aboutsummaryrefslogtreecommitdiff
path: root/FinMerge
diff options
context:
space:
mode:
authorJacques Comeaux <jacquesrcomeaux@protonmail.com>2024-04-24 13:43:07 -0500
committerJacques Comeaux <jacquesrcomeaux@protonmail.com>2024-04-24 13:43:07 -0500
commit1e5837c12480d1561361a2f6cb5296895f91dec3 (patch)
tree535bb29424c31180eb5383acbe8d073f8d880cd9 /FinMerge
parentce4ea63db5e11b150058894f98b4a36a3003c95a (diff)
Add more merge and unmerge properties
Diffstat (limited to 'FinMerge')
-rw-r--r--FinMerge/Properties.agda259
1 files changed, 148 insertions, 111 deletions
diff --git a/FinMerge/Properties.agda b/FinMerge/Properties.agda
index c250abb..5f92905 100644
--- a/FinMerge/Properties.agda
+++ b/FinMerge/Properties.agda
@@ -2,25 +2,30 @@
module FinMerge.Properties where
open import Data.Empty using (⊥-elim)
-open import Data.Fin using (Fin; fromℕ<; toℕ; #_; lower₁)
+open import Data.Fin using (Fin; fromℕ<; toℕ; #_; lower₁; _↑ˡ_; cast)
open import Data.Fin.Properties using (¬Fin0)
open import Data.Nat using (ℕ; _+_; _≤_; _<_; z<s; pred; z≤n; s≤s)
-open import Data.Nat.Properties using (≤-trans; <⇒≢)
+open import Data.Nat.Properties using (≤-trans; <⇒≢; <-cmp)
open import Data.Product using (_,_; proj₁; proj₂; Σ-syntax)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; cong-app; sym; _≢_)
open import Relation.Binary.PropositionalEquality.Properties using (module ≡-Reasoning)
open import Data.Maybe.Base using (Maybe; map; nothing; just; fromMaybe)
open import Function using (id;  _∘_)
+open import Relation.Binary.Definitions using (tri<; tri≈; tri>)
open import Util using (_<_<_; _<_≤_; toℕ<; Ordering; less; equal; greater; compare)
-open import FinMerge using (merge; unmerge; pluck; glue-once; glue-unglue-once; glue-iter)
+open import FinMerge using (merge; unmerge; pluck; glue-once; glue-unglue-once; glue-iter; unpluck)
private
variable
m n : ℕ
+s≡s⁻¹ : {j k : ℕ} → ℕ.suc j ≡ ℕ.suc k → j ≡ k
+s≡s⁻¹ {ℕ.zero} {ℕ.zero} _ = refl
+s≡s⁻¹ {ℕ.suc j} {ℕ.suc .j} refl = refl
+
not-n : {x : Fin (ℕ.suc n)} → toℕ x < m ≤ n → n ≢ toℕ x
not-n (x<m , m≤n) n≡x = <⇒≢ (≤-trans x<m m≤n) (sym n≡x)
@@ -38,7 +43,7 @@ pluck-< {_} {_} {Fin.suc x} (s≤s m≤n) (s≤s x<m) = ≡
≡ = begin
pluck (s≤s m≤n) (Fin.suc x) ≡⟨⟩
Data.Maybe.Base.map Fin.suc (pluck m≤n x)
- ≡⟨ cong (Data.Maybe.Base.map Fin.suc) (pluck-< m≤n x<m) ⟩
+ ≡⟨ cong (map Fin.suc) (pluck-< m≤n x<m) ⟩
