aboutsummaryrefslogtreecommitdiff
path: root/Functor/Free/Instance/MonoidalPreorder
diff options
context:
space:
mode:
authorJacques Comeaux <jacquesrcomeaux@protonmail.com>2026-01-07 10:12:13 -0600
committerJacques Comeaux <jacquesrcomeaux@protonmail.com>2026-01-07 10:12:13 -0600
commit8ec259bb32b4339b27560f5ea13afa81b9b8febc (patch)
treef8b860c07c3da42f7ad078413700c347adbfd9d5 /Functor/Free/Instance/MonoidalPreorder
parentaecb9a5862a9082909c902307974e7ca85463bb9 (diff)
Differentiate lax and strong monoidal monotones
Diffstat (limited to 'Functor/Free/Instance/MonoidalPreorder')
-rw-r--r--Functor/Free/Instance/MonoidalPreorder/Lax.agda76
1 files changed, 76 insertions, 0 deletions
diff --git a/Functor/Free/Instance/MonoidalPreorder/Lax.agda b/Functor/Free/Instance/MonoidalPreorder/Lax.agda
new file mode 100644
index 0000000..be4e835
--- /dev/null
+++ b/Functor/Free/Instance/MonoidalPreorder/Lax.agda
@@ -0,0 +1,76 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Functor.Free.Instance.MonoidalPreorder.Lax where
+
+import Categories.Category.Monoidal.Utilities as ⊗-Util
+
+open import Categories.Category using (Category)
+open import Categories.Category.Instance.Monoidals using (Monoidals)
+open import Categories.Category.Monoidal using (MonoidalCategory)
+open import Categories.Functor using (Functor)
+open import Categories.Functor.Monoidal using (MonoidalFunctor)
+open import Categories.Functor.Monoidal.Properties using (∘-Monoidal)
+open import Categories.NaturalTransformation.NaturalIsomorphism.Monoidal using (module Lax)
+open import Category.Instance.Preorder.Primitive.Monoidals.Lax using (_≃_; module ≃) renaming (Monoidals to Monoidalsₚ)
+open import Data.Product using (_,_)
+open import Level using (Level)
+open import Preorder.Primitive.Monoidal using (MonoidalPreorder)
+open import Preorder.Primitive.MonotoneMap.Monoidal.Lax using (MonoidalMonotone)
+
+open Lax using (MonoidalNaturalIsomorphism)
+-- The free monoidal preorder of a monoidal category
+
+import Functor.Free.Instance.Preorder as Preorder
+
+module _ {o ℓ e : Level} where
+
+ monoidalPreorder : MonoidalCategory o ℓ e → MonoidalPreorder o ℓ
+ monoidalPreorder C = record
+ { U = Preorder.Free.₀ U
+ ; monoidal = record
+ { unit = unit
+ ; tensor = Preorder.Free.₁ ⊗
+ ; unitaryˡ = Preorder.Free.F-resp-≈ unitorˡ-naturalIsomorphism
+ ; unitaryʳ = Preorder.Free.F-resp-≈ unitorʳ-naturalIsomorphism
+ ; associative = λ x y z → record
+ { from = associator.from {x} {y} {z}
+ ; to = associator.to {x} {y} {z}
+ }
+ }
+ }
+ where
+ open MonoidalCategory C
+ open ⊗-Util monoidal
+
+ module _ {A B : MonoidalCategory o ℓ e} where
+
+ monoidalMonotone : MonoidalFunctor A B → MonoidalMonotone (monoidalPreorder A) (monoidalPreorder B)
+ monoidalMonotone F = record
+ { F = Preorder.Free.₁ F.F
+ ; ε = F.ε
+ ; ⊗-homo = λ p₁ p₂ → F.⊗-homo.η (p₁ , p₂)
+ }
+ where
+ module F = MonoidalFunctor F
+
+ open MonoidalNaturalIsomorphism using (U)
+
+ pointwiseIsomorphism
+ : {F G : MonoidalFunctor A B}
+ → MonoidalNaturalIsomorphism F G
+ → monoidalMonotone F ≃ monoidalMonotone G
+ pointwiseIsomorphism F≃G = Preorder.Free.F-resp-≈ (U F≃G)
+
+Free : {o ℓ e : Level} → Functor (Monoidals o ℓ e) (Monoidalsₚ o ℓ)
+Free = record
+ { F₀ = monoidalPreorder
+ ; F₁ = monoidalMonotone
+ ; identity = λ {A} → ≃.refl {A = monoidalPreorder A} {x = id}
+ ; homomorphism = λ {f = f} {h} → ≃.refl {x = monoidalMonotone (∘-Monoidal h f)}
+ ; F-resp-≈ = pointwiseIsomorphism
+ }
+ where
+ open Category (Monoidalsₚ _ _) using (id)
+
+module Free {o ℓ e} = Functor (Free {o} {ℓ} {e})