diff options
author | Jacques Comeaux <jacquesrcomeaux@protonmail.com> | 2025-07-03 11:55:43 -0500 |
---|---|---|
committer | Jacques Comeaux <jacquesrcomeaux@protonmail.com> | 2025-07-03 11:55:43 -0500 |
commit | 1ea3199a7806ecbefba986ea28cf976497da5ca4 (patch) | |
tree | c429e662fe0351195a43f61a66e1dd7d12cf9e4d /Data | |
parent | 6831517a4a8358415e5664b974000620b2581c3f (diff) |
Finish strict total order for hypergraph edges
Diffstat (limited to 'Data')
-rw-r--r-- | Data/Hypergraph/Base.agda | 178 |
1 files changed, 173 insertions, 5 deletions
diff --git a/Data/Hypergraph/Base.agda b/Data/Hypergraph/Base.agda index f54468d..0771a78 100644 --- a/Data/Hypergraph/Base.agda +++ b/Data/Hypergraph/Base.agda @@ -17,20 +17,31 @@ open import Relation.Binary ; _Respects_ ) open import Relation.Binary.Bundles using (DecTotalOrder; StrictTotalOrder) +open import Relation.Binary.Structures using (IsEquivalence) open import Relation.Nullary using (¬_) open import Data.Nat.Base using (ℕ; _<_) open import Data.Product.Base using (_×_; _,_; proj₁; proj₂) open import Data.Nat.Properties using (<-irrefl; <-trans; <-resp₂-≡; <-cmp) -open import Level using (Level; suc; _⊔_) +open import Level using (Level; suc; _⊔_; 0ℓ) +open import Data.String using (String; _<+>_; unlines) +open import Data.Fin.Show using () renaming (show to showFin) +open import Data.List.Show using () renaming (show to showList) +open import Data.List.Base using (map) +open import Data.Vec.Show using () renaming (show to showVec) +import Data.Fin.Base as Fin +import Data.Fin.Properties as FinProp import Data.Vec.Base as VecBase import Data.Vec.Relation.Binary.Equality.Cast as VecCast +import Data.Vec.Relation.Binary.Lex.Strict as Lex import Relation.Binary.PropositionalEquality as ≡ import Relation.Binary.Properties.DecTotalOrder as DTOP +import Relation.Binary.Properties.StrictTotalOrder as STOP record HypergraphLabel {ℓ : Level} : Set (suc ℓ) where field Label : ℕ → Set ℓ + showLabel : (n : ℕ) → Label n → String isCastable : IsCastable Label -- _[_≈_] : (n : ℕ) → Rel (Label n) ℓ _[_≤_] : (n : ℕ) → Rel (Label n) ℓ @@ -105,6 +116,8 @@ module Edge (HL : HypergraphLabel) where module j≈k = ≈-Edge j≈k open HL using (_[_<_]) + _<<_ : {v a : ℕ} → Rel (Vec (Fin v) a) 0ℓ + _<<_ {v} = Lex.Lex-< _≡_ (Fin._<_ {v}) data <-Edge {v : ℕ} : Edge v → Edge v → Set where <-arity : {x y : Edge v} @@ -115,19 +128,46 @@ module Edge (HL : HypergraphLabel) where (≡a : Edge.arity x ≡ Edge.arity y) → Edge.arity y [ cast ≡a (Edge.label x) < Edge.label y ] → <-Edge x y + <-ports + : {x y : Edge v} + (≡a : Edge.arity x ≡ Edge.arity y) + (≡l : Edge.label x HL.≈[ ≡a ] Edge.label y) + → VecBase.cast ≡a (Edge.ports x) << Edge.ports y + → <-Edge x y <-Edge-irrefl : {v : ℕ} {x y : Edge v} → ≈-Edge x y → ¬ <-Edge x y <-Edge-irrefl record { ≡arity = ≡a } (<-arity n<m) = <-irrefl ≡a n<m <-Edge-irrefl record { ≡label = ≡l } (<-label _ (_ , x≉y)) = x≉y ≡l + <-Edge-irrefl record { ≡ports = ≡p } (<-ports ≡.refl ≡l x<y) + = Lex.