ Edge.arity y) - (≡l : Edge.label x HL.≈[ ≡a ] Edge.label y) - → Vec.cast ≡a (Edge.ports x) << Edge.ports y - → <-Edge x y - -<-Edge-irrefl : {v : ℕ} {x y : Edge v} → ≈-Edge x y → ¬ <-Edge x y -<-Edge-irrefl record { ≡arity = ≡a } (<-arity n<m) = <-irrefl ≡a n<m -<-Edge-irrefl record { ≡label = ≡l } (<-label _ (_ , x≉y)) = x≉y ≡l -<-Edge-irrefl record { ≡ports = ≡p } (<-ports ≡.refl ≡l x<y) - = Lex.<-irrefl FinProp.<-irrefl (≡⇒Pointwise-≡ ≡p) x<y - -<-Edge-trans : {v : ℕ} {i j k : Edge v} → <-Edge i j → <-Edge j k → <-Edge i k -<-Edge-trans (<-arity i<j) (<-arity j<k) = <-arity (<-trans i<j j<k) -<-Edge-trans (<-arity i<j) (<-label ≡.refl j<k) = <-arity i<j -<-Edge-trans (<-arity i<j) (<-ports ≡.refl _ j<k) = <-arity i<j -<-Edge-trans (<-label ≡.refl i<j) (<-arity j<k) = <-arity j<k -<-Edge-trans {_} {i} (<-label ≡.refl i<j) (<-label ≡.refl j<k) - = <-label ≡.refl (<-label-trans i<j (<-respˡ-≈ (HL.≈-reflexive ≡.refl) j<k)) - where - open DTOP (HL.decTotalOrder (Edge.arity i)) using (<-respˡ-≈) renaming (<-trans to <-label-trans) -<-Edge-trans {k = k} (<-label ≡.refl i<j) (<-ports ≡.refl ≡.refl _) - = <-label ≡.refl (<-respʳ-≈ (≡.sym (HL.≈-reflexive ≡.refl)) i<j) - where - open DTOP (HL.decTotalOrder (Edge.arity k)) using (<-respʳ-≈) -<-Edge-trans (<-ports ≡.refl _ _) (<-arity j<k) = <-arity j<k -<-Edge-trans {k = k} (<-ports ≡.refl ≡.refl _) (<-label ≡.refl j<k) - = <-label ≡.refl (<-respˡ-≈ (≡.cong (cast _) (HL.≈-reflexive ≡.refl)) j<k) - where - open DTOP (HL.decTotalOrder (Edge.arity k)) using (<-respˡ-≈) -<-Edge-trans {j = j} (<-ports ≡.refl ≡l₁ i<j) (<-ports ≡.refl ≡l₂ j<k) - rewrite (VecCast.cast-is-id ≡.refl (Edge.ports j)) - = <-ports ≡.refl - (HL.≈-trans ≡l₁ ≡l₂) - (Lex.<-trans ≡-isPartialEquivalence FinProp.<-resp₂-≡ FinProp.<-trans i<j j<k) - where - open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence) - -<-Edge-respˡ-≈ : {v : ℕ} {y : Edge v} → (λ x → <-Edge x y) Respects ≈-Edge -<-Edge-respˡ-≈ ≈x (<-arity x₁<y) = <-arity (proj₂ <-resp₂-≡ ≡arity x₁<y) - where - open ≈-Edge ≈x using (≡arity) -<-Edge-respˡ-≈ {_} {y} record { ≡arity = ≡.refl ; ≡label = ≡.refl } (<-label ≡.refl x₁<y) - = <-label ≡.refl (<-respˡ-≈ (≡.sym (HL.≈-reflexive ≡.refl)) x₁<y) - where - module y = Edge y - open DTOP (HL.decTotalOrder y.arity) using (<-respˡ-≈) -<-Edge-respˡ-≈ record { ≡arity = ≡.refl ; ≡label = ≡.refl; ≡ports = ≡.refl} (<-ports ≡.refl ≡.refl x₁<y) - = <-ports - ≡.refl - (≡.cong (cast _) (HL.≈-reflexive ≡.refl)) - (Lex.<-respectsˡ - ≡-isPartialEquivalence - FinProp.<-respˡ-≡ - (≡⇒Pointwise-≡ (≡.sym (VecCast.≈-reflexive ≡.refl))) - x₁<y) - where - open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence) - -<-Edge-respʳ-≈ : {v : ℕ} {x : Edge v} → <-Edge x Respects ≈-Edge -<-Edge-respʳ-≈ record { ≡arity = ≡a } (<-arity x<y₁) = <-arity (proj₁ <-resp₂-≡ ≡a x<y₁) -<-Edge-respʳ-≈ {_} {x} record { ≡arity = ≡.refl ; ≡label = ≡.refl } (<-label ≡.refl x<y₁) - = <-label ≡.refl (<-respʳ-≈ (≡.sym (HL.