aboutsummaryrefslogtreecommitdiff
path: root/Functor/Instance
diff options
context:
space:
mode:
authorJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-11-09 20:28:11 -0600
committerJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-11-09 20:28:11 -0600
commited5f0ae0f95a1675b272b205bb58724368031c01 (patch)
tree9b0cbe733a77d83050b665fe984a6e21c64a3815 /Functor/Instance
parent6a5154cf29d98ab644b5def52c55f213d1076e2b (diff)
Use functional vector in edge definition
Diffstat (limited to 'Functor/Instance')
-rw-r--r--Functor/Instance/List.agda61
-rw-r--r--Functor/Instance/Nat/Circ.agda2
-rw-r--r--Functor/Instance/Nat/Edge.agda9
3 files changed, 40 insertions, 32 deletions
diff --git a/Functor/Instance/List.agda b/Functor/Instance/List.agda
index b40670d..ceb73e1 100644
--- a/Functor/Instance/List.agda
+++ b/Functor/Instance/List.agda
@@ -4,13 +4,12 @@ open import Level using (Level; _⊔_)
module Functor.Instance.List {c ℓ : Level} where
-import Data.List as List
import Data.List.Properties as ListProps
import Data.List.Relation.Binary.Pointwise as PW
open import Categories.Category.Instance.Setoids using (Setoids)
open import Categories.Functor using (Functor)
-open import Data.Setoid using (∣_∣)
+open import Data.Setoid using (∣_∣; _⇒ₛ_)
open import Function.Base using (_∘_; id)
open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_)
open import Relation.Binary using (Setoid)
@@ -19,40 +18,48 @@ open Functor
open Setoid using (reflexive)
open Func
+open import Data.Opaque.List as List hiding (List)
+
private
variable
A B C : Setoid c ℓ
--- the List functor takes a carrier A to lists of A
--- and the equivalence on A to pointwise equivalence on lists of A
+open import Function.Construct.Identity using () renaming (function to Id)
+open import Function.Construct.Setoid using (_∙_)
-Listₛ : Setoid c ℓ → Setoid c (c ⊔ ℓ)
-Listₛ = PW.setoid
+opaque
--- List on morphisms is the familiar map operation
--- which applies the same function to every element of a list
+ unfolding List.List
+
+ map-id
+ : (xs : ∣ Listₛ A ∣)
+ → (open Setoid (Listₛ A))
+ → mapₛ (Id _) ⟨$⟩ xs ≈ xs
+ map-id {A} = reflexive (Listₛ A) ∘ ListProps.map-id
-mapₛ : A ⟶ₛ B → Listₛ A ⟶ₛ Listₛ B
-mapₛ f .to = List.map (to f)
-mapₛ f .cong = PW.map⁺ (to f) (to f) ∘ PW.map (cong f)
+ List-homo
+ : (f : A ⟶ₛ B)
+ (g : B ⟶ₛ C)
+ → (xs : ∣ Listₛ A ∣)
+ → (open Setoid (Listₛ C))
+ → mapₛ (g ∙ f) ⟨$⟩ xs ≈ mapₛ g ⟨$⟩ (mapₛ f ⟨$⟩ xs)
+ List-homo {C = C} f g = reflexive (Listₛ C) ∘ ListProps.map-∘
-map-id
- : (xs : ∣ Listₛ A ∣)
- → (open Setoid (Listₛ A))
- → List.map id xs ≈ xs
-map-id {A} = reflexive (Listₛ A) ∘ ListProps.map-id
+ List-resp-≈
+ : (f g : A ⟶ₛ B)
+ → (let open Setoid (A ⇒ₛ B) in f ≈ g)
+ → (let open Setoid (Listₛ A ⇒ₛ Listₛ B) in mapₛ f ≈ mapₛ g)
+ List-resp-≈ f g f≈g = PW.map⁺ (to f) (to g) (PW.refl f≈g)
-List-homo
- : (f : A ⟶ₛ B)
- (g : B ⟶ₛ C)
- → (xs : ∣ Listₛ A ∣)
- → (open Setoid (Listₛ C))
- → List.map (to g ∘ to f) xs ≈ List.map (to g) (List.map (to f) xs)
