aboutsummaryrefslogtreecommitdiff
path: root/FinMerge
diff options
context:
space:
mode:
authorJacques Comeaux <jacquesrcomeaux@protonmail.com>2024-02-20 21:23:29 -0600
committerJacques Comeaux <jacquesrcomeaux@protonmail.com>2024-02-20 21:23:29 -0600
commit5e30f210d4d510649ca87a02b7e9a409ee74d13a (patch)
treeb8e0b88f115888a0923a43f54dd5c2d4505cb3c0 /FinMerge
parente585420fc6eb90f0ecdce76e1f48085b2cfe0466 (diff)
Prove merge lemmas
Diffstat (limited to 'FinMerge')
-rw-r--r--FinMerge/Properties.agda106
1 files changed, 106 insertions, 0 deletions
diff --git a/FinMerge/Properties.agda b/FinMerge/Properties.agda
new file mode 100644
index 0000000..94b8580
--- /dev/null
+++ b/FinMerge/Properties.agda
@@ -0,0 +1,106 @@
+module FinMerge.Properties where
+
+open import Data.Fin using (Fin; fromℕ<; toℕ; #_; lower₁)
+open import Data.Fin.Properties using (¬Fin0)
+open import Data.Nat using (ℕ; _+_; _≤_; _<_; z<s; pred; z≤n; s≤s)
+open import Data.Nat.Properties using (≤-trans; <⇒≢)
+open import Data.Product using (_,_)
+open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; sym; _≢_)
+open import Relation.Binary.PropositionalEquality.Properties using (module ≡-Reasoning)
+open import Data.Maybe.Base using (Maybe; nothing; just; fromMaybe)
+
+open import Util using (_<_<_; _<_≤_; toℕ<)
+
+open import FinMerge using (merge; pluck)
+
+
+private
+ variable
+ m n : ℕ
+
+not-n : {x : Fin (ℕ.suc n)} → toℕ x < m ≤ n → n ≢ toℕ x
+not-n (x<m , m≤n) n≡x = <⇒≢ (≤-trans x<m m≤n) (sym n≡x)
+
+pluck-<
+ : {x : Fin (ℕ.suc n)}
+ → (m≤n : m ≤ n)
+ → (x<m : toℕ x < m)
+ → pluck m≤n x ≡ just (lower₁ x (not-n (x<m , m≤n)))
+pluck-< {_} {_} {Fin.zero} (_≤_.s≤s m≤n) (_≤_.s≤s x<m) = refl
+pluck-< {_} {_} {Fin.suc x} (_≤_.s≤s m≤n) (_≤_.s≤s x<m) = ≡
+ where
+ open ≡-Reasoning
+ ≡ : pluck (_≤_.s≤s m≤n) (Fin.suc x)
+ ≡ just (lower₁ (Fin.suc x) (not-n (s≤s x<m , s≤s m≤n)))
+ ≡ = begin
+ pluck (_≤_.s≤s m≤n) (Fin.suc x) ≡⟨⟩
+ Data.Maybe.Base.map Fin.suc (pluck m≤n x)
+ ≡⟨ cong (Data.Maybe.Base.map Fin.suc) (pluck-< m≤n x<m) ⟩
+ Data.Maybe.Base.map Fin.suc (just (lower₁ x (not-n (x<m , m≤n)))) ≡⟨⟩
+ just (Fin.suc (lower₁ x (not-n (x<m , m≤n)))) ≡⟨⟩
+ just (lower₁ (Fin.suc x) (not-n (s≤s x<m , s≤s m≤n))) ∎
+
+pluck-≡
+ : {x : Fin (ℕ.suc n)}
+ → (m≤n : m ≤ n)
+ → (x≡m : toℕ x ≡ m)
+ → pluck m≤n x ≡ nothing
+pluck-≡ {_} {_} {Fin.zero} z≤n x≡m = refl
+pluck-≡ {_} {_} {Fin.suc x} (s≤s m≤n) refl = ≡
+ where
+ open ≡-Reasoning
+ ≡ : pluck (s≤s m≤n) (Fin.suc x) ≡ nothing
+ ≡ = begin
+ pluck (s≤s m≤n) (Fin.suc x) ≡⟨⟩
+ Data.Maybe.Base.map Fin.suc (pluck m≤n x)
+ ≡⟨ cong (Data.Maybe.Base.map Fin.suc) (pluck-≡ m≤n refl) ⟩
+ Data.Maybe.Base.map Fin.suc nothing ≡⟨⟩
+ nothing ∎
+
+i-to-i
+ : {i j : Fin (ℕ.suc n)} (i<j≤n@(i<j , j≤n) : toℕ i < toℕ j ≤ n)
+ → merge i<j≤n i ≡ lower₁ i (not-n i<j≤n)
+i-to-i {i = i} (lt , le) = ≡
+ where
+ open ≡-Reasoning
+ ≡ : merge (lt , le) i ≡ lower₁ i (not-n (lt , le))
+ ≡ = begin
+ merge (lt , le) i ≡⟨⟩
+ fromMaybe (fromℕ< (≤-trans lt le)) (pluck le i)
+ ≡⟨ cong (fromMaybe (fromℕ< (≤-trans lt le))) (pluck-< le lt) ⟩
+ fromMaybe (fromℕ< (≤-trans lt le)) (just (lower₁ i (not-n (lt , le)))) ≡⟨⟩
+ lower₁ i (not-n (lt , le)) ∎
+
+lemma₁
+ : {i j : Fin (ℕ.suc n)} ((lt , le) : toℕ i < toℕ j ≤ n)
+ → fromℕ< (≤-trans lt le) ≡ lower₁ i (not-n (lt , le))
+lemma₁ {ℕ.suc _} {Fin.zero} {Fin.suc _} _ = refl
+lemma₁ {ℕ.suc _} {Fin.suc _} {Fin.suc _} (s≤s lt , s≤s le) = cong Fin.suc (lemma₁ (lt , le))
+
+j-to-i
+ : {i j : Fin (ℕ.suc n)} (i<j≤n@(i<j , j≤n) : toℕ i < toℕ j ≤ n)
+ → merge i<j≤n j ≡ lower₁ i (not-n i<j≤n)
+j-to-i {i = i} {j = j} (lt , le) = ≡
+ where
+ open ≡-Reasoning
+ ≡ : merge (lt , le) j ≡ lower₁ i (not-n (lt , le))
+ ≡ = begin
+ merge (lt , le) j ≡⟨⟩
+ fromMaybe (fromℕ< (≤-trans lt le)) (pluck le j)
+ ≡⟨ cong (fromMaybe (fromℕ< (≤-trans lt le))) (pluck-≡ le refl) ⟩
+ fromMaybe (fromℕ< (≤-trans lt le)) nothing ≡⟨⟩
+ fromℕ< (≤-trans lt le) ≡⟨ lemma₁ (lt , le) ⟩
+ lower₁ i (not-n (lt , le)) ∎
+
+merge-i-j
+ : {i j : Fin (ℕ.suc n)}
+ → (i<j≤n : toℕ i < toℕ j ≤ n)
+ → merge i<j≤n i ≡ merge i<j≤n j
+merge-i-j {_} {i} {j} i<j≤n = ≡
+ where
+ open ≡-Reasoning
+ ≡ : merge i<j≤n i ≡ merge i<j≤n j
+ ≡ = begin
+ merge i<j≤n i ≡⟨ i-to-i i<j≤n ⟩
+ lower₁ i (not-n i<j≤n) ≡⟨ sym (j-to-i i<j≤n) ⟩
+ merge i<j≤n j ∎