aboutsummaryrefslogtreecommitdiff
path: root/Functor/Instance/Cospan/Stack.agda
diff options
context:
space:
mode:
authorJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-02-03 23:31:23 -0600
committerJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-02-03 23:31:23 -0600
commita8735289bf749c3d08f40be3a26f29585c879f0d (patch)
tree7cd99af835b0ef0475289f2c25f6d22cafc3fddd /Functor/Instance/Cospan/Stack.agda
parent8d3d3b53cfab2540ed006e768af1e41ea3d35750 (diff)
Show category of cospans is monoidal
Diffstat (limited to 'Functor/Instance/Cospan/Stack.agda')
-rw-r--r--Functor/Instance/Cospan/Stack.agda144
1 files changed, 144 insertions, 0 deletions
diff --git a/Functor/Instance/Cospan/Stack.agda b/Functor/Instance/Cospan/Stack.agda
new file mode 100644
index 0000000..b7664dc
--- /dev/null
+++ b/Functor/Instance/Cospan/Stack.agda
@@ -0,0 +1,144 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)
+
+module Functor.Instance.Cospan.Stack {o ℓ e} (𝒞 : FinitelyCocompleteCategory o ℓ e) where
+
+import Categories.Diagram.Pushout as DiagramPushout
+import Categories.Diagram.Pushout.Properties as PushoutProperties
+import Categories.Morphism as Morphism
+import Categories.Morphism.Reasoning as ⇒-Reasoning
+
+open import Categories.Category.Core using (Category)
+open import Categories.Functor.Bifunctor using (Bifunctor)
+open import Category.Instance.Cospans 𝒞 using (Cospan; Cospans; Same; id-Cospan; compose)
+open import Category.Instance.FinitelyCocompletes {o} {ℓ} {e} using () renaming (_×_ to _×′_)
+open import Category.Instance.Properties.FinitelyCocompletes {o} {ℓ} {e} using (-+-; FinitelyCocompletes-CC)
+open import Data.Product.Base using (Σ; _,_; _×_; proj₁; proj₂)
+open import Functor.Exact using (RightExactFunctor; IsPushout⇒Pushout)
+open import Level using (Level; _⊔_; suc)
+
+module 𝒞 = FinitelyCocompleteCategory 𝒞
+module Cospans = Category Cospans
+
+open 𝒞 using (U; _+_; _+₁_; pushout; coproduct; [_,_]; ⊥; cocartesianCategory; monoidal)
+open Category U
+open DiagramPushout U using (Pushout)
+open PushoutProperties U using (up-to-iso)
