diff options
| author | Jacques Comeaux <jacquesrcomeaux@protonmail.com> | 2025-12-09 13:25:39 -0600 |
|---|---|---|
| committer | Jacques Comeaux <jacquesrcomeaux@protonmail.com> | 2025-12-09 13:25:39 -0600 |
| commit | 6272b4e84650b9833a53239b354770e0deba7b9a (patch) | |
| tree | d69dfd53369f4630fe9e8beceabad3ac55a1dc0e /DecorationFunctor/Hypergraph.agda | |
| parent | 3c62ac510f286f228c9993fe6c37abdcad9e1fb2 (diff) | |
Add shorter name for singleton setoid
Diffstat (limited to 'DecorationFunctor/Hypergraph.agda')
| -rw-r--r-- | DecorationFunctor/Hypergraph.agda | 182 |
1 files changed, 98 insertions, 84 deletions
diff --git a/DecorationFunctor/Hypergraph.agda b/DecorationFunctor/Hypergraph.agda index 5cd83f3..2f61bc3 100644 --- a/DecorationFunctor/Hypergraph.agda +++ b/DecorationFunctor/Hypergraph.agda @@ -3,65 +3,51 @@ module DecorationFunctor.Hypergraph where import Categories.Morphism as Morphism +open import Level using (0ℓ) open import Categories.Category.BinaryProducts using (module BinaryProducts) open import Categories.Category.Cartesian using (Cartesian) -open import Categories.Category.Cocartesian using (Cocartesian; module BinaryCoproducts) open import Categories.Category.Core using (Category) -open import Categories.Category.Instance.Nat using (Nat-Cocartesian) open import Categories.Category.Instance.Nat using (Nat) open import Categories.Category.Instance.Setoids using (Setoids) -open import Categories.Category.Instance.SingletonSet using (SingletonSetoid) open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian) open import Categories.Category.Product using (_⁂_) open import Categories.Functor using () renaming (_∘F_ to _∘′_) open import Categories.Functor.Core using (Functor) open import Categories.Functor.Monoidal.Symmetric using (module Lax) open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) - open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory) -open import Category.Instance.Setoids.SymmetricMonoidal using (Setoids-×) open import Category.Instance.Nat.FinitelyCocomplete using (Nat-FinitelyCocomplete) - +open import Category.Instance.Setoids.SymmetricMonoidal {0ℓ} {0ℓ} using (Setoids-×; ×-symmetric′) open import Data.Empty using (⊥-elim) -open import Data.Fin using (#_) -open import Data.Fin.Base using (Fin; splitAt; join; zero; suc; _↑ˡ_; _↑ʳ_; Fin′; toℕ; cast) +open import Data.Fin using (#_; Fin; splitAt; join; zero; suc; _↑ˡ_; _↑ʳ_; toℕ; cast) open import Data.Fin.Patterns using (0F; 1F; 2F) -open import Data.Fin.Permutation using (lift₀) open import Data.Fin.Properties using (splitAt-join; join-splitAt; cast-is-id; cast-trans; toℕ-cast; subst-is-cast; splitAt-↑ˡ; splitAt-↑ʳ; splitAt⁻¹-↑ˡ; ↑ˡ-injective) open import Data.Nat using (ℕ; _+_) open import Data.Product.Base using (_,_; Σ) -open import Data.Product.Relation.Binary.Pointwise.NonDependent using (×-setoid) -open import Data.Sum.Base using (_⊎_; map; inj₁; inj₂; swap; map₂) renaming ([_,_]′ to [_,_]) +open import Data.Setoid using (∣_∣) +open import Data.Setoid.Unit {0ℓ} {0ℓ} using (⊤ₛ) +open import Data.Sum using (_⊎_; map; inj₁; inj₂; swap; map₂) renaming ([_,_]′ to [_,_]) open import Data.Sum.Properties using (map-map; [,]-map; [,]-∘; [-,]-cong; [,-]-cong; [,]-cong; map-cong; swap-involutive) open import Data.Unit using (tt) -open import Data.Unit.Properties using () renaming (≡-setoid to ⊤-setoid) - -open import Function.Base using (_∘_; id; const; case_of_; case_returning_of_) -open import Function.Bundles using (Func; Inverse; _↔_; mk↔) +open import Function using (_∘_; id; const; Func; Inverse; _↔_; mk↔; _⟨$⟩_) open import Function.Construct.Composition using (_↔-∘_) -open import Function.Construct.Identity using (↔-id) +open import Function.Construct.Constant using () renaming (function to Const) +open import Function.Construct.Identity using (↔-id) renaming (function to Id) open import Function.Construct.Symmetry using (↔-sym) - -open import Level using (0ℓ; lift) - -open import Relation.Binary.Bundles using (Setoid) -open import Relation.Binary.PropositionalEquality using (_≗_) -open import Relation.Binary.PropositionalEquality.Core using (_≡_; erefl; refl; sym; trans; cong; cong₂; subst; cong-app) +open import Relation.Binary using (Setoid) +open import Relation.Binary.PropositionalEquality.Core using (_≗_; _≡_; erefl; refl; sym; trans; cong; cong₂; subst; cong-app) open import Relation.Binary.PropositionalEquality.Properties using (isEquivalence; module ≡-Reasoning; dcong₂; subst-∘) open import Relation.Nullary.Negation.Core using (¬_) open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using (products) -open Cocartesian Nat-Cocartesian using (coproducts) open FinitelyCocompleteCategory Nat-FinitelyCocomplete - using () - renaming (symmetricMonoidalCategory to Nat-smc) + using (-+-; _+₁_) + renaming (symmetricMonoidalCategory to Nat-smc; +-assoc to Nat-+-assoc) open Morphism (Setoids 0ℓ 0ℓ) using (_≅_) open Lax using (SymmetricMonoidalFunctor) open BinaryProducts products using (-×-) -open BinaryCoproducts coproducts using (-+-) renaming (+-assoc to Nat-+-assoc) - record Hypergraph (v : ℕ) : Set where @@ -80,7 +66,6 @@ record Hypergraph-same {n : ℕ} (H H′ : Hypergraph n) : Set where open Hypergraph H public open Hypergraph H′ renaming (h to h′; a to a′; arity to arity′; j to j′) public - field ↔h : Fin h ↔ Fin h′ @@ -165,8 +150,8 @@ Hypergraph-same-trans ≡H₁ ≡H₂ = record ≡⟨ cong (j′ ≡H₂ (to (↔h ≡H₂) (to (↔h ≡H₁) e))) (cast-trans (≗arity ≡H₁ e) (≗arity ≡H₂ (to (↔h ≡H₁) e)) i) ⟩ j′ ≡H₂ (to (↔h ≡H₂) (to (↔h ≡H₁) e)) (cast (trans (≗arity ≡H₁ e) (≗arity ≡H₂ (to (↔h ≡H₁) e))) i) ∎ -Hypergraph-setoid : ℕ → Setoid 0ℓ 0ℓ -Hypergraph-setoid p = record +Hypergraphₛ : ℕ → Setoid 0ℓ 0ℓ +Hypergraphₛ p = record { Carrier = Hypergraph p ; _≈_ = Hypergraph-same ; isEquivalence = record @@ -192,12 +177,12 @@ Hypergraph-same-cong