<-irrefl FinProp.<-irrefl (≡⇒Pointwise-≡ ≡p) x<y + where + open import Data.Vec.Relation.Binary.Pointwise.Inductive using (≡⇒Pointwise-≡) <-Edge-trans : {v : ℕ} {i j k : Edge v} → <-Edge i j → <-Edge j k → <-Edge i k <-Edge-trans (<-arity i<j) (<-arity j<k) = <-arity (<-trans i<j j<k) <-Edge-trans (<-arity i<j) (<-label ≡.refl j<k) = <-arity i<j + <-Edge-trans (<-arity i<j) (<-ports ≡.refl _ j<k) = <-arity i<j <-Edge-trans (<-label ≡.refl i<j) (<-arity j<k) = <-arity j<k <-Edge-trans {_} {i} (<-label ≡.refl i<j) (<-label ≡.refl j<k) = <-label ≡.refl (<-label-trans i<j (<-respˡ-≈ (HL.≈-reflexive ≡.refl) j<k)) where open DTOP (HL.decTotalOrder (Edge.arity i)) using (<-respˡ-≈) renaming (<-trans to <-label-trans) + <-Edge-trans {k = k} (<-label ≡.refl i<j) (<-ports ≡.refl ≡.refl _) + = <-label ≡.refl (<-respʳ-≈ (≡.sym (HL.≈-reflexive ≡.refl)) i<j) + where + open DTOP (HL.decTotalOrder (Edge.arity k)) using (<-respʳ-≈) + <-Edge-trans (<-ports ≡.refl _ _) (<-arity j<k) = <-arity j<k + <-Edge-trans {k = k} (<-ports ≡.refl ≡.refl _) (<-label ≡.refl j<k) + = <-label ≡.refl (<-respˡ-≈ (≡.cong (cast _) (HL.≈-reflexive ≡.refl)) j<k) + where + open DTOP (HL.decTotalOrder (Edge.arity k)) using (<-respˡ-≈) + <-Edge-trans {j = j} (<-ports ≡.refl ≡l₁ i<j) (<-ports ≡.refl ≡l₂ j<k) + rewrite (VecCast.cast-is-id ≡.refl (Edge.ports j)) + = <-ports ≡.refl + (HL.≈-trans ≡l₁ ≡l₂) + (Lex.<-trans ≡-isPartialEquivalence FinProp.<-resp₂-≡ FinProp.<-trans i<j j<k) + where + open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence) <-Edge-respˡ-≈ : {v : ℕ} {y : Edge v} → (λ x → <-Edge x y) Respects ≈-Edge <-Edge-respˡ-≈ ≈x (<-arity x₁<y) = <-arity (proj₂ <-resp₂-≡ ≡arity x₁<y) @@ -138,6 +178,19 @@ module Edge (HL : HypergraphLabel) where where module y = Edge y open DTOP (HL.decTotalOrder y.arity) using (<-respˡ-≈) + <-Edge-respˡ-≈ record { ≡arity = ≡.refl ; ≡label = ≡.refl; ≡ports = ≡.refl} (<-ports ≡.refl ≡.refl x₁<y) + = <-ports + ≡.refl + (≡.cong (cast _) (HL.≈-reflexive ≡.refl)) + (Lex.<-respectsˡ + ≡-isPartialEquivalence + FinProp.<-respˡ-≡ + (≡⇒Pointwise-≡ (≡.sym (VecCast.≈-reflexive ≡.refl))) + x₁<y) + where + open import Data.Vec.Relation.Binary.Pointwise.Inductive using (≡⇒Pointwise-≡) + open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence) + <-Edge-respʳ-≈ : {v : ℕ} {x : Edge v} → <-Edge x Respects ≈-Edge <-Edge-respʳ-≈ record { ≡arity = ≡a } (<-arity x<y₁) = <-arity (proj₁ <-resp₂-≡ ≡a x<y₁) <-Edge-respʳ-≈ {_} {x} record { ≡arity = ≡.refl ; ≡label = ≡.refl } (<-label ≡.refl x<y₁) @@ -145,6 +198,18 @@ module Edge (HL : HypergraphLabel) where where module x = Edge x open DTOP (HL.decTotalOrder x.arity) using (<-respʳ-≈) + <-Edge-respʳ-≈ record { ≡arity = ≡.refl ; ≡label = ≡.refl; ≡ports = ≡.refl} (<-ports ≡.refl ≡.refl x<y₁) + = <-ports + ≡.refl + (≡.cong (cast _) (≡.sym (HL.