Data.Maybe.Base.map Fin.suc (just (lower₁ x (not-n (x<m , m≤n)))) ≡⟨⟩
just (Fin.suc (lower₁ x (not-n (x<m , m≤n)))) ≡⟨⟩
just (lower₁ (Fin.suc x) (not-n (s≤s x<m , s≤s m≤n))) ∎
@@ -55,9 +60,8 @@ pluck-≡ {_} {_} {Fin.suc x} (s≤s m≤n) refl = ≡
≡ : pluck (s≤s m≤n) (Fin.suc x) ≡ nothing
≡ = begin
pluck (s≤s m≤n) (Fin.suc x) ≡⟨⟩
- Data.Maybe.Base.map Fin.suc (pluck m≤n x)
- ≡⟨ cong (Data.Maybe.Base.map Fin.suc) (pluck-≡ m≤n refl) ⟩
- Data.Maybe.Base.map Fin.suc nothing ≡⟨⟩
+ map Fin.suc (pluck m≤n x) ≡⟨ cong (map Fin.suc) (pluck-≡ m≤n refl) ⟩
+ map Fin.suc nothing ≡⟨⟩
nothing ∎
i-to-i
@@ -160,135 +164,168 @@ lemma₂ {_} {ℕ.suc n} f g =
where open ≡-Reasoning
-j-to-i′
- : {i : ℕ}
- → {j : Fin (ℕ.suc n)}
- → ((i<j , j≤n) : i < toℕ j ≤ n)
- → merge (i<j , j≤n) j ≡ fromℕ< (≤-trans i<j j≤n)
-j-to-i′ (i<j , j≤n) = cong (fromMaybe (fromℕ< (≤-trans i<j j≤n))) (j-to-nothing j≤n)
+merge-unmerge-<
+ : {i j k : Fin (ℕ.suc n)}
+ → (i<j≤n : toℕ i < toℕ j ≤ n)
+ → (k<j : toℕ k < toℕ j)
+ → unmerge i<j≤n (merge i<j≤n k) ≡ k
+merge-unmerge-< {_} {_} {_} {k} i<j≤n@(i<j , j≤n) k<j = let open ≡-Reasoning in begin
+ unmerge i<j≤n (merge i<j≤n k) ≡⟨ cong (unmerge i<j≤n ∘ (fromMaybe (fromℕ< (≤-trans i<j j≤n)))) (k-to-just (k<j , j≤n)) ⟩
+ unmerge i<j≤n (fromℕ< (≤-trans k<j j≤n)) ≡⟨⟩
+ unpluck j≤n (just (fromℕ< (≤-trans k<j j≤n))) ≡⟨ unpluck-k-< j≤n k<j ⟩
+ k ∎
+ where
+ k-to-just
+ : {j k : Fin (ℕ.suc m)} ((k<j , j≤m) : toℕ k < toℕ j ≤ m)
+ → pluck j≤m k ≡ just (fromℕ< (≤-trans k<j j≤m))
+ k-to-just {ℕ.suc m} {Fin.suc j} {Fin.zero} (s≤s k<j , s≤s j≤m) = refl
+ k-to-just {ℕ.suc m} {Fin.suc j} {Fin.suc k} (s≤s k<j , s≤s j≤m) = cong (map Fin.suc) (k-to-just (k<j , j≤m))
+ unpluck-k-<
+ : {j k : Fin (ℕ.suc m)} (j≤m : toℕ j ≤ m) (k<j : toℕ k < toℕ j)
+ → unpluck j≤m (just (fromℕ< (≤-trans k<j j≤m))) ≡ k
+ unpluck-k-< {ℕ.suc m} {Fin.suc j} {Fin.zero} (s≤s j≤m) (s≤s k<j) = refl
+ unpluck-k-< {ℕ.suc m} {Fin.suc j} {Fin.suc k} (s≤s j≤m) (s≤s k<j) = cong Fin.suc (unpluck-k-< j≤m k<j)
+
+merge-unmerge-=
+ : {i j k : Fin (ℕ.suc n)}
+ → (i<j≤n : toℕ i < toℕ j ≤ n)
+ → k ≡ j
+ → unmerge i<j≤n (merge i<j≤n k) ≡ i
+merge-unmerge-= {_} {i} {j} {k} i<j≤n@(i<j , j≤n) k≡j = let open ≡-Reasoning in begin
+ unmerge i<j≤n (merge i<j≤n k) ≡⟨ cong (unmerge i<j≤n ∘ merge i<j≤n) k≡j ⟩
+ unmerge i<j≤n (merge i<j≤n j) ≡⟨ cong (unmerge i<j≤n ∘ fromMaybe (fromℕ< (≤-trans i<j j≤n))) (j-to-nothing j≤n) ⟩