Hypergraph-same-cong f ≡H = record { ↔h = ↔h ; ≗a = ≗a - ; ≗j = λ { e i → cong f (≗j e i) } + ; ≗j = λ e i → cong f (≗j e i) } where open Hypergraph-same ≡H -Hypergraph-Func : (Fin n → Fin m) → Func (Hypergraph-setoid n) (Hypergraph-setoid m) +Hypergraph-Func : (Fin n → Fin m) → Func (Hypergraphₛ n) (Hypergraphₛ m) Hypergraph-Func f = record { to = map-nodes f ; cong = Hypergraph-same-cong f @@ -229,7 +214,7 @@ homomorphism {n} {m} {o} {H} f g = record F : Functor Nat (Setoids 0ℓ 0ℓ) F = record - { F₀ = Hypergraph-setoid + { F₀ = Hypergraphₛ ; F₁ = Hypergraph-Func ; identity = λ { {n} {H} → Hypergraph-same-refl {H = H} } ; homomorphism = λ { {f = f} {g = g} → homomorphism f g } @@ -238,18 +223,18 @@ F = record -- monoidal structure -empty-hypergraph : Hypergraph 0 -empty-hypergraph = record +discrete : {n : ℕ} → Hypergraph n +discrete {n} = record { h = 0 ; a = λ () ; j = λ () } -ε : Func (SingletonSetoid {0ℓ} {0ℓ}) (Hypergraph-setoid 0) -ε = record - { to = const empty-hypergraph - ; cong = const Hypergraph-same-refl - } +opaque + unfolding ×-symmetric′ + + ε : Func Setoids-×.unit (Hypergraphₛ 0) + ε = Const ⊤ₛ (Hypergraphₛ 0) discrete module _ (H₁ : Hypergraph n) (H₂ : Hypergraph m) where private @@ -364,7 +349,7 @@ commute → (g : Fin m → Fin m′) → Hypergraph-same (together (map-nodes f H₁) (map-nodes g H₂)) - (map-nodes ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ splitAt n) (together H₁ H₂)) + (map-nodes (f +₁ g) (together H₁ H₂)) commute {n} {n′} {m} {m′} {H₁} {H₂} f g = record { ↔h = ≡H₁+H₂.↔h ; ≗a = ≡H₁+H₂.≗a @@ -380,23 +365,36 @@ commute {n} {n′} {m} {m′} {H₁} {H₂} f g = record ≗j : (e : Fin (H₁.h + H₂.h)) (i : Fin ((ℕ.suc ∘ [ H₁.a , H₂.a ] ∘ splitAt H₁.h) e)) → j (together (map-nodes f H₁) (map-nodes g H₂)) e i - ≡ j (map-nodes ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ splitAt n) (together H₁ H₂)) (≡H₁+H₂.to e) (cast refl i) + ≡ j (map-nodes (f +₁ g) (together H₁ H₂)) (≡H₁+H₂.to e) (cast refl i) ≗j e i with splitAt H₁.h e ... | inj₁ e₁ rewrite splitAt-↑ˡ n (H₁.j e₁ (cast refl i)) m = cong ((_↑ˡ m′) ∘ f ∘ H₁.j e₁) (sym (cast-is-id refl i)) ... | inj₂ e₂ rewrite splitAt-↑ʳ n m (H₂.j e₂ (cast refl i)) = cong ((n′ ↑ʳ_) ∘ g ∘ H₂.j e₂) (sym (cast-is-id refl i)) -⊗-homomorphism : NaturalTransformation (-×- ∘′ (F ⁂ F)) (F ∘′ -+-) -⊗-homomorphism = record - { η = λ { (m , n) → η } - ; commute = λ { (f , g) {H₁ , H₂} → commute {H₁ = H₁} {H₂ = H₂} f g } - ; sym-commute = λ { (f , g) {H₁ , H₂} → Hypergraph-same-sym (commute {H₁ = H₁} {H₂ = H₂} f g) } +open Setoids-× using (_⊗₀_; _⊗₁_) +opaque + unfolding ×-symmetric′ + η : Func (Hypergraphₛ n ⊗₀ Hypergraphₛ m) (Hypergraphₛ (n + m)) + η = record + { to = λ (H₁ , H₂) → together H₁ H₂ + ; cong = λ (≡H₁ , ≡H₂) → together-resp-same ≡H₁ ≡H₂ + } + +opaque + unfolding η + commute′ + : (f : Fin n → Fin n′) + → (g : Fin m → Fin m′) + → {x : ∣ Hypergraphₛ n ⊗₀ Hypergraphₛ m ∣} + → Hypergraph-same + (η ⟨$⟩ (Hypergraph-Func f ⊗₁ Hypergraph-Func g ⟨$⟩ x)) + (map-nodes (f +₁ g) (η ⟨$⟩ x)) + commute′ f g {H₁ , H₂} = commute {H₁ = H₁} {H₂} f g + +⊗-homomorphism : NaturalTransformation (Setoids-×.