-List-homo {C = C} f g = reflexive (Listₛ C) ∘ ListProps.map-∘
+-- the List functor takes a carrier A to lists of A
+-- and the equivalence on A to pointwise equivalence on lists of A
+
+-- List on morphisms is the familiar map operation
+-- which applies the same function to every element of a list
List : Functor (Setoids c ℓ) (Setoids c (c ⊔ ℓ))
-List .F₀ = Listₛ
-List .F₁ = mapₛ
-List .identity {A} {xs} = map-id {A} xs
+List .F₀ = List.Listₛ
+List .F₁ = List.mapₛ
+List .identity {_} {xs} = map-id xs
List .homomorphism {f = f} {g} {xs} = List-homo f g xs
-List .F-resp-≈ {A} {B} {f} {g} f≈g = PW.map⁺ (to f) (to g) (PW.refl f≈g)
+List .F-resp-≈ {f = f} {g} f≈g = List-resp-≈ f g f≈g
diff --git a/Functor/Instance/Nat/Circ.agda b/Functor/Instance/Nat/Circ.agda
index 09bc495..36d726d 100644
--- a/Functor/Instance/Nat/Circ.agda
+++ b/Functor/Instance/Nat/Circ.agda
@@ -28,5 +28,5 @@ Circ : Functor Nat (Setoids ℓ ℓ)
Circ .F₀ = Circuitₛ
Circ .F₁ = mapₛ
Circ .identity = cong mkCircuitₛ Multiset∘Edge.identity
-Circ .homomorphism = cong mkCircuitₛ Multiset∘Edge.homomorphism
+Circ .homomorphism {f = f} {g = g} = cong mkCircuitₛ (Multiset∘Edge.homomorphism {f = f} {g = g})
Circ .F-resp-≈ f≗g = cong mkCircuitₛ (Multiset∘Edge.F-resp-≈ f≗g)
diff --git a/Functor/Instance/Nat/Edge.agda b/Functor/Instance/Nat/Edge.agda
index 5de8f84..c69a1db 100644
--- a/Functor/Instance/Nat/Edge.agda
+++ b/Functor/Instance/Nat/Edge.agda
@@ -12,6 +12,7 @@ open import Categories.Category.Instance.Nat using (Nat)
open import Categories.Category.Instance.Setoids using (Setoids)
open import Categories.Functor using (Functor)
open import Data.Fin using (Fin)
+open import Data.Fin.Properties using (cast-is-id)
open import Data.Hypergraph.Edge {ℓ} HL as Edge using (Edgeₛ; map; mapₛ; _≈_)
open import Data.Nat using (ℕ)
open import Data.Vec.Relation.Binary.Equality.Cast using (≈-reflexive)
@@ -29,7 +30,7 @@ open Functor
map-id : {v : ℕ} {e : Edge.Edge v} → map id e ≈ e
map-id .≡arity = ≡.refl
map-id .≡label = HL.≈-reflexive ≡.refl
-map-id {_} {e} .≡ports = ≈-reflexive (VecProps.map-id (ports e))
+map-id {_} {e} .≡ports = ≡.cong (ports e) ∘ ≡.sym ∘ cast-is-id ≡.refl
map-∘
: {n m o : ℕ}
@@ -39,7 +40,7 @@ map-∘
→ map (g ∘ f) e ≈ map g (map f e)
map-∘ f g .≡arity = ≡.refl
map-∘ f g .≡label = HL.≈-reflexive ≡.refl
-map-∘ f g {e} .≡ports = ≈-reflexive (VecProps.map-∘ g f (ports e))
+map-∘ f g {e} .≡ports = ≡.cong (g ∘ f ∘ ports e) ∘ ≡.sym ∘ cast-is-id ≡.refl
map-resp-≗
: {n m : ℕ}
@@ -49,11 +50,11 @@ map-resp-≗
→ map f e ≈ map g e
map-resp-≗ f≗g .≡arity = ≡.refl
map-resp-≗ f≗g .≡label = HL.≈-reflexive ≡.refl
-map-resp-≗ f≗g {e} .≡ports = ≈-reflexive (VecProps.map-cong f≗g (ports e))
+map-resp-≗ {g = g} f≗g {e} .≡ports i = ≡.trans (f≗g (ports e i)) (≡.cong (g ∘ ports e) (≡.sym (cast-is-id ≡.refl i)))
Edge : Functor Nat (Setoids ℓ ℓ)
Edge .F₀ = Edgeₛ
Edge .F₁ = mapₛ
Edge .identity = map-id
-Edge .homomorphism = map-∘ _ _
+Edge .homomorphism {f = f} {g} = map-∘ f g
Edge .F-resp-≈ = map-resp-≗