≈-reflexive ≡.refl))) + (Lex.<-respectsʳ + ≡-isPartialEquivalence + FinProp.<-respʳ-≡ + (≡⇒Pointwise-≡ (≡.sym (VecCast.≈-reflexive ≡.refl))) + x<y₁) + where + open import Data.Vec.Relation.Binary.Pointwise.Inductive using (≡⇒Pointwise-≡) + open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence) open Tri open ≈-Edge @@ -157,7 +222,8 @@ module Edge (HL : HypergraphLabel) where where ¬y<x : ¬ <-Edge y x ¬y<x (<-arity y<x) = y≮x y<x - ¬y<x (<-label ≡a y<x) = x≢y (≡.sym ≡a) + ¬y<x (<-label ≡a _) = x≢y (≡.sym ≡a) + ¬y<x (<-ports ≡a _ _) = x≢y (≡.sym ≡a) tri x y | tri≈ x≮y ≡.refl y≮x = compare-label where module x = Edge x @@ -174,11 +240,89 @@ module Edge (HL : HypergraphLabel) where where ¬y<x : ¬ <-Edge y x ¬y<x (<-arity y<x) = y≮x y<x - ¬y<x (<-label ≡a y<x) = y≮x′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) y<x) - ... | tri≈ x≮y x≡y y≮x = compare-ports + ¬y<x (<-label _ y<x) = y≮x′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) y<x) + ¬y<x (<-ports _ ≡l _) = x≢y (≡.trans (≡.sym ≡l) (cast-is-id ≡.refl y.label)) + ... | tri≈ x≮y′ x≡y′ y≮x′ = compare-ports where compare-ports : Tri (<-Edge x y) (≈-Edge x y) (<-Edge y x) - compare-ports = ? + compare-ports with Lex.<-cmp ≡.sym FinProp.<-cmp x.ports y.ports + ... | tri< x<y x≢y y≮x″ = + tri< + (<-ports ≡.refl + (HL.≈-reflexive x≡y′) + (Lex.<-respectsˡ + ≡-isPartialEquivalence + FinProp.<-respˡ-≡ + (≡⇒Pointwise-≡ (≡.sym (VecCast.≈-reflexive ≡.refl))) + x<y)) + (λ x≡y → x≢y (≡⇒Pointwise-≡ (≡.trans (≡.sym (VecCast.≈-reflexive ≡.refl)) (≡ports x≡y)))) + ¬y<x + where + open import Data.Vec.Relation.Binary.Pointwise.Inductive using (≡⇒Pointwise-≡) + open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence) + ¬y<x : ¬ <-Edge y x + ¬y<x (<-arity y<x) = y≮x y<x + ¬y<x (<-label _ y<x) = y≮x′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) y<x) + ¬y<x (<-ports _ _ y<x) = + y≮x″ + (Lex.<-respectsˡ + ≡-isPartialEquivalence + FinProp.<-respˡ-≡ + (≡⇒Pointwise-≡ (VecCast.≈-reflexive ≡.refl)) + y<x) + ... | tri≈ x≮y″ x≡y″ y≮x″ = tri≈ + ¬x<y + (record { ≡arity = ≡.refl ; ≡label = HL.≈-reflexive x≡y′ ; ≡ports = VecCast.≈-reflexive (Pointwise-≡⇒≡ x≡y″) }) + ¬y<x + where + open import Data.Vec.Relation.Binary.Pointwise.Inductive using (≡⇒Pointwise-≡; Pointwise-≡⇒≡) + open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence) + ¬x<y : ¬ <-Edge x y + ¬x<y (<-arity x<y) = x≮y x<y + ¬x<y (<-label _ x<y) = x≮y′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) x<y) + ¬x<y (<-ports _ _ x<y) = + x≮y″ + (Lex.<-respectsˡ + ≡-isPartialEquivalence + FinProp.<-respˡ-≡ + (≡⇒Pointwise-≡ (VecCast.