+
+module 𝒞×𝒞 = FinitelyCocompleteCategory (𝒞 ×′ 𝒞)
+open 𝒞×𝒞 using () renaming (pushout to pushout′; U to U×U)
+open DiagramPushout U×U using () renaming (Pushout to Pushout′)
+
+open import Categories.Category.Monoidal.Utilities monoidal using (_⊗ᵢ_)
+
+together : {A A′ B B′ : Obj} → Cospan A B → Cospan A′ B′ → Cospan (A + A′) (B + B′)
+together A⇒B A⇒B′ = record
+ { f₁ = f₁ A⇒B +₁ f₁ A⇒B′
+ ; f₂ = f₂ A⇒B +₁ f₂ A⇒B′
+ }
+ where
+ open Cospan
+
+id⊗id≈id : {A B : Obj} → Same (together (id-Cospan {A}) (id-Cospan {B})) (id-Cospan {A + B})
+id⊗id≈id {A} {B} = record
+ { ≅N = ≅.refl
+ ; from∘f₁≈f₁′ = from∘f≈f′
+ ; from∘f₂≈f₂′ = from∘f≈f′
+ }
+ where
+ open Morphism U using (module ≅)
+ open HomReasoning
+ open 𝒞 using (+-η; []-cong₂)
+ open coproduct {A} {B} using (i₁; i₂)
+ from∘f≈f′ : id ∘ [ i₁ ∘ id , i₂ ∘ id ] 𝒞.≈ id
+ from∘f≈f′ = begin
+ id ∘ [ i₁ ∘ id , i₂ ∘ id ] ≈⟨ identityˡ ⟩
+ [ i₁ ∘ id , i₂ ∘ id ] ≈⟨ []-cong₂ identityʳ identityʳ ⟩
+ [ i₁ , i₂ ] ≈⟨ +-η ⟩
+ id ∎
+
+homomorphism
+ : {A A′ B B′ C C′ : Obj}
+ → (A⇒B : Cospan A B)
+ → (B⇒C : Cospan B C)
+ → (A⇒B′ : Cospan A′ B′)
+ → (B⇒C′ : Cospan B′ C′)
+ → Same (together (compose A⇒B B⇒C) (compose A⇒B′ B⇒C′)) (compose (together A⇒B A⇒B′) (together B⇒C B⇒C′) )
+homomorphism A⇒B B⇒C A⇒B′ B⇒C′ = record
+ { ≅N = ≅N
+ ; from∘f₁≈f₁′ = from∘f₁≈f₁′
+ ; from∘f₂≈f₂′ = from∘f₂≈f₂′
+ }
+ where
+ open Cospan
+ open Pushout
+ open HomReasoning
+ open ⇒-Reasoning U
+ open Morphism U using (_≅_)
+ open _≅_
+ open 𝒞 using (+₁∘+₁)
+ module -+- = RightExactFunctor (-+- {𝒞})
+ P₁ = pushout (f₂ A⇒B) (f₁ B⇒C)
+ P₂ = pushout (f₂ A⇒B′) (f₁ B⇒C′)
+ module P₁ = Pushout P₁
+ module P₂ = Pushout P₂
+ P₁×P₂ = pushout′ (f₂ A⇒B , f₂ A⇒B′) (f₁ B⇒C , f₁ B⇒C′)
+ module P₁×P₂ = Pushout′ P₁×P₂
+ P₃ = pushout (f₂ A⇒B +₁ f₂ A⇒B′) (f₁ B⇒C +₁ f₁ B⇒C′)
+ P₃′ = IsPushout⇒Pushout (-+-.F-resp-pushout P₁×P₂.isPushout)
+ ≅N : Q P₃′ ≅ Q P₃
+ ≅N = up-to-iso P₃′ P₃
+ from∘f₁≈f₁′ : from ≅N ∘ (f₁ (compose A⇒B B⇒C) +₁ f₁ (compose A⇒B′ B⇒C′)) ≈ f₁ (compose (together A⇒B A⇒B′) (together B⇒C B⇒C′))
+ from∘f₁≈f₁′ = begin