≈-reflexive ≡.refl)) x<y₁) - where - module x = Edge x - open DTOP (HL.decTotalOrder x.arity) using (<-respʳ-≈) -<-Edge-respʳ-≈ record { ≡arity = ≡.refl ; ≡label = ≡.refl; ≡ports = ≡.refl} (<-ports ≡.refl ≡.refl x<y₁) - = <-ports - ≡.refl - (≡.cong (cast _) (≡.sym (HL.≈-reflexive ≡.refl))) - (Lex.<-respectsʳ - ≡-isPartialEquivalence - FinProp.<-respʳ-≡ - (≡⇒Pointwise-≡ (≡.sym (VecCast.≈-reflexive ≡.refl))) - x<y₁) - where - open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence) - -open Tri -open ≈-Edge -tri : {v : ℕ} → Trichotomous (≈-Edge {v}) (<-Edge {v}) -tri x y with <-cmp x.arity y.arity - where - module x = Edge x - module y = Edge y -tri x y | tri< x<y x≢y y≮x = tri< (<-arity x<y) (λ x≡y → x≢y (≡arity x≡y)) ¬y<x - where - ¬y<x : ¬ <-Edge y x - ¬y<x (<-arity y<x) = y≮x y<x - ¬y<x (<-label ≡a _) = x≢y (≡.sym ≡a) - ¬y<x (<-ports ≡a _ _) = x≢y (≡.sym ≡a) -tri x y | tri≈ x≮y ≡.refl y≮x = compare-label - where - module x = Edge x - module y = Edge y - open StrictTotalOrder (HL.strictTotalOrder x.arity) using (compare) - import Relation.Binary.Properties.DecTotalOrder - open DTOP (HL.decTotalOrder x.arity) using (<-respˡ-≈) - compare-label : Tri (<-Edge x y) (≈-Edge x y) (<-Edge y x) - compare-label with compare x.label y.label - ... | tri< x<y x≢y y≮x′ = tri< - (<-label ≡.refl (<-respˡ-≈ (≡.sym (HL.≈-reflexive ≡.refl)) x<y)) - (λ x≡y → x≢y (≡.trans (≡.sym (HL.≈-reflexive ≡.refl)) (≡label x≡y))) - ¬y<x - where - ¬y<x : ¬ <-Edge y x - ¬y<x (<-arity y<x) = y≮x y<x - ¬y<x (<-label _ y<x) = y≮x′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) y<x) - ¬y<x (<-ports _ ≡l _) = x≢y (≡.trans (≡.sym ≡l) (cast-is-id ≡.refl y.label)) - ... | tri≈ x≮y′ x≡y′ y≮x′ = compare-ports - where - compare-ports : Tri (<-Edge x y) (≈-Edge x y) (<-Edge y x) - compare-ports with Lex.<-cmp ≡.sym FinProp.<-cmp x.ports y.ports - ... | tri< x<y x≢y y≮x″ = - tri< - (<-ports ≡.refl - (HL.≈-reflexive x≡y′) - (Lex.<-respectsˡ - ≡-isPartialEquivalence - FinProp.<-respˡ-≡ - (≡⇒Pointwise-≡ (≡.sym (VecCast.≈-reflexive ≡.refl))) - x<y)) - (λ x≡y → x≢y (≡⇒Pointwise-≡ (≡.trans (≡.sym (VecCast.≈-reflexive ≡.refl)) (≡ports x≡y)))) - ¬y<x - where - open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence) - ¬y<x : ¬ <-Edge y x - ¬y<x (<-arity y<x) = y≮x y<x - ¬y<x (<-label _ y<x) = y≮x′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) y<x) - ¬y<x (<-ports _ _ y<x) = - y≮x″ - (Lex.<-respectsˡ - ≡-isPartialEquivalence - FinProp.<-respˡ-≡ - (≡⇒Pointwise-≡ (VecCast.≈-reflexive ≡.refl)) - y<x) - ... | tri≈ x≮y″ x≡y″ y≮x″ = tri≈ - ¬x<y - (record { ≡arity = ≡.refl ; ≡label = HL.