≈-reflexive ≡.refl)) + x<y) + ¬y<x : ¬ <-Edge y x + ¬y<x (<-arity y<x) = y≮x y<x + ¬y<x (<-label _ y<x) = y≮x′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) y<x) + ¬y<x (<-ports _ _ y<x) = + y≮x″ + (Lex.<-respectsˡ + ≡-isPartialEquivalence + FinProp.<-respˡ-≡ + (≡⇒Pointwise-≡ (VecCast.≈-reflexive ≡.refl)) + y<x) + + ... | tri> x≮y″ x≢y y<x = + tri> + ¬x<y + (λ x≡y → x≢y (≡⇒Pointwise-≡ (≡.trans (≡.sym (VecCast.≈-reflexive ≡.refl)) (≡ports x≡y)))) + (<-ports + ≡.refl + (HL.≈-sym (HL.≈-reflexive x≡y′)) + (Lex.<-respectsˡ + ≡-isPartialEquivalence + FinProp.<-respˡ-≡ + (≡⇒Pointwise-≡ (≡.sym (VecCast.≈-reflexive ≡.refl))) + y<x)) + where + open import Data.Vec.Relation.Binary.Pointwise.Inductive using (≡⇒Pointwise-≡) + open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence) + ¬x<y : ¬ <-Edge x y + ¬x<y (<-arity x<y) = x≮y x<y + ¬x<y (<-label _ x<y) = x≮y′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) x<y) + ¬x<y (<-ports _ _ x<y) = + x≮y″ + (Lex.<-respectsˡ + ≡-isPartialEquivalence + FinProp.<-respˡ-≡ + (≡⇒Pointwise-≡ (VecCast.≈-reflexive ≡.refl)) + x<y) ... | tri> x≮y′ x≢y y<x = tri> ¬x<y (λ x≡y → x≢y (≡.trans (≡.sym (HL.≈-reflexive ≡.refl)) (≡label x≡y))) @@ -187,11 +331,13 @@ module Edge (HL : HypergraphLabel) where ¬x<y : ¬ <-Edge x y ¬x<y (<-arity x<y) = x≮y x<y ¬x<y (<-label ≡a x<y) = x≮y′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) x<y) + ¬x<y (<-ports _ ≡l _) = x≢y (≡.trans (≡.sym (HL.≈-reflexive ≡.refl)) ≡l) tri x y | tri> x≮y x≢y y<x = tri> ¬x<y (λ x≡y → x≢y (≡arity x≡y)) (<-arity y<x) where ¬x<y : ¬ <-Edge x y ¬x<y (<-arity x<y) = x≮y x<y ¬x<y (<-label ≡a x<y) = x≢y ≡a + ¬x<y (<-ports ≡a _ _) = x≢y ≡a isStrictTotalOrder : {v : ℕ} → IsStrictTotalOrder (≈-Edge {v}) (<-Edge {v}) isStrictTotalOrder = record @@ -208,6 +354,19 @@ module Edge (HL : HypergraphLabel) where ; compare = tri } + strictTotalOrder : {v : ℕ} → StrictTotalOrder 0ℓ 0ℓ 0ℓ + strictTotalOrder {v} = record + { Carrier = Edge v + ; _≈_ = ≈-Edge {v} + ; _<_ = <-Edge {v} + ; isStrictTotalOrder = isStrictTotalOrder {v} + } + + open module STOP′ {v} = STOP (strictTotalOrder {v}) using (decTotalOrder) public + + showEdge : {v : ℕ} → Edge v → String + showEdge record { arity = a ; label = l ; ports = p} = HL.showLabel a l <+> showVec showFin p + module HypergraphList (HL : HypergraphLabel) where open import Data.List.Base using (List) @@ -216,3 +375,12 @@ module HypergraphList (HL : HypergraphLabel) where record Hypergraph (v : ℕ) : Set where field edges : List (Edge v) + + sortHypergraph : {v : ℕ} → Hypergraph v → Hypergraph v + sortHypergraph {v} H = record { edges = sort edges } + where + open Hypergraph H + open import Data.List.Sort.MergeSort (Edge.decTotalOrder HL) using (sort) + + showHypergraph : {v : ℕ} → Hypergraph v → String + showHypergraph record { edges = e} = unlines (map (Edge.showEdge HL) e) |