+ from ≅N ∘ (f₁ (compose A⇒B B⇒C) +₁ f₁ (compose A⇒B′ B⇒C′)) ≈⟨ Equiv.refl ⟩
+ from ≅N ∘ ((i₁ P₁ ∘ f₁ A⇒B) +₁ (i₁ P₂ ∘ f₁ A⇒B′)) ≈⟨ refl⟩∘⟨ +₁∘+₁ ⟨
+ from ≅N ∘ (i₁ P₁ +₁ i₁ P₂) ∘ (f₁ A⇒B +₁ f₁ A⇒B′) ≈⟨ Equiv.refl ⟩
+ from ≅N ∘ i₁ P₃′ ∘ f₁ (together A⇒B A⇒B′) ≈⟨ pullˡ (universal∘i₁≈h₁ P₃′) ⟩
+ i₁ P₃ ∘ f₁ (together A⇒B A⇒B′) ∎
+ from∘f₂≈f₂′ : from ≅N ∘ (f₂ (compose A⇒B B⇒C) +₁ f₂ (compose A⇒B′ B⇒C′)) ≈ f₂ (compose (together A⇒B A⇒B′) (together B⇒C B⇒C′))
+ from∘f₂≈f₂′ = begin
+ from ≅N ∘ (f₂ (compose A⇒B B⇒C) +₁ f₂ (compose A⇒B′ B⇒C′)) ≈⟨ Equiv.refl ⟩
+ from ≅N ∘ ((i₂ P₁ ∘ f₂ B⇒C) +₁ (i₂ P₂ ∘ f₂ B⇒C′)) ≈⟨ refl⟩∘⟨ +₁∘+₁ ⟨
+ from ≅N ∘ (i₂ P₁ +₁ i₂ P₂) ∘ (f₂ B⇒C +₁ f₂ B⇒C′) ≈⟨ Equiv.refl ⟩
+ from ≅N ∘ i₂ P₃′ ∘ f₂ (together B⇒C B⇒C′) ≈⟨ pullˡ (universal∘i₂≈h₂ P₃′) ⟩
+ i₂ P₃ ∘ f₂ (together B⇒C B⇒C′) ∎
+
+⊗-resp-≈
+ : {A A′ B B′ : Obj}
+ {f f′ : Cospan A B}
+ {g g′ : Cospan A′ B′}
+ → Same f f′
+ → Same g g′
+ → Same (together f g) (together f′ g′)
+⊗-resp-≈ {_} {_} {_} {_} {f} {f′} {g} {g′} ≈f ≈g = record
+ { ≅N = ≈f.≅N ⊗ᵢ ≈g.≅N
+ ; from∘f₁≈f₁′ = from∘f₁≈f₁′
+ ; from∘f₂≈f₂′ = from∘f₂≈f₂′
+ }
+ where
+ open 𝒞 using (-+-)
+ module ≈f = Same ≈f
+ module ≈g = Same ≈g
+ open HomReasoning
+ open Cospan
+ open 𝒞 using (+₁-cong₂; +₁∘+₁)
+ from∘f₁≈f₁′ : (≈f.from +₁ ≈g.from) ∘ (f₁ f +₁ f₁ g) ≈ f₁ f′ +₁ f₁ g′
+ from∘f₁≈f₁′ = begin 
+ (≈f.from +₁ ≈g.from) ∘ (f₁ f +₁ f₁ g) ≈⟨ +₁∘+₁ ⟩
+ (≈f.from ∘ f₁ f) +₁ (≈g.from ∘ f₁ g) ≈⟨ +₁-cong₂ (≈f.from∘f₁≈f₁′) (≈g.from∘f₁≈f₁′) ⟩
+ f₁ f′ +₁ f₁ g′ ∎
+ from∘f₂≈f₂′ : (≈f.from +₁ ≈g.from) ∘ (f₂ f +₁ f₂ g) ≈ f₂ f′ +₁ f₂ g′
+ from∘f₂≈f₂′ = begin 
+ (≈f.from +₁ ≈g.from) ∘ (f₂ f +₁ f₂ g) ≈⟨ +₁∘+₁ ⟩
+ (≈f.from ∘ f₂ f) +₁ (≈g.from ∘ f₂ g) ≈⟨ +₁-cong₂ (≈f.from∘f₂≈f₂′) (≈g.from∘f₂≈f₂′) ⟩
+ f₂ f′ +₁ f₂ g′ ∎
+
+⊗ : Bifunctor Cospans Cospans Cospans
+⊗ = record
+ { F₀ = λ { (A , A′) → A + A′ }
+ ; F₁ = λ { (f , g) → together f g }
+ ; identity = λ { {x , y} → id⊗id≈id {x} {y} }
+ ; homomorphism = λ { {_} {_} {_} {A⇒B , A⇒B′} {B⇒C , B⇒C′} → homomorphism A⇒B B⇒C A⇒B′ B⇒C′ }
+ ; F-resp-≈ = λ { (≈f , ≈g) → ⊗-resp-≈ ≈f ≈g }
+ }