diff options
| author | Jacques Comeaux <jacquesrcomeaux@protonmail.com> | 2025-12-08 15:30:53 -0600 |
|---|---|---|
| committer | Jacques Comeaux <jacquesrcomeaux@protonmail.com> | 2025-12-08 15:30:53 -0600 |
| commit | cb2efa506d9ecec48aad72deb10acb6ffba45970 (patch) | |
| tree | 3fdec9635f55b2c90c1b68c616f97711e53d3f01 /Functor/Instance/Cospan/Stack.agda | |
| parent | 826b0b6007249ef518c5cff458ce6dc5c95fd43a (diff) | |
Update category of cospans
Diffstat (limited to 'Functor/Instance/Cospan/Stack.agda')
| -rw-r--r-- | Functor/Instance/Cospan/Stack.agda | 96 |
1 files changed, 48 insertions, 48 deletions
diff --git a/Functor/Instance/Cospan/Stack.agda b/Functor/Instance/Cospan/Stack.agda index 03cca1f..b72219b 100644 --- a/Functor/Instance/Cospan/Stack.agda +++ b/Functor/Instance/Cospan/Stack.agda @@ -9,9 +9,11 @@ import Categories.Diagram.Pushout.Properties as PushoutProperties import Categories.Morphism as Morphism import Categories.Morphism.Reasoning as ⇒-Reasoning -open import Categories.Category.Core using (Category) +open import Categories.Category using (Category) +open import Categories.Functor using (Functor) open import Categories.Functor.Bifunctor using (Bifunctor) -open import Category.Instance.Cospans 𝒞 using (Cospan; Cospans; Same; id-Cospan; compose) +open import Category.Instance.Cospans 𝒞 using (Cospans) +open import Category.Diagram.Cospan 𝒞 as Cospan using (Cospan; identity; compose; _⊗_) open import Category.Instance.FinitelyCocompletes {o} {ℓ} {e} using () renaming (_×_ to _×′_) open import Category.Cartesian.Instance.FinitelyCocompletes {o} {ℓ} {e} using (-+-; FinitelyCocompletes-CC) open import Data.Product.Base using (Σ; _,_; _×_; proj₁; proj₂) @@ -32,27 +34,19 @@ open DiagramPushout U×U using () renaming (Pushout to Pushout′) open import Categories.Category.Monoidal.Utilities monoidal using (_⊗ᵢ_) -together : {A A′ B B′ : Obj} → Cospan A B → Cospan A′ B′ → Cospan (A + A′) (B + B′) -together A⇒B A⇒B′ = record - { f₁ = f₁ A⇒B +₁ f₁ A⇒B′ - ; f₂ = f₂ A⇒B +₁ f₂ A⇒B′ - } - where - open Cospan - -id⊗id≈id : {A B : Obj} → Same (together (id-Cospan {A}) (id-Cospan {B})) (id-Cospan {A + B}) +id⊗id≈id : {A B : Obj} → identity {A} ⊗ identity {B} Cospan.