≈-reflexive x≡y′ ; ≡ports = VecCast.≈-reflexive (Pointwise-≡⇒≡ x≡y″) }) - ¬y<x - where - open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence) - ¬x<y : ¬ <-Edge x y - ¬x<y (<-arity x<y) = x≮y x<y - ¬x<y (<-label _ x<y) = x≮y′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) x<y) - ¬x<y (<-ports _ _ x<y) = - x≮y″ - (Lex.<-respectsˡ - ≡-isPartialEquivalence - FinProp.<-respˡ-≡ - (≡⇒Pointwise-≡ (VecCast.≈-reflexive ≡.refl)) - x<y) - ¬y<x : ¬ <-Edge y x - ¬y<x (<-arity y<x) = y≮x y<x - ¬y<x (<-label _ y<x) = y≮x′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) y<x) - ¬y<x (<-ports _ _ y<x) = - y≮x″ - (Lex.<-respectsˡ - ≡-isPartialEquivalence - FinProp.<-respˡ-≡ - (≡⇒Pointwise-≡ (VecCast.≈-reflexive ≡.refl)) - y<x) - - ... | tri> x≮y″ x≢y y<x = - tri> - ¬x<y - (λ x≡y → x≢y (≡⇒Pointwise-≡ (≡.trans (≡.sym (VecCast.≈-reflexive ≡.refl)) (≡ports x≡y)))) - (<-ports - ≡.refl - (HL.≈-sym (HL.≈-reflexive x≡y′)) - (Lex.<-respectsˡ - ≡-isPartialEquivalence - FinProp.<-respˡ-≡ - (≡⇒Pointwise-≡ (≡.sym (VecCast.≈-reflexive ≡.refl))) - y<x)) - where - open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence) - ¬x<y : ¬ <-Edge x y - ¬x<y (<-arity x<y) = x≮y x<y - ¬x<y (<-label _ x<y) = x≮y′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) x<y) - ¬x<y (<-ports _ _ x<y) = - x≮y″ - (Lex.<-respectsˡ - ≡-isPartialEquivalence - FinProp.<-respˡ-≡ - (≡⇒Pointwise-≡ (VecCast.≈-reflexive ≡.refl)) - x<y) - ... | tri> x≮y′ x≢y y<x = tri> - ¬x<y - (λ x≡y → x≢y (≡.trans (≡.sym (HL.≈-reflexive ≡.refl)) (≡label x≡y))) - (<-label ≡.refl (<-respˡ-≈ (≡.sym (HL.≈-reflexive ≡.refl)) y<x)) - where - ¬x<y : ¬ <-Edge x y - ¬x<y (<-arity x<y) = x≮y x<y - ¬x<y (<-label ≡a x<y) = x≮y′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) x<y) - ¬x<y (<-ports _ ≡l _) = x≢y (≡.trans (≡.sym (HL.≈-reflexive ≡.refl)) ≡l) -tri x y | tri> x≮y x≢y y<x = tri> ¬x<y (λ x≡y → x≢y (≡arity x≡y)) (<-arity y<x) - where - ¬x<y : ¬ <-Edge x y - ¬x<y (<-arity x<y) = x≮y x<y - ¬x<y (<-label ≡a x<y) = x≢y ≡a - ¬x<y (<-ports ≡a _ _) = x≢y ≡a - -isStrictTotalOrder : {v : ℕ} → IsStrictTotalOrder (≈-Edge {v}) (<-Edge {v}) -isStrictTotalOrder = record - { isStrictPartialOrder = record - { isEquivalence = ≈-Edge-IsEquivalence - ; irrefl = <-Edge-irrefl - ; trans = <-Edge-trans - ; <-resp-≈ = <-Edge-respʳ-≈ , <-Edge-respˡ-≈ - } - ; compare = tri - } - -strictTotalOrder : {v : ℕ} → StrictTotalOrder 0ℓ 0ℓ 0ℓ -strictTotalOrder {v} = record - { Carrier = Edge v - ; _≈_ = ≈-Edge {v} - ; _<_ = <-Edge {v} - ; isStrictTotalOrder = isStrictTotalOrder {v} - } - -show : {v : ℕ} → Edge v → String -show record { arity = a ; label = l ; ports = p} = HL.showLabel a l <+> showVec showFin p - -open module STOP′ {v} = STOP (strictTotalOrder {v}) using (decTotalOrder) public - -≈-Edge⇒≡ : {v : ℕ} {x y : Edge v} → ≈-Edge x y → x ≡ y -≈-Edge⇒≡ {v} {record { label = l ; ports = p }} record { ≡arity = ≡.refl ; ≡label = ≡.refl ; ≡ports = ≡.refl } - rewrite cast-is-id ≡.refl l - rewrite VecCast.cast-is-id ≡.refl p = ≡.refl - -module Sort {v} = ListSort (decTotalOrder {v}) -open Sort using (sort) public +module _ {v : ℕ} where + + -- an equivalence relation on edges with v nodes + record _≈_ (E E′ : Edge v) : Set where + constructor mk≈ + module E = Edge E + module E′ = Edge E′ + field + ≡arity : E.arity ≡ E′.arity + ≡label : cast ≡arity E.label ≡ E′.label + ≡ports : E.ports ≈[ ≡arity ] E′.ports + + ≈-refl : {x : Edge v} → x ≈ x + ≈-refl = record + { ≡arity = ≡.refl + ; ≡label = HL.≈-reflexive ≡.refl + ; ≡ports = VecCast.≈-reflexive ≡.refl + } + + ≈-sym : {x y : Edge v} → x ≈ y → y ≈ x + ≈-sym x≈y = record + { ≡arity = ≡.sym ≡arity + ; ≡label = HL.≈-sym ≡label + ; ≡ports = VecCast.≈-sym ≡ports + } + where + open _≈_ x≈y + + ≈-trans : {i j k : Edge v} → i ≈ j → j ≈ k → i ≈ k + ≈-trans {i} {j} {k} i≈j j≈k = record + { ≡arity = ≡.trans i≈j.≡arity j≈k.≡arity + ; ≡label = HL.≈-trans i≈j.≡label j≈k.≡label + ; ≡ports = VecCast.≈-trans i≈j.≡ports j≈k.≡ports + } + where + module i≈j = _≈_ i≈j + module j≈k = _≈_ j≈k + + ≈-IsEquivalence : IsEquivalence _≈_ + ≈-IsEquivalence = record + { refl = ≈-refl + ; sym = ≈-sym + ; trans = ≈-trans + } + + show : Edge v → String + show (mkEdge {a} l p) = HL.showLabel a l <+> showVec showFin p + + ≈⇒≡ : {x y : Edge v} → x ≈ y → x ≡ y + ≈⇒≡ {mkEdge l p} (mk≈ ≡.refl ≡.refl ≡.refl) + rewrite cast-is-id ≡.refl l + rewrite VecCast.cast-is-id ≡.refl p = ≡.refl Edgeₛ : (v : ℕ) → Setoid 0ℓ 0ℓ -Edgeₛ v = record { isEquivalence = ≈-Edge-IsEquivalence {v} } +Edgeₛ v = record { isEquivalence = ≈-IsEquivalence {v} } diff --git a/Data/Hypergraph/Edge/Order.agda b/Data/Hypergraph/Edge/Order.agda new file mode 100644 index 0000000..4b3c1e8 --- /dev/null +++ b/Data/Hypergraph/Edge/Order.agda @@ -0,0 +1,280 @@ +{-# OPTIONS --without-K --safe #-} + +open import Data.Hypergraph.Label using (HypergraphLabel) + +module Data.Hypergraph.Edge.Order (HL : HypergraphLabel) where + +import Data.List.Sort as ListSort +import Data.Fin as Fin +import Data.Fin.Properties as FinProp +import Data.Vec as Vec +import Data.Vec.Relation.Binary.Equality.Cast as VecCast +import Data.Vec.Relation.Binary.Lex.Strict as Lex +import Relation.Binary.PropositionalEquality as ≡ +import Relation.Binary.Properties.DecTotalOrder as DTOP +import Relation.Binary.Properties.StrictTotalOrder as STOP + +open import Data.Hypergraph.Edge HL using (Edge; ≈-Edge; ≈-Edge-IsEquivalence) +open import Data.Fin using (Fin) +open import Data.Nat using (ℕ; _<_) +open import Data.Nat.Properties using (<-irrefl; <-trans; <-resp₂-≡; <-cmp) +open