+ unmerge i<j≤n (fromℕ< (≤-trans i<j j≤n)) ≡⟨ unmerge-i i<j≤n ⟩
+ i ∎
where
j-to-nothing : {j : Fin (ℕ.suc n)} → (j≤n : toℕ j ≤ n) → pluck j≤n j ≡ nothing
j-to-nothing {ℕ.zero} {Fin.zero} z≤n = refl
j-to-nothing {ℕ.suc n} {Fin.zero} z≤n = refl
j-to-nothing {ℕ.suc n} {Fin.suc j} (s≤s j≤n) = cong (map Fin.suc) (j-to-nothing j≤n)
+ unmerge-i
+ : {i j : Fin (ℕ.suc n)} ((i<j , j≤n) : toℕ i < toℕ j ≤ n)
+ → unmerge (i<j , j≤n) (fromℕ< (≤-trans i<j j≤n)) ≡ i
+ unmerge-i {ℕ.suc n} {Fin.zero} {Fin.suc j} (s≤s i<j , s≤s j≤n) = refl
+ unmerge-i {ℕ.suc n} {Fin.suc i} {Fin.suc j} (s≤s i<j , s≤s j≤n) = cong Fin.suc (unmerge-i (i<j , j≤n))
-unmerge-i
- : {i j : Fin (ℕ.suc n)}
- → ((i<j , j≤n) : toℕ i < toℕ j ≤ n)
- → unmerge (i<j , j≤n) (fromℕ< (≤-trans i<j j≤n)) ≡ i
-unmerge-i {ℕ.suc n} {Fin.zero} {Fin.suc j} (s≤s i<j , s≤s j≤n) = refl
-unmerge-i {ℕ.suc n} {Fin.suc i} {Fin.suc j} (s≤s i<j , s≤s j≤n) = cong Fin.suc (unmerge-i (i<j , j≤n))
-
-unmerge-k-<
- : {i j k : Fin (ℕ.suc n)}
- → ((i<j , j≤n) : toℕ i < toℕ j ≤ n)
- → (k<j : toℕ k < toℕ j)
- → unmerge (i<j , j≤n) (fromℕ< (≤-trans k<j j≤n)) ≡ k
-unmerge-k-< {ℕ.suc n} {i} {Fin.suc j} {Fin.zero} (_ , s≤s j≤n) (s≤s k<j) = refl
-unmerge-k-< {ℕ.suc n} {Fin.zero} {Fin.suc (Fin.suc j)} {Fin.suc k} (s≤s z≤n , s≤s j≤n) (s≤s k<j) = cong Fin.suc (unmerge-k-< (s≤s z≤n , j≤n) k<j)
-unmerge-k-< {ℕ.suc n} {Fin.suc i} {Fin.suc j} {Fin.suc k} (s≤s i<j , s≤s j≤n) (s≤s k<j) = cong Fin.suc (unmerge-k-< (i<j , j≤n) k<j)
-
-k-to-k-<
+merge-unmerge->
: {i j k : Fin (ℕ.suc n)}
- → ((i<j , j≤n) : toℕ i < toℕ j ≤ n)
- → (k<j : toℕ k < toℕ j)
- → merge (i<j , j≤n) k ≡ fromℕ< (≤-trans k<j j≤n)
-k-to-k-< (i<j , j≤n) k<j = cong (fromMaybe (fromℕ< (≤-trans i<j j≤n))) (k-to-just (k<j , j≤n))
- where
- k-to-just
- : {j k : Fin (ℕ.suc n)}
- → ((k<j , j≤n) : toℕ k < toℕ j ≤ n)
- → pluck j≤n k ≡ just (fromℕ< (≤-trans k<j j≤n))
- k-to-just {ℕ.suc n} {Fin.suc j} {Fin.zero} (s≤s k<j , s≤s j≤n) = refl
- k-to-just {ℕ.suc n} {Fin.suc j} {Fin.suc k} (s≤s k<j , s≤s j≤n) = cong (map Fin.suc) (k-to-just (k<j , j≤n))
-
-sk-to-k->
- : {i j : Fin (ℕ.suc n)}
- → {k : Fin n}
- → ((i<j , j≤n) : toℕ i < toℕ j ≤ n)
- → (j<sk : toℕ j < ℕ.suc (toℕ k))
- → merge (i<j , j≤n) (Fin.suc k) ≡ k
-sk-to-k-> (i<j , j≤n) j<sk = cong (fromMaybe (fromℕ< (≤-trans i<j j≤n))) (sk-to-just j≤n j<sk)
