aboutsummaryrefslogtreecommitdiff
path: root/Functor/Instance/FreeMonoid.agda
diff options
context:
space:
mode:
authorJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-10-30 17:45:31 -0500
committerJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-10-30 17:45:31 -0500
commite90c54ce55d36019d32e239509ff5f96c5dff2b3 (patch)
treefcef274fccc7feab91d1bb84c365c81495cbe52d /Functor/Instance/FreeMonoid.agda
parenta34e05e875802477f8794ecb330b01c473c024c4 (diff)
Add free functor from setoids to monoids in setoids
Diffstat (limited to 'Functor/Instance/FreeMonoid.agda')
-rw-r--r--Functor/Instance/FreeMonoid.agda64
1 files changed, 64 insertions, 0 deletions
diff --git a/Functor/Instance/FreeMonoid.agda b/Functor/Instance/FreeMonoid.agda
new file mode 100644
index 0000000..bb26fd4
--- /dev/null
+++ b/Functor/Instance/FreeMonoid.agda
@@ -0,0 +1,64 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Level using (Level; _⊔_)
+
+module Functor.Instance.FreeMonoid {c ℓ : Level} where
+
+import Categories.Object.Monoid as MonoidObject
+
+open import Categories.Category.Construction.Monoids using (Monoids)
+open import Categories.Category.Instance.Setoids using (Setoids)
+open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory)
+open import Categories.Functor using (Functor)
+open import Categories.NaturalTransformation using (NaturalTransformation)
+open import Category.Instance.Setoids.SymmetricMonoidal {c} {c ⊔ ℓ} using (Setoids-×)
+open import Data.List.Properties using (++-assoc; ++-identityˡ; ++-identityʳ)
+open import Data.Product using (_,_)
+open import Function using (_⟶ₛ_)
+open import Functor.Instance.List {c} {ℓ} using (List)
+open import NaturalTransformation.Instance.EmptyList {c} {ℓ} using (⊤⇒[])
+open import NaturalTransformation.Instance.ListAppend {c} {ℓ} using (++)
+open import Relation.Binary using (Setoid)
+open import Relation.Binary.PropositionalEquality as ≡ using (_≡_)
+
+module List = Functor List
+module Setoids-× = SymmetricMonoidalCategory Setoids-×
+module ++ = NaturalTransformation ++
+module ⊤⇒[] = NaturalTransformation ⊤⇒[]
+
+open Functor
+open MonoidObject Setoids-×.monoidal using (Monoid; IsMonoid; Monoid⇒)
+open IsMonoid
+
+module _ (X : Setoid c ℓ) where
+
+ private
+ module X = Setoid X
+ module ListX = Setoid (List.₀ X)
+
+ ListMonoid : IsMonoid (List.₀ X)
+ ListMonoid .μ = ++.η X
+ ListMonoid .η = ⊤⇒[].η X
+ ListMonoid .assoc {(x , y) , z} = ListX.reflexive (++-assoc x y z)
+ ListMonoid .identityˡ {_ , x} = ListX.reflexive (++-identityˡ x)
+ ListMonoid .identityʳ {x , _} = ListX.reflexive (≡.sym (++-identityʳ x))
+
+FreeMonoid₀ : (X : Setoid c ℓ) → Monoid
+FreeMonoid₀ X = record { isMonoid = ListMonoid X }
+
+FreeMonoid₁
+ : {A B : Setoid c ℓ}
+ (f : A ⟶ₛ B)
+ → Monoid⇒ (FreeMonoid₀ A) (FreeMonoid₀ B)
+FreeMonoid₁ f = record
+ { arr = List.₁ f
+ ; preserves-μ = λ {x,y} → ++.sym-commute f {x,y}
+ ; preserves-η = ⊤⇒[].commute f
+ }
+
+FreeMonoid : Functor (Setoids c ℓ) (Monoids Setoids-×.monoidal)
+FreeMonoid .F₀ = FreeMonoid₀
+FreeMonoid .F₁ = FreeMonoid₁
+FreeMonoid .identity {X} = List.identity {X}
+FreeMonoid .homomorphism {X} {Y} {Z} {f} {g} = List.homomorphism {X} {Y} {Z} {f} {g}
+FreeMonoid .F-resp-≈ {A} {B} {f} {g} = List.F-resp-≈ {A} {B} {f} {g}