aboutsummaryrefslogtreecommitdiff
path: root/Functor/Instance
diff options
context:
space:
mode:
authorJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-11-05 08:08:39 -0600
committerJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-11-05 08:08:39 -0600
commit0ce2b2ee7bc6f37473de60d801391dd3ff2dc024 (patch)
treeb62e29d4b3338506cd7d7454a0945c1432e42058 /Functor/Instance
parent07a14947f6fee3219d575a15938bf33764cce791 (diff)
Add multiset functor
Diffstat (limited to 'Functor/Instance')
-rw-r--r--Functor/Instance/Multiset.agda60
1 files changed, 60 insertions, 0 deletions
diff --git a/Functor/Instance/Multiset.agda b/Functor/Instance/Multiset.agda
new file mode 100644
index 0000000..0adb1df
--- /dev/null
+++ b/Functor/Instance/Multiset.agda
@@ -0,0 +1,60 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Level using (Level; _⊔_)
+
+module Functor.Instance.Multiset {c ℓ : Level} where
+
+import Data.List as List
+import Data.List.Properties as ListProps
+import Data.List.Relation.Binary.Pointwise as PW
+
+open import Data.List.Relation.Binary.Permutation.Setoid using (↭-setoid; ↭-reflexive-≋)
+open import Data.List.Relation.Binary.Permutation.Setoid.Properties using (map⁺)
+
+open import Categories.Category.Instance.Setoids using (Setoids)
+open import Categories.Functor using (Functor)
+open import Data.Setoid using (∣_∣)
+open import Function.Base using (_∘_; id)
+open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_)
+open import Relation.Binary using (Setoid)
+
+open Functor
+open Setoid using (reflexive)
+open Func
+
+private
+ variable
+ A B C : Setoid c ℓ
+
+-- the Multiset functor takes a carrier A to lists of A
+-- and the equivalence on A to permutation equivalence on lists of A
+
+Multisetₛ : Setoid c ℓ → Setoid c (c ⊔ ℓ)
+Multisetₛ x = ↭-setoid x
+
+-- Multiset on morphisms applies the same function to every element of a multiset
+
+mapₛ : A ⟶ₛ B → Multisetₛ A ⟶ₛ Multisetₛ B
+mapₛ f .to = List.map (to f)
+mapₛ {A} {B} f .cong = map⁺ A B (cong f)
+
+map-id
+ : (xs : ∣ Multisetₛ A ∣)
+ → (open Setoid (Multisetₛ A))
+ → List.map id xs ≈ xs
+map-id {A} = reflexive (Multisetₛ A) ∘ ListProps.map-id
+
+Multiset-homo
+ : (f : A ⟶ₛ B)
+ (g : B ⟶ₛ C)
+ → (xs : ∣ Multisetₛ A ∣)
+ → (open Setoid (Multisetₛ C))
+ → List.map (to g ∘ to f) xs ≈ List.map (to g) (List.map (to f) xs)
+Multiset-homo {C = C} f g = reflexive (Multisetₛ C) ∘ ListProps.map-∘
+
+Multiset : Functor (Setoids c ℓ) (Setoids c (c ⊔ ℓ))
+Multiset .F₀ = Multisetₛ
+Multiset .F₁ = mapₛ
+Multiset .identity {A} {xs} = map-id {A} xs
+Multiset .homomorphism {f = f} {g} {xs} = Multiset-homo f g xs
+Multiset .F-resp-≈ {A} {B} {f} {g} f≈g = ↭-reflexive-≋ B (PW.map⁺ (to f) (to g) (PW.refl f≈g))