+ → (i<j≤n : toℕ i < toℕ j ≤ n)
+ → (j<k : toℕ j < toℕ k)
+ → unmerge i<j≤n (merge i<j≤n k) ≡ k
+merge-unmerge-> {n} {i} {j} {Fin.suc k} i<j≤n@(i<j , j≤n) j<k = let open ≡-Reasoning in begin
+ unmerge i<j≤n (merge i<j≤n (Fin.suc k)) ≡⟨⟩
+ unmerge i<j≤n
+ (fromMaybe
+ (fromℕ< (≤-trans i<j j≤n))
+ (pluck j≤n (Fin.suc k))) ≡⟨ cong (unmerge i<j≤n ∘ fromMaybe (fromℕ< (≤-trans i<j j≤n))) (sk-to-just j≤n j<k) ⟩
+ unmerge i<j≤n k ≡⟨⟩
+ unpluck j≤n (just k) ≡⟨ unpluck-k-> j≤n j<k ⟩
+ Fin.suc k ∎
where
sk-to-just
- : {n : ℕ}
- → {j : Fin (ℕ.suc n)}
- → {k : Fin n}
- → (j≤n : toℕ j ≤ n)
- → (j<sk : toℕ j < ℕ.suc (toℕ k))
+ : {n : ℕ} {j : Fin (ℕ.suc n)} {k : Fin n} (j≤n : toℕ j ≤ n) (j<sk : toℕ j < ℕ.suc (toℕ k))
→ pluck j≤n (Fin.suc k) ≡ just k
sk-to-just {ℕ.suc _} {Fin.zero} {Fin.zero} z≤n (s≤s _) = refl
sk-to-just {ℕ.suc _} {Fin.zero} {Fin.suc _} z≤n (s≤s _) = refl
sk-to-just {ℕ.suc _} {Fin.suc _} {Fin.suc _} (s≤s j≤n) (s≤s j<sk) = cong (map Fin.suc) (sk-to-just j≤n j<sk)
+ unpluck-k->
+ : {j : Fin (ℕ.suc m)} {k : Fin m} (j≤m : toℕ j ≤ m) (j<sk : toℕ j < ℕ.suc (toℕ k))
+ → unpluck j≤m (just k) ≡ Fin.suc k
+ unpluck-k-> {ℕ.suc m} {Fin.zero} {_} z≤n (s≤s j<sk) = refl
+ unpluck-k-> {ℕ.suc m} {Fin.suc j} {Fin.suc k} (s≤s j≤m) (s≤s j<sk) = cong Fin.suc (unpluck-k-> j≤m j<sk)
-unmerge-k->
- : {i j : Fin (ℕ.suc n)}
- → {k : Fin n}
- → ((i<j , j≤n) : toℕ i < toℕ j ≤ n)
- → (j<sk : toℕ j < ℕ.suc (toℕ k))
- → unmerge (i<j , j≤n) k ≡ Fin.suc k
-unmerge-k-> {ℕ.suc n} {Fin.zero} {Fin.suc Fin.zero} {Fin.suc k} (s≤s z≤n , s≤s z≤n) (s≤s j<sk) = refl
-unmerge-k-> {ℕ.suc n} {Fin.zero} {Fin.suc (Fin.suc j)} {Fin.suc k} (s≤s z≤n , s≤s j≤n) (s≤s j<sk) = cong Fin.suc (unmerge-k-> (s≤s z≤n , j≤n) j<sk)
-unmerge-k-> {ℕ.suc n} {Fin.suc i} {Fin.suc j} {Fin.suc k} (s≤s i<j , s≤s j≤n) (s≤s j<sk) = cong Fin.suc (unmerge-k-> (i<j , j≤n) j<sk)
-
-unmerge-merge-<
+merge-unmerge
: {i j k : Fin (ℕ.suc n)}
→ (i<j≤n : toℕ i < toℕ j ≤ n)
+ → (f : Fin (ℕ.suc n) → Fin m)
+ → f i ≡ f j
+ → f (unmerge i<j≤n (merge i<j≤n k)) ≡ f k
+merge-unmerge {n} {m} {i} {j} {k} i<j≤n f fi≡fj with compare k j
+... | less (k<j , _) = cong f (merge-unmerge-< i<j≤n k<j)
+... | equal k≡j = let open ≡-Reasoning in begin
+ f (unmerge i<j≤n (merge i<j≤n k)) ≡⟨ cong f (merge-unmerge-= i<j≤n k≡j) ⟩
+ f i ≡⟨ fi≡fj ⟩
+ f j ≡⟨ cong f (sym k≡j) ⟩
+ f k ∎