≈ identity {A + B} id⊗id≈id {A} {B} = record { ≅N = ≅.refl - ; from∘f₁≈f₁′ = from∘f≈f′ - ; from∘f₂≈f₂′ = from∘f≈f′ + ; from∘f₁≈f₁ = from∘f≈f + ; from∘f₂≈f₂ = from∘f≈f } where open Morphism U using (module ≅) open HomReasoning open 𝒞 using (+-η; []-cong₂) open coproduct {A} {B} using (i₁; i₂) - from∘f≈f′ : id ∘ [ i₁ ∘ id , i₂ ∘ id ] 𝒞.≈ id - from∘f≈f′ = begin + from∘f≈f : id ∘ [ i₁ ∘ id , i₂ ∘ id ] 𝒞.≈ id + from∘f≈f = begin id ∘ [ i₁ ∘ id , i₂ ∘ id ] ≈⟨ identityˡ ⟩ [ i₁ ∘ id , i₂ ∘ id ] ≈⟨ []-cong₂ identityʳ identityʳ ⟩ [ i₁ , i₂ ] ≈⟨ +-η ⟩ @@ -64,14 +58,14 @@ homomorphism → (B⇒C : Cospan B C) → (A⇒B′ : Cospan A′ B′) → (B⇒C′ : Cospan B′ C′) - → Same (together (compose A⇒B B⇒C) (compose A⇒B′ B⇒C′)) (compose (together A⇒B A⇒B′) (together B⇒C B⇒C′) ) + → compose A⇒B B⇒C ⊗ compose A⇒B′ B⇒C′ Cospan.≈ compose (A⇒B ⊗ A⇒B′) (B⇒C ⊗ B⇒C′) homomorphism A⇒B B⇒C A⇒B′ B⇒C′ = record { ≅N = ≅N - ; from∘f₁≈f₁′ = from∘f₁≈f₁′ - ; from∘f₂≈f₂′ = from∘f₂≈f₂′ + ; from∘f₁≈f₁ = from∘f₁≈f₁ + ; from∘f₂≈f₂ = from∘f₂≈f₂ } where - open Cospan + open Cospan.Cospan open Pushout open HomReasoning open ⇒-Reasoning U @@ -89,56 +83,62 @@ homomorphism A⇒B B⇒C A⇒B′ B⇒C′ = record P₃′ = IsPushout⇒Pushout (-+-.F-resp-pushout P₁×P₂.isPushout) ≅N : Q P₃′ ≅ Q P₃ ≅N = up-to-iso P₃′ P₃ - from∘f₁≈f₁′ : from ≅N ∘ (f₁ (compose A⇒B B⇒C) +₁ f₁ (compose A⇒B′ B⇒C′)) ≈ f₁ (compose (together A⇒B A⇒B′) (together B⇒C B⇒C′)) - from∘f₁≈f₁′ = begin + from∘f₁≈f₁ : from ≅N ∘ (f₁ (compose A⇒B B⇒C) +₁ f₁ (compose A⇒B′ B⇒C′)) ≈ f₁ (compose (A⇒B ⊗ A⇒B′) (B⇒C ⊗ B⇒C′)) + from∘f₁≈f₁ = begin from ≅N ∘ (f₁ (compose A⇒B B⇒C) +₁ f₁ (compose A⇒B′ B⇒C′)) ≈⟨ Equiv.refl ⟩ from ≅N ∘ ((i₁ P₁ ∘ f₁ A⇒B) +₁ (i₁ P₂ ∘ f₁ A⇒B′)) ≈⟨ refl⟩∘⟨ +₁∘+₁ ⟨ from ≅N ∘ (i₁ P₁ +₁ i₁ P₂) ∘ (f₁ A⇒B +₁ f₁ A⇒B′) ≈⟨ Equiv.refl ⟩ - from ≅N ∘ i₁ P₃′ ∘ f₁ (together A⇒B A⇒B′) ≈⟨ pullˡ (universal∘i₁≈h₁ P₃′) ⟩ - i₁ P₃ ∘ f₁ (together A⇒B A⇒B′) ∎ - from∘f₂≈f₂′ : from ≅N ∘ (f₂ (compose A⇒B B⇒C) +₁ f₂ (compose A⇒B′ B⇒C′)) ≈ f₂ (compose (together A⇒B A⇒B′) (together B⇒C B⇒C′)) - from∘f₂≈f₂′ = begin + from ≅N ∘ i₁ P₃′ ∘ f₁ (A⇒B ⊗ A⇒B′) ≈⟨ pullˡ (universal∘i₁≈h₁ P₃′) ⟩ + i₁ P₃ ∘ f₁ (A⇒B ⊗ A⇒B′) ∎ + from∘f₂≈f₂ : from ≅N ∘ (f₂ (compose A⇒B B⇒C) +₁ f₂ (compose A⇒B′ B⇒C′)) ≈ f₂ (compose (A⇒B ⊗ A⇒B′) (B⇒C ⊗ B⇒C′)) + from∘f₂≈f₂ = begin from ≅N ∘ (f₂ (compose A⇒B B⇒C) +₁ f₂ (compose A⇒B′ B⇒C′)) ≈⟨ Equiv.refl ⟩ from ≅N ∘ ((i₂ P₁ ∘ f₂ B⇒C) +₁ (i₂ P₂ ∘ f₂ B⇒C′)) ≈⟨ refl⟩∘⟨ +₁∘+₁ ⟨ from ≅N ∘ (i₂ P₁ +₁ i₂ P₂) ∘ (f₂ B⇒C +₁ f₂ B⇒C′) ≈⟨ Equiv.refl ⟩ - from ≅N ∘ i₂ P₃′ ∘ f₂ (together B⇒C B⇒C′) ≈⟨ pullˡ (universal∘i₂≈h₂ P₃′) ⟩ - i₂ P₃ ∘ f₂ (together B⇒C B⇒C′) ∎ + from ≅N ∘ i₂ P₃′ ∘ f₂ (B⇒C ⊗ B⇒C′) ≈⟨ pullˡ (universal∘i₂≈h₂ P₃′) ⟩ + i₂ P₃ ∘ f₂ (B⇒C ⊗ B⇒C′) ∎ ⊗-resp-≈ : {A A′ B B′ : Obj} {f f′ : Cospan A B} {g g′ : Cospan A′ B′} - → Same f f′ - → Same g g′ - → Same (together f g) (together f′ g′) + → f Cospan.≈ f′ + → g Cospan.≈ g′ + → f ⊗ g Cospan.≈ f′ ⊗ g′ ⊗-resp-≈ {_} {_} {_} {_} {f} {f′} {g} {g′} ≈f ≈g = record { ≅N = ≈f.≅N ⊗ᵢ ≈g.≅N - ; from∘f₁≈f₁′ = from∘f₁≈f₁′ - ; from∘f₂≈f₂′ = from∘f₂≈f₂′ + ; from∘f₁≈f₁ = from∘f₁≈f₁ + ; from∘f₂≈f₂ = from∘f₂≈f₂ } where open 𝒞 using (-+-) - module ≈f = Same ≈f - module ≈g = Same ≈g + module ≈f = Cospan._≈_ ≈f + module ≈g = Cospan._≈_ ≈g open HomReasoning - open Cospan + open Cospan.Cospan open 𝒞 using (+₁-cong₂; +₁∘+₁) - from∘f₁≈f₁′ : (≈f.from +₁ ≈g.from) ∘ (f₁ f +₁ f₁ g) ≈ f₁ f′ +₁ f₁ g′ - from∘f₁≈f₁′ = begin + from∘f₁≈f₁ : (≈f.from +₁ ≈g.from) ∘ (f₁ f +₁ f₁ g) ≈ f₁ f′ +₁ f₁ g′ + from∘f₁≈f₁ = begin (≈f.from +₁ ≈g.from) ∘ (f₁ f +₁ f₁ g) ≈⟨ +₁∘+₁ ⟩ - (≈f.from ∘ f₁ f) +₁ (≈g.from ∘ f₁ g) ≈⟨ +₁-cong₂ (≈f.from∘f₁≈f₁′) (≈g.from∘f₁≈f₁′) ⟩ + (≈f.from ∘ f₁ f) +₁ (≈g.from ∘ f₁ g) ≈⟨ +₁-cong₂ ≈f.from∘f₁≈f₁ ≈g.from∘f₁≈f₁ ⟩ f₁ f′ +₁ f₁ g′ ∎ - from∘f₂≈f₂′ : (≈f.from +₁ ≈g.from) ∘ (f₂ f +₁ f₂ g) ≈ f₂ f′ +₁ f₂ g′ - from∘f₂≈f₂′ = begin + from∘f₂≈f₂ : (≈f.from +₁ ≈g.from) ∘ (f₂ f +₁ f₂ g) ≈ f₂ f′ +₁ f₂ g′ + from∘f₂≈f₂ = begin (≈f.from +₁ ≈g.from) ∘ (f₂ f +₁ f₂ g) ≈⟨ +₁∘+₁ ⟩ - (≈f.from ∘ f₂ f) +₁ (≈g.from ∘ f₂ g) ≈⟨ +₁-cong₂ (≈f.from∘f₂≈f₂′) (≈g.from∘f₂≈f₂′) ⟩ + (≈f.from ∘ f₂ f) +₁ (≈g.from ∘ f₂ g) ≈⟨ +₁-cong₂ ≈f.from∘f₂≈f₂ ≈g.from∘f₂≈f₂ ⟩ f₂ f′ +₁ f₂ g′ ∎ +private + ⊗′ : Bifunctor Cospans Cospans Cospans + ⊗′ = record + { F₀ = λ (A , A′) → A + A′ + ; F₁ = λ (f , g) → f ⊗ g + ; identity = λ { {x , y} → id⊗id≈id {x} {y} } + ; homomorphism = λ { {_} {_} {_} {A⇒B , A⇒B′} {B⇒C , B⇒C′} → homomorphism A⇒B B⇒C A⇒B′ B⇒C′ } + ; F-resp-≈ = λ (≈f , ≈g) → ⊗-resp-≈ ≈f ≈g + } + ⊗ : Bifunctor Cospans Cospans Cospans -⊗ = record - { F₀ = λ { (A , A′) → A + A′ } - ; F₁ = λ { (f , g) → together f g } - ; identity = λ { {x , y} → id⊗id≈id {x} {y} } - ; homomorphism = λ { {_} {_} {_} {A⇒B , A⇒B′} {B⇒C , B⇒C′} → homomorphism A⇒B B⇒C A⇒B′ B⇒C′ } - ; F-resp-≈ = λ { (≈f , ≈g) → ⊗-resp-≈ ≈f ≈g } - } +⊗ = ⊗′ + +module ⊗ = Functor ⊗ |