import Data.Product.Base using (_,_; proj₁; proj₂) +open import Data.Vec.Relation.Binary.Pointwise.Inductive using (Pointwise-≡⇒≡) +open import Level using (0ℓ) +open import Relation.Binary + using + ( Rel + ; Tri ; Trichotomous + ; IsStrictTotalOrder ; IsEquivalence + ; _Respects_ + ; DecTotalOrder ; StrictTotalOrder + ) +open import Relation.Nullary using (¬_) + +module HL = HypergraphLabel HL +open HL using (Label; cast; cast-is-id) +open Vec using (Vec) + +open ≡ using (_≡_) + +open HL using (_[_<_]) +_<<_ : {v a : ℕ} → Rel (Vec (Fin v) a) 0ℓ +_<<_ {v} = Lex.Lex-< _≡_ (Fin._<_ {v}) + +data <-Edge {v : ℕ} : Edge v → Edge v → Set where + <-arity + : {x y : Edge v} + → Edge.arity x < Edge.arity y + → <-Edge x y + <-label + : {x y : Edge v} + (≡a : Edge.arity x ≡ Edge.arity y) + → Edge.arity y [ cast ≡a (Edge.label x) < Edge.label y ] + → <-Edge x y + <-ports + : {x y : Edge v} + (≡a : Edge.arity x ≡ Edge.arity y) + (≡l : Edge.label x HL.≈[ ≡a ] Edge.label y) + → Vec.cast ≡a (Edge.ports x) << Edge.ports y + → <-Edge x y + +<-Edge-irrefl : {v : ℕ} {x y : Edge v} → ≈-Edge x y → ¬ <-Edge x y +<-Edge-irrefl record { ≡arity = ≡a } (<-arity n<m) = <-irrefl ≡a n<m +<-Edge-irrefl record { ≡label = ≡l } (<-label _ (_ , x≉y)) = x≉y ≡l +<-Edge-irrefl record { ≡ports = ≡p } (<-ports ≡.refl ≡l x<y) + = Lex.<-irrefl FinProp.<-irrefl (≡⇒Pointwise-≡ ≡p) x<y + +<-Edge-trans : {v : ℕ} {i j k : Edge v} → <-Edge i j → <-Edge j k → <-Edge i k +<-Edge-trans (<-arity i<j) (<-arity j<k) = <-arity (<-trans i<j j<k) +<-Edge-trans (<-arity i<j) (<-label ≡.refl j<k) = <-arity i<j +<-Edge-trans (<-arity i<j) (<-ports ≡.refl _ j<k) = <-arity i<j +<-Edge-trans (<-label ≡.refl i<j) (<-arity j<k) = <-arity j<k +<-Edge-trans {_} {i} (<-label ≡.refl i<j) (<-label ≡.refl j<k) + = <-label ≡.refl (<-label-trans i<j (<-respˡ-≈ (HL.≈-reflexive ≡.refl) j<k)) + where + open DTOP (HL.decTotalOrder (Edge.arity i)) using (<-respˡ-≈) renaming (<-trans to <-label-trans) +<-Edge-trans {k = k} (<-label ≡.refl i<j) (<-ports ≡.refl ≡.refl _) + = <-label ≡.refl (<-respʳ-≈ (≡.sym (HL.≈-reflexive ≡.refl)) i<j) + where + open DTOP (HL.decTotalOrder (Edge.arity k)) using (<-respʳ-≈) +<-Edge-trans (<-ports ≡.refl _ _) (<-arity j<k) = <-arity j<k +<-Edge-trans {k = k} (<-ports ≡.refl ≡.refl _) (<-label ≡.refl j<k) + = <-label ≡.refl (<-respˡ-≈ (≡.cong (cast _) (HL.≈-reflexive ≡.refl)) j<k) + where + open DTOP (HL.decTotalOrder (Edge.arity k)) using (<-respˡ-≈) +<-Edge-trans {j = j} (<-ports ≡.refl ≡l₁ i<j) (<-ports ≡.refl ≡l₂ j<k) + rewrite (VecCast.cast-is-id ≡.refl (Edge.ports j)) + = <-ports ≡.refl + (HL.≈-trans ≡l₁ ≡l₂) + (Lex.<-trans ≡-isPartialEquivalence FinProp.<-resp₂-≡ FinProp.