+... | greater (j<k , _) = cong f (merge-unmerge-> i<j≤n j<k)
+
+unmerge-merge-<
+ : {i j : Fin (ℕ.suc n)}
+ → {k : Fin n}
+ → (i<j≤n@(i<j , j≤n) : toℕ i < toℕ j ≤ n)
→ (k<j : toℕ k < toℕ j)
- → unmerge i<j≤n (merge i<j≤n k) ≡ k
-unmerge-merge-< {n} {i} {j} {k} i<j≤n@(_ , j≤n) k<j = ≡
+ → merge i<j≤n (unmerge i<j≤n k) ≡ k
+unmerge-merge-< {n} {i} {j} {k} i<j≤n@(i<j , j≤n) k<j = let open ≡-Reasoning in begin
+ merge i<j≤n (unmerge i<j≤n k) ≡⟨⟩
+ merge i<j≤n (unpluck j≤n (just k)) ≡⟨⟩
+ fromMaybe
+ (fromℕ< (≤-trans i<j j≤n))
+ (pluck j≤n (unpluck j≤n (just k))) ≡⟨ cong (fromMaybe (fromℕ< (≤-trans i<j j≤n))) (unpluck-pluck-< j≤n k<j) ⟩
+ fromMaybe (fromℕ< (≤-trans i<j j≤n)) (just k) ≡⟨⟩
+ k ∎
where
- open ≡-Reasoning
- ≡ : unmerge i<j≤n (merge i<j≤n k) ≡ k
- ≡ = begin
- unmerge i<j≤n (merge i<j≤n k) ≡⟨ cong (unmerge i<j≤n) (k-to-k-< i<j≤n k<j) ⟩
- unmerge i<j≤n (fromℕ< (≤-trans k<j j≤n)) ≡⟨ unmerge-k-< i<j≤n k<j ⟩
- k ∎
+ unpluck-pluck-<
+ : {j : Fin (ℕ.suc m)}
+ → {k : Fin m}
+ → (j≤m : toℕ j ≤ m)
+ → (k<j : toℕ k < toℕ j)
+ → pluck j≤m (unpluck j≤m (just k)) ≡ just k
+ unpluck-pluck-< {ℕ.suc m} {Fin.suc j} {Fin.zero} (s≤s j≤m) (s≤s k<j) = refl
+ unpluck-pluck-< {ℕ.suc m} {Fin.suc j} {Fin.suc k} (s≤s j≤m) (s≤s k<j) = cong (map Fin.suc) (unpluck-pluck-< j≤m k<j)
unmerge-merge-=
- : {i j k : Fin (ℕ.suc n)}
- → (i<j≤n : toℕ i < toℕ j ≤ n)
- → k ≡ j
- → unmerge i<j≤n (merge i<j≤n k) ≡ i
-unmerge-merge-= {_} {i} {j} {k} i<j≤n@(i<j , j≤n) k≡j = ≡
+ : {i j : Fin (ℕ.suc n)}
+ → {k : Fin n}
+ → (i<j≤n@(i<j , j≤n) : toℕ i < toℕ j ≤ n)
+ → toℕ k ≡ toℕ j
+ → merge i<j≤n (unmerge i<j≤n k) ≡ k
+unmerge-merge-= {_} {i} {j} {k} i<j≤n@(i<j , j≤n) k≡j = let open ≡-Reasoning in begin
+ merge i<j≤n (unmerge i<j≤n k) ≡⟨⟩
+ fromMaybe
+ (fromℕ< (≤-trans i<j j≤n))
+ (pluck j≤n (unpluck j≤n (just k))) ≡⟨ cong (fromMaybe (fromℕ< (≤-trans i<j j≤n))) (unpluck-pluck-= j≤n k≡j) ⟩
+ fromMaybe (fromℕ< (≤-trans i<j j≤n)) (just k) ≡⟨⟩
+ k ∎
where
- open ≡-Reasoning
- ≡ : unmerge i<j≤n (merge i<j≤n k) ≡ i
- ≡ = begin
- unmerge i<j≤n (merge i<j≤n k) ≡⟨ cong (unmerge i<j≤n ∘ merge i<j≤n) k≡j ⟩
- unmerge i<j≤n (merge i<j≤n j) ≡⟨ cong (unmerge i<j≤n) (j-to-i′ i<j≤n) ⟩
- unmerge i<j≤n (fromℕ< (≤-trans i<j j≤n)) ≡⟨ unmerge-i i<j≤n ⟩
- i ∎
+ unpluck-pluck-=
+ : {j : Fin (ℕ.suc m)}
+ → {k : Fin m}
+ → (j≤m : toℕ j ≤ m)
+ → toℕ k ≡ toℕ j
+ → pluck j≤m (unpluck j≤m (just k)) ≡ just k
