aboutsummaryrefslogtreecommitdiff
path: root/Functor/Free/Instance/CMonoid.agda
diff options
context:
space:
mode:
authorJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-12-09 14:45:27 -0600
committerJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-12-09 14:45:27 -0600
commitd721f0a23f3b8c50fd1754c8958ac40b6f625cbd (patch)
tree7f5105b79482e7441d9b800f21a9bc870509d0f0 /Functor/Free/Instance/CMonoid.agda
parentb5e583bb067749f80bd3f7e24e807674eba8b394 (diff)
Add free commutative monoid functor
Diffstat (limited to 'Functor/Free/Instance/CMonoid.agda')
-rw-r--r--Functor/Free/Instance/CMonoid.agda116
1 files changed, 116 insertions, 0 deletions
diff --git a/Functor/Free/Instance/CMonoid.agda b/Functor/Free/Instance/CMonoid.agda
new file mode 100644
index 0000000..be9cb94
--- /dev/null
+++ b/Functor/Free/Instance/CMonoid.agda
@@ -0,0 +1,116 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Level using (Level; _⊔_)
+
+module Functor.Free.Instance.CMonoid {c ℓ : Level} where
+
+import Categories.Object.Monoid as MonoidObject
+import Object.Monoid.Commutative as CMonoidObject
+
+open import Categories.Category.Instance.Setoids using (Setoids)
+open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory)
+open import Categories.Functor using (Functor)
+open import Categories.NaturalTransformation using (NaturalTransformation)
+open import Category.Construction.CMonoids using (CMonoids)
+open import Category.Instance.Setoids.SymmetricMonoidal {c} {c ⊔ ℓ} using (Setoids-×; ×-symmetric′)
+open import Data.List.Relation.Binary.Permutation.Setoid.Properties using (++-assoc; ++-identityˡ; ++-identityʳ; ++-comm)
+open import Data.Product using (_,_)
+open import Data.Setoid using (∣_∣)
+open import Data.Opaque.Multiset using ([]ₛ; Multisetₛ; ++ₛ; mapₛ)
+open import Function using (_⟶ₛ_; _⟨$⟩_)
+open import Functor.Instance.Multiset {c} {ℓ} using (Multiset)
+open import NaturalTransformation.Instance.EmptyMultiset {c} {ℓ} using (⊤⇒[])
+open import NaturalTransformation.Instance.MultisetAppend {c} {ℓ} using (++)
+open import Relation.Binary using (Setoid)
+
+module ++ = NaturalTransformation ++
+module ⊤⇒[] = NaturalTransformation ⊤⇒[]
+
+open Functor
+open MonoidObject Setoids-×.monoidal using (Monoid; IsMonoid; Monoid⇒)
+open CMonoidObject Setoids-×.symmetric using (CommutativeMonoid; IsCommutativeMonoid; CommutativeMonoid⇒)
+open IsCommutativeMonoid
+open CommutativeMonoid using () renaming (μ to μ′; η to η′)
+open IsMonoid
+open CommutativeMonoid⇒
+open Monoid⇒
+
+module _ (X : Setoid c ℓ) where
+
+ open Setoid (Multiset.₀ X)
+
+ opaque
+
+ unfolding Multisetₛ
+
+ ++ₛ-assoc
+ : (x y z : ∣ Multisetₛ X ∣)
+ → ++ₛ ⟨$⟩ (++ₛ ⟨$⟩ (x , y) , z)
+ ≈ ++ₛ ⟨$⟩ (x , ++ₛ ⟨$⟩ (y , z))
+ ++ₛ-assoc x y z = ++-assoc X x y z
+
+ ++ₛ-identityˡ
+ : (x : ∣ Multisetₛ X ∣)
+ → x ≈ ++ₛ ⟨$⟩ ([]ₛ ⟨$⟩ _ , x)
+ ++ₛ-identityˡ x = ++-identityˡ X x
+
+ ++ₛ-identityʳ
+ : (x : ∣ Multisetₛ X ∣)
+ → x ≈ ++ₛ ⟨$⟩ (x , []ₛ ⟨$⟩ _)
+ ++ₛ-identityʳ x = sym (++-identityʳ X x)
+
+ ++ₛ-comm
+ : (x y : ∣ Multisetₛ X ∣)
+ → ++ₛ ⟨$⟩ (x , y) ≈ ++ₛ ⟨$⟩ (y , x)
+ ++ₛ-comm x y = ++-comm X x y
+
+ opaque
+ unfolding ×-symmetric′
+ MultisetCMonoid : IsCommutativeMonoid (Multiset.₀ X)
+ MultisetCMonoid .isMonoid .μ = ++.η X
+ MultisetCMonoid .isMonoid .η = ⊤⇒[].η X
+ MultisetCMonoid .isMonoid .assoc {(x , y) , z} = ++ₛ-assoc x y z
+ MultisetCMonoid .isMonoid .identityˡ {_ , x} = ++ₛ-identityˡ x
+ MultisetCMonoid .isMonoid .identityʳ {x , _} = ++ₛ-identityʳ x
+ MultisetCMonoid .commutative {x , y} = ++ₛ-comm x y
+
+Multisetₘ : (X : Setoid c ℓ) → CommutativeMonoid
+Multisetₘ X = record { isCommutativeMonoid = MultisetCMonoid X }
+
+open Setoids-× using (_⊗₀_; _⊗₁_)
+opaque
+ unfolding MultisetCMonoid
+ mapₛ-++ₛ
+ : {A B : Setoid c ℓ}
+ → (f : A ⟶ₛ B)
+ → {xy : ∣ Multisetₛ A ⊗₀ Multisetₛ A ∣}
+ → (open Setoid (Multisetₛ B))
+ → mapₛ f ⟨$⟩ (μ′ (Multisetₘ A) ⟨$⟩ xy)
+ ≈ μ′ (Multisetₘ B) ⟨$⟩ (mapₛ f ⊗₁ mapₛ f ⟨$⟩ xy)
+ mapₛ-++ₛ = ++.sym-commute
+
+opaque
+ unfolding MultisetCMonoid mapₛ
+ mapₛ-[]ₛ
+ : {A B : Setoid c ℓ}
+ → (f : A ⟶ₛ B)
+ → {x : ∣ Setoids-×.unit ∣}
+ → (open Setoid (Multisetₛ B))
+ → mapₛ f ⟨$⟩ (η′ (Multisetₘ A) ⟨$⟩ x)
+ ≈ η′ (Multisetₘ B) ⟨$⟩ x
+ mapₛ-[]ₛ = ⊤⇒[].commute
+
+mapₘ
+ : {A B : Setoid c ℓ}
+ (f : A ⟶ₛ B)
+ → CommutativeMonoid⇒ (Multisetₘ A) (Multisetₘ B)
+mapₘ f .monoid⇒ .arr = Multiset.₁ f
+mapₘ f .monoid⇒ .preserves-μ = mapₛ-++ₛ f
+mapₘ f .monoid⇒ .preserves-η = mapₛ-[]ₛ f
+
+Free : Functor (Setoids c ℓ) (CMonoids Setoids-×.symmetric)
+Free .F₀ = Multisetₘ
+Free .F₁ = mapₘ
+Free .identity {X} = Multiset.identity {X}
+Free .homomorphism {X} {Y} {Z} {f} {g} = Multiset.homomorphism {X} {Y} {Z} {f} {g}
+Free .F-resp-≈ {A} {B} {f} {g} = Multiset.F-resp-≈ {A} {B} {f} {g}