aboutsummaryrefslogtreecommitdiff
path: root/Functor/Instance/Nat/Edge.agda
diff options
context:
space:
mode:
authorJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-11-09 20:28:11 -0600
committerJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-11-09 20:28:11 -0600
commited5f0ae0f95a1675b272b205bb58724368031c01 (patch)
tree9b0cbe733a77d83050b665fe984a6e21c64a3815 /Functor/Instance/Nat/Edge.agda
parent6a5154cf29d98ab644b5def52c55f213d1076e2b (diff)
Use functional vector in edge definition
Diffstat (limited to 'Functor/Instance/Nat/Edge.agda')
-rw-r--r--Functor/Instance/Nat/Edge.agda9
1 files changed, 5 insertions, 4 deletions
diff --git a/Functor/Instance/Nat/Edge.agda b/Functor/Instance/Nat/Edge.agda
index 5de8f84..c69a1db 100644
--- a/Functor/Instance/Nat/Edge.agda
+++ b/Functor/Instance/Nat/Edge.agda
@@ -12,6 +12,7 @@ open import Categories.Category.Instance.Nat using (Nat)
open import Categories.Category.Instance.Setoids using (Setoids)
open import Categories.Functor using (Functor)
open import Data.Fin using (Fin)
+open import Data.Fin.Properties using (cast-is-id)
open import Data.Hypergraph.Edge {ℓ} HL as Edge using (Edgeₛ; map; mapₛ; _≈_)
open import Data.Nat using (ℕ)
open import Data.Vec.Relation.Binary.Equality.Cast using (≈-reflexive)
@@ -29,7 +30,7 @@ open Functor
map-id : {v : ℕ} {e : Edge.Edge v} → map id e ≈ e
map-id .≡arity = ≡.refl
map-id .≡label = HL.≈-reflexive ≡.refl
-map-id {_} {e} .≡ports = ≈-reflexive (VecProps.map-id (ports e))
+map-id {_} {e} .≡ports = ≡.cong (ports e) ∘ ≡.sym ∘ cast-is-id ≡.refl
map-∘
: {n m o : ℕ}
@@ -39,7 +40,7 @@ map-∘
→ map (g ∘ f) e ≈ map g (map f e)
map-∘ f g .≡arity = ≡.refl
map-∘ f g .≡label = HL.≈-reflexive ≡.refl
-map-∘ f g {e} .≡ports = ≈-reflexive (VecProps.map-∘ g f (ports e))
+map-∘ f g {e} .≡ports = ≡.cong (g ∘ f ∘ ports e) ∘ ≡.sym ∘ cast-is-id ≡.refl
map-resp-≗
: {n m : ℕ}
@@ -49,11 +50,11 @@ map-resp-≗
→ map f e ≈ map g e
map-resp-≗ f≗g .≡arity = ≡.refl
map-resp-≗ f≗g .≡label = HL.≈-reflexive ≡.refl
-map-resp-≗ f≗g {e} .≡ports = ≈-reflexive (VecProps.map-cong f≗g (ports e))
+map-resp-≗ {g = g} f≗g {e} .≡ports i = ≡.trans (f≗g (ports e i)) (≡.cong (g ∘ ports e) (≡.sym (cast-is-id ≡.refl i)))
Edge : Functor Nat (Setoids ℓ ℓ)
Edge .F₀ = Edgeₛ
Edge .F₁ = mapₛ
Edge .identity = map-id
-Edge .homomorphism = map-∘ _ _
+Edge .homomorphism {f = f} {g} = map-∘ f g
Edge .F-resp-≈ = map-resp-≗