diff options
| author | Jacques Comeaux <jacquesrcomeaux@protonmail.com> | 2025-11-13 13:24:21 -0600 |
|---|---|---|
| committer | Jacques Comeaux <jacquesrcomeaux@protonmail.com> | 2025-11-13 13:24:21 -0600 |
| commit | 05cbf6f56bce1d45876630fe29b694dc57942e9c (patch) | |
| tree | f2d888b155c44487cc1b8b9b590c6cf207578c4e /Functor/Instance | |
| parent | ed5f0ae0f95a1675b272b205bb58724368031c01 (diff) | |
Add adjunction between free monoid and forget
Diffstat (limited to 'Functor/Instance')
| -rw-r--r-- | Functor/Instance/FreeMonoid.agda | 64 | ||||
| -rw-r--r-- | Functor/Instance/List.agda | 10 |
2 files changed, 6 insertions, 68 deletions
diff --git a/Functor/Instance/FreeMonoid.agda b/Functor/Instance/FreeMonoid.agda deleted file mode 100644 index bb26fd4..0000000 --- a/Functor/Instance/FreeMonoid.agda +++ /dev/null @@ -1,64 +0,0 @@ -{-# OPTIONS --without-K --safe #-} - -open import Level using (Level; _⊔_) - -module Functor.Instance.FreeMonoid {c ℓ : Level} where - -import Categories.Object.Monoid as MonoidObject - -open import Categories.Category.Construction.Monoids using (Monoids) -open import Categories.Category.Instance.Setoids using (Setoids) -open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory) -open import Categories.Functor using (Functor) -open import Categories.NaturalTransformation using (NaturalTransformation) -open import Category.Instance.Setoids.SymmetricMonoidal {c} {c ⊔ ℓ} using (Setoids-×) -open import Data.List.Properties using (++-assoc; ++-identityˡ; ++-identityʳ) -open import Data.Product using (_,_) -open import Function using (_⟶ₛ_) -open import Functor.Instance.List {c} {ℓ} using (List) -open import NaturalTransformation.Instance.EmptyList {c} {ℓ} using (⊤⇒[]) -open import NaturalTransformation.Instance.ListAppend {c} {ℓ} using (++) -open import Relation.Binary using (Setoid) -open import Relation.Binary.PropositionalEquality as ≡ using (_≡_) - -module List = Functor List -module Setoids-× = SymmetricMonoidalCategory Setoids-× -module ++ = NaturalTransformation ++ -module ⊤⇒[] = NaturalTransformation ⊤⇒[] - -open Functor -open MonoidObject Setoids-×.monoidal using (Monoid; IsMonoid; Monoid⇒) -open IsMonoid - -module _ (X : Setoid c ℓ) where - - private - module X = Setoid X - module ListX = Setoid (List.₀ X) - - ListMonoid : IsMonoid (List.₀ X) - ListMonoid .μ = ++.η X - ListMonoid .η = ⊤⇒[].η X - ListMonoid .assoc {(x , y) , z} = ListX.reflexive (++-assoc x y z) - ListMonoid .identityˡ {_ , x} = ListX.reflexive (++-identityˡ x) - ListMonoid .identityʳ {x , _} = ListX.reflexive (≡.sym (++-identityʳ x)) - -FreeMonoid₀ : (X : Setoid c ℓ) → Monoid -FreeMonoid₀ X = record { isMonoid = ListMonoid X } - -FreeMonoid₁ - : {A B : Setoid c ℓ} - (f : A ⟶ₛ B) - → Monoid⇒ (FreeMonoid₀ A) (FreeMonoid₀ B) -FreeMonoid₁ f = record - { arr = List.₁ f - ; preserves-μ = λ {x,y} → ++.sym-commute f {x,y} - ; preserves-η = ⊤⇒[].commute f - } - -FreeMonoid : Functor (Setoids c ℓ) (Monoids Setoids-×.monoidal) -FreeMonoid .F₀ = FreeMonoid₀ -FreeMonoid .F₁ = FreeMonoid₁ -FreeMonoid .identity {X} = List.identity {X} -FreeMonoid .homomorphism {X} {Y} {Z} {f} {g} = List.homomorphism {X} {Y} {Z} {f} {g} -FreeMonoid .F-resp-≈ {A} {B} {f} {g} = List.F-resp-≈ {A} {B} {f} {g} diff --git a/Functor/Instance/List.agda b/Functor/Instance/List.agda index ceb73e1..a280218 100644 --- a/Functor/Instance/List.agda +++ b/Functor/Instance/List.agda @@ -18,7 +18,7 @@ open Functor open Setoid using (reflexive) open Func -open import Data.Opaque.List as List hiding (List) +open import Data.Opaque.List as L hiding (List) private variable @@ -29,7 +29,7 @@ open import Function.Construct.Setoid using (_∙_) opaque - unfolding List.List + unfolding L.List map-id : (xs : ∣ Listₛ A ∣) @@ -58,8 +58,10 @@ opaque -- which applies the same function to every element of a list List : Functor (Setoids c ℓ) (Setoids c (c ⊔ ℓ)) -List .F₀ = List.Listₛ -List .F₁ = List.mapₛ +List .F₀ = Listₛ +List .F₁ = mapₛ List .identity {_} {xs} = map-id xs List .homomorphism {f = f} {g} {xs} = List-homo f g xs List .F-resp-≈ {f = f} {g} f≈g = List-resp-≈ f g f≈g + +module List = Functor List |