<-trans i<j j<k) + where + open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence) + +<-Edge-respˡ-≈ : {v : ℕ} {y : Edge v} → (λ x → <-Edge x y) Respects ≈-Edge +<-Edge-respˡ-≈ ≈x (<-arity x₁<y) = <-arity (proj₂ <-resp₂-≡ ≡arity x₁<y) + where + open ≈-Edge ≈x using (≡arity) +<-Edge-respˡ-≈ {_} {y} record { ≡arity = ≡.refl ; ≡label = ≡.refl } (<-label ≡.refl x₁<y) + = <-label ≡.refl (<-respˡ-≈ (≡.sym (HL.≈-reflexive ≡.refl)) x₁<y) + where + module y = Edge y + open DTOP (HL.decTotalOrder y.arity) using (<-respˡ-≈) +<-Edge-respˡ-≈ record { ≡arity = ≡.refl ; ≡label = ≡.refl; ≡ports = ≡.refl} (<-ports ≡.refl ≡.refl x₁<y) + = <-ports + ≡.refl + (≡.cong (cast _) (HL.≈-reflexive ≡.refl)) + (Lex.<-respectsˡ + ≡-isPartialEquivalence + FinProp.<-respˡ-≡ + (≡⇒Pointwise-≡ (≡.sym (VecCast.≈-reflexive ≡.refl))) + x₁<y) + where + open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence) + +<-Edge-respʳ-≈ : {v : ℕ} {x : Edge v} → <-Edge x Respects ≈-Edge +<-Edge-respʳ-≈ record { ≡arity = ≡a } (<-arity x<y₁) = <-arity (proj₁ <-resp₂-≡ ≡a x<y₁) +<-Edge-respʳ-≈ {_} {x} record { ≡arity = ≡.refl ; ≡label = ≡.refl } (<-label ≡.refl x<y₁) + = <-label ≡.refl (<-respʳ-≈ (≡.sym (HL.≈-reflexive ≡.refl)) x<y₁) + where + module x = Edge x + open DTOP (HL.decTotalOrder x.arity) using (<-respʳ-≈) +<-Edge-respʳ-≈ record { ≡arity = ≡.refl ; ≡label = ≡.refl; ≡ports = ≡.refl} (<-ports ≡.refl ≡.refl x<y₁) + = <-ports + ≡.refl + (≡.cong (cast _) (≡.sym (HL.≈-reflexive ≡.refl))) + (Lex.<-respectsʳ + ≡-isPartialEquivalence + FinProp.<-respʳ-≡ + (≡⇒Pointwise-≡ (≡.sym (VecCast.≈-reflexive ≡.refl))) + x<y₁) + where + open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence) + +open Tri +open ≈-Edge +tri : {v : ℕ} → Trichotomous (≈-Edge {v}) (<-Edge {v}) +tri x y with <-cmp x.arity y.arity + where + module x = Edge x + module y = Edge y +tri x y | tri< x<y x≢y y≮x = tri< (<-arity x<y) (λ x≡y → x≢y (≡arity x≡y)) ¬y<x + where + ¬y<x : ¬ <-Edge y x + ¬y<x (<-arity y<x) = y≮x y<x + ¬y<x (<-label ≡a _) = x≢y (≡.sym ≡a) + ¬y<x (<-ports ≡a _ _) = x≢y (≡.sym ≡a) +tri x y | tri≈ x≮y ≡.refl y≮x = compare-label + where + module x = Edge x + module y = Edge y + open StrictTotalOrder (HL.strictTotalOrder x.arity) using (compare) + import Relation.Binary.Properties.DecTotalOrder + open DTOP (HL.decTotalOrder x.arity) using (<-respˡ-≈) + compare-label : Tri (<-Edge x y) (≈-Edge x y) (<-Edge y x) + compare-label with compare x.label y.label + ... | tri< x<y x≢y y≮x′ = tri< + (<-label ≡.refl (<-respˡ-≈ (≡.sym (HL.≈-reflexive ≡.refl)) x<y)) + (λ x≡y → x≢y (≡.trans (≡.sym (HL.≈-reflexive ≡.refl)) (≡label x≡y))) + ¬y<x + where + ¬y<x : ¬ <-Edge y x + ¬y<x (<-arity y<x) = y≮x y<x + ¬y<x (<-label _ y<x) = y≮x′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) y<x) + ¬y<x (<-ports _ ≡l _) = x≢y (≡.trans (≡.sym ≡l) (cast-is-id ≡.refl y.label)) + ... | tri≈ x≮y′ x≡y′ y≮x′ = compare-ports + where + compare-ports : Tri (<-Edge x y) (≈-Edge x y) (<-Edge y x) + compare-ports with Lex.