+ unpluck-pluck-= {ℕ.suc m} {Fin.zero} {Fin.zero} z≤n k≡j = refl
+ unpluck-pluck-= {ℕ.suc m} {Fin.suc j} {Fin.suc k} (s≤s j≤m) k≡j = cong (map Fin.suc) (unpluck-pluck-= j≤m (s≡s⁻¹ k≡j))
unmerge-merge->
- : {i j k : Fin (ℕ.suc n)}
- → (i<j≤n : toℕ i < toℕ j ≤ n)
+ : {i j : Fin (ℕ.suc n)}
+ → {k : Fin n}
+ → (i<j≤n@(i<j , j≤n) : toℕ i < toℕ j ≤ n)
→ (j<k : toℕ j < toℕ k)
- → unmerge i<j≤n (merge i<j≤n k) ≡ k
-unmerge-merge-> {n} {i} {j} {Fin.suc k} i<j≤n j<k = ≡
+ → merge i<j≤n (unmerge i<j≤n k) ≡ k
+unmerge-merge-> {n} {i} {j} {k} i<j≤n@(i<j , j≤n) j<k = let open ≡-Reasoning in begin
+ merge i<j≤n (unmerge i<j≤n k) ≡⟨⟩
+ merge i<j≤n (unpluck j≤n (just k)) ≡⟨⟩
+ fromMaybe
+ (fromℕ< (≤-trans i<j j≤n))
+ (pluck j≤n (unpluck j≤n (just k))) ≡⟨ cong (fromMaybe (fromℕ< (≤-trans i<j j≤n))) (unpluck-pluck-> j≤n j<k) ⟩
+ fromMaybe (fromℕ< (≤-trans i<j j≤n)) (just k) ≡⟨⟩
+ k ∎
where
- open ≡-Reasoning
- ≡ : unmerge i<j≤n (merge i<j≤n (Fin.suc k)) ≡ Fin.suc k
- ≡ = begin
- unmerge i<j≤n (merge i<j≤n (Fin.suc k)) ≡⟨ cong (unmerge i<j≤n) (sk-to-k-> i<j≤n j<k) ⟩
- unmerge i<j≤n k ≡⟨ unmerge-k-> i<j≤n j<k ⟩
- Fin.suc k ∎
+ unpluck-pluck->
+ : {j : Fin (ℕ.suc m)}
+ → {k : Fin m}
+ → (j≤m : toℕ j ≤ m)
+ → (j<k : toℕ j < toℕ k)
+ → pluck j≤m (unpluck j≤m (just k)) ≡ just k
+ unpluck-pluck-> {ℕ.suc m} {Fin.zero} {Fin.suc k} z≤n (s≤s j<k) = refl
+ unpluck-pluck-> {ℕ.suc m} {Fin.suc j} {Fin.suc k} (s≤s j≤m) (s≤s j<k) = cong (map Fin.suc) (unpluck-pluck-> j≤m j<k)
unmerge-merge
- : {i j k : Fin (ℕ.suc n)}
+ : {i j : Fin (ℕ.suc n)}
+ → {k : Fin n}
→ (i<j≤n : toℕ i < toℕ j ≤ n)
- → (f : Fin (ℕ.suc n) → Fin m)
- → f i ≡ f j
- → f (unmerge i<j≤n (merge i<j≤n k)) ≡ f k
-unmerge-merge {n} {m} {i} {j} {k} i<j≤n f fi≡fj with (compare k j)
-... | less (k<j , _) = cong f (unmerge-merge-< i<j≤n k<j)
-... | greater (j<k , _) = cong f (unmerge-merge-> i<j≤n j<k)
-... | equal k≡j = ≡
- where
- open ≡-Reasoning
- ≡ : f (unmerge i<j≤n (merge i<j≤n k)) ≡ f k
- ≡ = begin
- f (unmerge i<j≤n (merge i<j≤n k)) ≡⟨ cong f (unmerge-merge-= i<j≤n k≡j) ⟩
- f i ≡⟨ fi≡fj ⟩
- f j ≡⟨ cong f (sym k≡j) ⟩
- f k ∎
+ → merge i<j≤n (unmerge i<j≤n k) ≡ k
+unmerge-merge {n} {i} {j} {k} i<j≤n with <-cmp (toℕ k) (toℕ j)
+... | tri< k<j _ _ = unmerge-merge-< i<j≤n k<j
+... | tri≈ _ k≡j _ = unmerge-merge-= i<j≤n k≡j
+... | tri> _ _ j<k = unmerge-merge-> i<j≤n j<k