⊗ ∘′ (F ⁂ F)) (F ∘′ -+-) +⊗-homomorphism = ntHelper record + { η = λ (n , m) → η {n} {m} + ; commute = λ (f , g) → commute′ f g } - where - η : Func (×-setoid (Hypergraph-setoid n) (Hypergraph-setoid m)) (Hypergraph-setoid (n + m)) - η = record - { to = λ { (H₁ , H₂) → together H₁ H₂ } - ; cong = λ { (≡H₁ , ≡H₂) → together-resp-same ≡H₁ ≡H₂ } - } +-assoc-↔ : ∀ (x y z : ℕ) → Fin (x + y + z) ↔ Fin (x + (y + z)) +-assoc-↔ x y z = record @@ -412,13 +410,13 @@ commute {n} {n′} {m} {m′} {H₁} {H₂} f g = record associativity : {X Y Z : ℕ} - → {H₁ : Hypergraph X} - → {H₂ : Hypergraph Y} - → {H₃ : Hypergraph Z} + → (H₁ : Hypergraph X) + → (H₂ : Hypergraph Y) + → (H₃ : Hypergraph Z) → Hypergraph-same (map-nodes (Inverse.to (+-assoc-↔ X Y Z)) (together (together H₁ H₂) H₃)) (together H₁ (together H₂ H₃)) -associativity {X} {Y} {Z} {H₁} {H₂} {H₃} = record +associativity {X} {Y} {Z} H₁ H₂ H₃ = record { ↔h = ↔h ; ≗a = ≗a ; ≗j = ≗j @@ -472,7 +470,6 @@ associativity {X} {Y} {Z} {H₁} {H₂} {H₃} = record rewrite splitAt-↑ˡ (X + Y) (H₁.j e₁ i ↑ˡ Y) Z rewrite splitAt-↑ˡ X (H₁.j e₁ i) Y = cong ((_↑ˡ Y + Z) ∘ H₁.j e₁) (sym (cast-is-id refl i)) ≗j e i | inj₁ e₁₂ | inj₂ e₂ - rewrite splitAt-↑ʳ H₁.h H₂.h e₂ rewrite splitAt-↑ʳ H₁.h (H₂.h + H₃.h) (e₂ ↑ˡ H₃.h) rewrite splitAt-↑ˡ H₂.h e₂ H₃.h rewrite splitAt-↑ˡ (X + Y) (X ↑ʳ H₂.j e₂ i) Z @@ -500,7 +497,7 @@ n+0↔n n = record to∘from : (x : Fin n) → to (from x) ≡ x to∘from x rewrite splitAt-↑ˡ n x 0 = refl -unitaryʳ : Hypergraph-same (map-nodes ([ (λ x → x) , (λ ()) ] ∘ splitAt n) (together H empty-hypergraph)) H +unitaryʳ : Hypergraph-same (map-nodes ([ id , (λ ()) ] ∘ splitAt n) (together H discrete)) H unitaryʳ {n} {H} = record { ↔h = h+0↔h ; ≗a = ≗a @@ -508,22 +505,22 @@ unitaryʳ {n} {H} = record } where module H = Hypergraph H - module H+0 = Hypergraph (together H empty-hypergraph) + module H+0 = Hypergraph (together {n} {0} H discrete) h+0↔h : Fin H+0.h ↔ Fin H.h h+0↔h = n+0↔n H.h ≗a : (e : Fin (H.h + 0)) → [ H.a , (λ ()) ] (splitAt H.h e) ≡ H.a (Inverse.to h+0↔h e) ≗a e with inj₁ e₁ ← splitAt H.h e in eq = refl ≗j : (e : Fin (H.h + 0)) (i : Fin (ℕ.suc ([ H.a , (λ ()) ] (splitAt H.h e)))) - → [ (λ x → x) , (λ ()) ] (splitAt n (j+j H empty-hypergraph e i)) + → [ (λ x → x) , (λ ()) ] (splitAt n (j+j H discrete e i)) ≡ H.j (Inverse.to h+0↔h e) (cast (cong ℕ.suc (≗a e)) i) - ≗j e i = ≗j-aux (splitAt H.h e) refl (j+j H empty-hypergraph e) refl (≗a e) i + ≗j e i = ≗j-aux (splitAt H.h e) refl (j+j H discrete e) refl (≗a e) i where ≗j-aux : (w : Fin H.h ⊎ Fin 0) → (eq₁ : splitAt H.h e ≡ w) → (w₁ : Fin (ℕ.suc ([ H.a , (λ ()) ] w)) → Fin (n + 0)) - → j+j H empty-hypergraph e ≡ subst (λ hole → Fin (ℕ.suc ([ H.a , (λ ()) ] hole)) → Fin (n + 0)) (sym eq₁) w₁ + → j+j H discrete e ≡ subst (λ hole → Fin (ℕ.suc ([ H.a , (λ ()) ] hole)) → Fin (n + 0)) (sym eq₁) w₁ → (w₂ : [ H.a , (λ ()) ] w ≡ H.a (Inverse.to h+0↔h e)) (i : Fin (ℕ.suc ([ H.a , (λ ()) ] w))) → [ (λ x → x) , (λ ()) ] (splitAt n (w₁ i)) @@ -594,43 +591,60 @@ braiding {n} {m} {H₁} {H₂} = record rewrite splitAt-↑ʳ n m (H₂.j e₂ i) rewrite splitAt-↑ˡ H₂.h e₂ H₁.h = cong ((_↑ˡ n) ∘ H₂.j e₂) (sym (cast-is-id refl i)) -hypergraph : SymmetricMonoidalFunctor Nat-smc (Setoids-× {0ℓ}) +opaque + unfolding η ε + + associativity′ + : {n m o : ℕ} + → {x : ∣ (Hypergraphₛ n ⊗₀ Hypergraphₛ m) ⊗₀ Hypergraphₛ o ∣} + → Hypergraph-same + (map-nodes (Inverse.to (+-assoc-↔ n m o)) (η {n + m} {o} ⟨$⟩ ((η {n} {m} ⊗₁ (Id _)) ⟨$⟩ x))) + (η {n} {m + o} ⟨$⟩ ((Id _ ⊗₁ η {m} {o}) ⟨$⟩ (Setoids-×.associator.from ⟨$⟩ x))) + associativity′ {n} {m} {o} {(x , y) , z} = associativity x y z + + unitaryˡ′ + : {X : ∣ Setoids-×.unit ⊗₀ Hypergraphₛ n ∣} + → Hypergraph-same (η {0} {n} ⟨$⟩ ((ε ⊗₁ Id _) ⟨$⟩ X)) (Setoids-×.unitorˡ.from ⟨$⟩ X) + unitaryˡ′ = Hypergraph-same-refl + + unitaryʳ′ + : {X : ∣ Hypergraphₛ n ⊗₀ Setoids-×.unit ∣} + → Hypergraph-same (map-nodes ([ id , (λ ()) ] ∘ splitAt n) (η {n} {0} ⟨$⟩ ((Id _ ⊗₁ ε) ⟨$⟩ X))) (Setoids-×.unitorʳ.from ⟨$⟩ X) + unitaryʳ′ = unitaryʳ + + braiding-compat + : {n m : ℕ} + → {X : ∣ Hypergraphₛ n ⊗₀ Hypergraphₛ m ∣} + → Hypergraph-same + (map-nodes ([ m ↑ʳ_ , _↑ˡ n ] ∘ splitAt n) (η {n} {m} ⟨$⟩ X)) + (η {m} {n} ⟨$⟩ (Setoids-×.braiding.⇒.η (Hypergraphₛ n , Hypergraphₛ m) ⟨$⟩ X)) + braiding-compat {n} {m} {H₁ , H₂} = braiding {n} {m} {H₁} {H₂} + +hypergraph : SymmetricMonoidalFunctor Nat-smc Setoids-× hypergraph = record { F = F ; isBraidedMonoidal = record { isMonoidal = record { ε = ε - ; ⊗-homo = ntHelper record - { η = λ { (m , n) → η } - ; commute = λ { (f , g) {H₁ , H₂} → commute {H₁ = H₁} {H₂ = H₂} f g } - } - ; associativity = λ { {X} {Y} {Z} {(H₁ , H₂) , H₃} → associativity {X} {Y} {Z} {H₁} {H₂} {H₃} } - ; unitaryˡ = Hypergraph-same-refl - ; unitaryʳ = unitaryʳ + ; ⊗-homo = ⊗-homomorphism + ; associativity = associativity′ + ; unitaryˡ = unitaryˡ′ + ; unitaryʳ = unitaryʳ′ } - ; braiding-compat = λ { {X} {Y} {H₁ , H₂} → braiding {X} {Y} {H₁} {H₂} } + ; braiding-compat = braiding-compat } } - where - η : Func (×-setoid (Hypergraph-setoid n) (Hypergraph-setoid m)) (Hypergraph-setoid (n + m)) - η = record - { to = λ { (H₁ , H₂) → together H₁ H₂ } - ; cong = λ { (≡H₁ , ≡H₂) → together-resp-same ≡H₁ ≡H₂ } - } module F = SymmetricMonoidalFunctor hypergraph -and-gate : Func (SingletonSetoid {0ℓ} {0ℓ}) (F.₀ 3) -and-gate = record - { to = λ { (lift tt) → and-graph } - ; cong = λ { (lift tt) → Hypergraph-same-refl } - } +and-gate : Func ⊤ₛ (F.₀ 3) +and-gate = Const ⊤ₛ (Hypergraphₛ 3) and-graph where and-graph : Hypergraph 3 and-graph = record { h = 1 ; a = λ { 0F → 2 } - ; j = λ { 0F → edge-0-nodes } + ; j = λ { 0F → id } } where edge-0-nodes : Fin 3 → Fin 3 |