<-cmp ≡.sym FinProp.<-cmp x.ports y.ports + ... | tri< x<y x≢y y≮x″ = + tri< + (<-ports ≡.refl + (HL.≈-reflexive x≡y′) + (Lex.<-respectsˡ + ≡-isPartialEquivalence + FinProp.<-respˡ-≡ + (≡⇒Pointwise-≡ (≡.sym (VecCast.≈-reflexive ≡.refl))) + x<y)) + (λ x≡y → x≢y (≡⇒Pointwise-≡ (≡.trans (≡.sym (VecCast.≈-reflexive ≡.refl)) (≡ports x≡y)))) + ¬y<x + where + open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence) + ¬y<x : ¬ <-Edge y x + ¬y<x (<-arity y<x) = y≮x y<x + ¬y<x (<-label _ y<x) = y≮x′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) y<x) + ¬y<x (<-ports _ _ y<x) = + y≮x″ + (Lex.<-respectsˡ + ≡-isPartialEquivalence + FinProp.<-respˡ-≡ + (≡⇒Pointwise-≡ (VecCast.≈-reflexive ≡.refl)) + y<x) + ... | tri≈ x≮y″ x≡y″ y≮x″ = tri≈ + ¬x<y + (record { ≡arity = ≡.refl ; ≡label = HL.≈-reflexive x≡y′ ; ≡ports = VecCast.≈-reflexive (Pointwise-≡⇒≡ x≡y″) }) + ¬y<x + where + open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence) + ¬x<y : ¬ <-Edge x y + ¬x<y (<-arity x<y) = x≮y x<y + ¬x<y (<-label _ x<y) = x≮y′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) x<y) + ¬x<y (<-ports _ _ x<y) = + x≮y″ + (Lex.<-respectsˡ + ≡-isPartialEquivalence + FinProp.<-respˡ-≡ + (≡⇒Pointwise-≡ (VecCast.≈-reflexive ≡.refl)) + x<y) + ¬y<x : ¬ <-Edge y x + ¬y<x (<-arity y<x) = y≮x y<x + ¬y<x (<-label _ y<x) = y≮x′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) y<x) + ¬y<x (<-ports _ _ y<x) = + y≮x″ + (Lex.<-respectsˡ + ≡-isPartialEquivalence + FinProp.<-respˡ-≡ + (≡⇒Pointwise-≡ (VecCast.≈-reflexive ≡.refl)) + y<x) + + ... | tri> x≮y″ x≢y y<x = + tri> + ¬x<y + (λ x≡y → x≢y (≡⇒Pointwise-≡ (≡.trans (≡.sym (VecCast.≈-reflexive ≡.refl)) (≡ports x≡y)))) + (<-ports + ≡.refl + (HL.≈-sym (HL.≈-reflexive x≡y′)) + (Lex.<-respectsˡ + ≡-isPartialEquivalence + FinProp.<-respˡ-≡ + (≡⇒Pointwise-≡ (≡.sym (VecCast.≈-reflexive ≡.refl))) + y<x)) + where + open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence) + ¬x<y : ¬ <-Edge x y + ¬x<y (<-arity x<y) = x≮y x<y + ¬x<y (<-label _ x<y) = x≮y′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) x<y) + ¬x<y (<-ports _ _ x<y) = + x≮y″ + (Lex.<-respectsˡ + ≡-isPartialEquivalence + FinProp.<-respˡ-≡ + (≡⇒Pointwise-≡ (VecCast.≈-reflexive ≡.refl)) + x<y) + ... | tri> x≮y′ x≢y y<x = tri> + ¬x<y + (λ x≡y → x≢y (≡.trans (≡.sym (HL.≈-reflexive ≡.refl)) (≡label x≡y))) + (<-label ≡.refl (<-respˡ-≈ (≡.sym (HL.≈-reflexive ≡.refl)) y<x)) + where + ¬x<y : ¬ <-Edge x y + ¬x<y (<-arity x<y) = x≮y x<y + ¬x<y (<-label ≡a x<y) = x≮y′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) x<y) + ¬x<y (<-ports _ ≡l _) = x≢y (≡.trans (≡.sym (HL.≈-reflexive ≡.refl)) ≡l) +tri x y | tri> x≮y x≢y y<x = tri> ¬x<y (λ x≡y → x≢y (≡arity x≡y)) (<-arity y<x) + where + ¬x<y : ¬ <-Edge x y + ¬x<y (<-arity x<y) = x≮y x<y + ¬x<y (<-label ≡a x<y) = x≢y ≡a + ¬x<y (<-ports ≡a _ _) = x≢y ≡a + +isStrictTotalOrder : {v : ℕ} → IsStrictTotalOrder (≈-Edge {v}) (<-Edge {v}) +isStrictTotalOrder = record + { isStrictPartialOrder = record + { isEquivalence = ≈-Edge-IsEquivalence + ; irrefl = <-Edge-irrefl + ; trans = <-Edge-trans + ; <-resp-≈ = <-Edge-respʳ-≈ , <-Edge-respˡ-≈ + } + ; compare = tri + } + +strictTotalOrder : {v : ℕ} → StrictTotalOrder 0ℓ 0ℓ 0ℓ +strictTotalOrder {v} = record + { Carrier = Edge v + ; _≈_ = ≈-Edge {v} + ; _<_ = <-Edge {v} + ; isStrictTotalOrder = isStrictTotalOrder {v} + } + +open module STOP′ {v} = STOP (strictTotalOrder {v}) using (decTotalOrder) public + +module Sort {v} = ListSort (decTotalOrder {v}) +open Sort using (sort) public diff --git a/Data/Hypergraph/Setoid.agda b/Data/Hypergraph/Setoid.agda deleted file mode 100644 index d9cc024..0000000 --- a/Data/Hypergraph/Setoid.agda +++ /dev/null @@ -1,59 +0,0 @@ -{-# OPTIONS --without-K --safe #-} - -open import Level using (Level; _⊔_) -open import Data.Hypergraph.Label using (HypergraphLabel) - -module Data.Hypergraph.Setoid {c ℓ : Level} (HL : HypergraphLabel) where - -import Data.List.Relation.Binary.Permutation.Propositional as List-↭ - -open import Data.Hypergraph.Edge HL using (module Sort) -open import Data.Hypergraph.Base {c} HL using (Hypergraph; normalize) -open import Data.Nat using (ℕ) -open import Relation.Binary using (Setoid) -open import Relation.Binary.PropositionalEquality as ≡ using (_≡_) - --- an equivalence relation on hypergraphs -record _≈_ {v : ℕ} (H H′ : Hypergraph v) : Set (c ⊔ ℓ) where - - constructor mk≈ - - module H = Hypergraph H - module H′ = Hypergraph H′ - - field - ≡-normalized : normalize H ≡ normalize H′ - - open Hypergraph using (edges) - - ≡-edges : edges (normalize H) ≡ edges (normalize H′) - ≡-edges = ≡.cong edges ≡-normalized - - open List-↭ using (_↭_; ↭-reflexive; ↭-sym; ↭-trans) - open Sort using (sort-↭) - - ↭-edges : H.edges ↭ H′.edges - ↭-edges = ↭-trans (↭-sym (sort-↭ H.edges)) (↭-trans (↭-reflexive ≡-edges) (sort-↭ H′.edges)) - -infixr 4 _≈_ - -≈-refl : {v : ℕ} {H : Hypergraph v} → H ≈ H -≈-refl = mk≈ ≡.refl - -≈-sym : {v : ℕ} {H H′ : Hypergraph v} → H ≈ H′ → H′ ≈ H -≈-sym (mk≈ ≡n) = mk≈ (≡.sym ≡n) - -≈-trans : {v : ℕ} {H H′ H″ : Hypergraph v} → H ≈ H′ → H′ ≈ H″ → H ≈ H″ -≈-trans (mk≈ ≡n₁) (mk≈ ≡n₂) = mk≈ (≡.trans ≡n₁ ≡n₂) - --- The setoid of labeled hypergraphs with v nodes -Hypergraphₛ : ℕ → Setoid c (c ⊔ ℓ) -Hypergraphₛ v = record - { Carrier = Hypergraph v - ; _≈_ = _≈_ - ; isEquivalence = record - { refl = ≈-refl - ; sym = ≈-sym - ; trans = ≈-trans - } - } |
