aboutsummaryrefslogtreecommitdiff
path: root/Functor/Monoidal/Instance/Nat/Pull.agda
diff options
context:
space:
mode:
authorJacques Comeaux <jacquesrcomeaux@protonmail.com>2026-01-13 17:15:31 -0600
committerJacques Comeaux <jacquesrcomeaux@protonmail.com>2026-01-13 17:15:31 -0600
commit3bf15830058dab0baca2b8518e4fe1c4a7363e45 (patch)
treea957eb783c77c2f4ec69b507a0e5cd51ed503379 /Functor/Monoidal/Instance/Nat/Pull.agda
parentc65be5a260a44f35e26b771026153643ad2464b3 (diff)
Remove old monoidal functors
Diffstat (limited to 'Functor/Monoidal/Instance/Nat/Pull.agda')
-rw-r--r--Functor/Monoidal/Instance/Nat/Pull.agda166
1 files changed, 0 insertions, 166 deletions
diff --git a/Functor/Monoidal/Instance/Nat/Pull.agda b/Functor/Monoidal/Instance/Nat/Pull.agda
deleted file mode 100644
index b267f97..0000000
--- a/Functor/Monoidal/Instance/Nat/Pull.agda
+++ /dev/null
@@ -1,166 +0,0 @@
-{-# OPTIONS --without-K --safe #-}
-
-module Functor.Monoidal.Instance.Nat.Pull where
-
-import Categories.Morphism as Morphism
-
-open import Level using (0ℓ; Level)
-
-open import Category.Instance.Setoids.SymmetricMonoidal {0ℓ} {0ℓ} using (Setoids-×)
-open import Category.Monoidal.Instance.Nat using (Natop,+,0; Natop-Cartesian)
-
-open import Categories.Category.BinaryProducts using (module BinaryProducts)
-open import Categories.Category.Cartesian using (Cartesian)
-open import Categories.Category.Cocartesian using (Cocartesian; BinaryCoproducts)
-open import Categories.Category.Instance.Nat using (Nat)
-open import Categories.Category.Instance.Nat using (Nat-Cocartesian)
-open import Data.Setoid.Unit using (⊤ₛ)
-open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory)
-open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian)
-open import Categories.Category.Product using (_⁂_)
-open import Categories.Functor using (_∘F_)
-open import Categories.Functor.Monoidal.Symmetric Natop,+,0 Setoids-× using (module Strong)
-open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
-open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; niHelper)
-open import Data.Circuit.Value using (Monoid)
-open import Data.Vector using (++-assoc)
-open import Data.Fin.Base using (Fin; splitAt; join)
-open import Data.Fin.Permutation using (Permutation; _⟨$⟩ʳ_; _⟨$⟩ˡ_)
-open import Data.Fin.Preimage using (preimage)
-open import Data.Fin.Properties using (splitAt-join; splitAt-↑ˡ; splitAt-↑ʳ; join-splitAt)
-open import Data.Nat.Base using (ℕ; _+_)
-open import Data.Product.Base using (_,_; _×_; Σ; proj₁; proj₂)
-open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
-open import Data.Setoid using (∣_∣)
-open import Data.Subset.Functional using (Subset)
-open import Data.Sum.Base using ([_,_]′; map; map₁; map₂; inj₁; inj₂)
-open import Data.Sum.Properties using ([,]-map; [,]-cong; [-,]-cong; [,-]-cong; [,]-∘)
-open import Data.System.Values Monoid using (Values; <ε>; []-unique; _++_; ++ₛ; splitₛ; _≋_; [])
-open import Data.Unit.Polymorphic using (tt)
-open import Function using (Func; _⟶ₛ_; _⟨$⟩_; _∘_)
-open import Function.Construct.Constant using () renaming (function to Const)
-open import Functor.Instance.Nat.Pull using (Pull; Pull-defs)
-open import Relation.Binary using (Setoid)
-open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_; module ≡-Reasoning)
-
-open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using (products)
-
-open BinaryProducts products using (-×-)
-open Cocartesian Nat-Cocartesian using (module Dual; _+₁_; +-assocʳ; +-comm; +-swap; +₁∘+-swap; i₁; i₂)
-open Dual.op-binaryProducts using () renaming (-×- to -+-; assocˡ∘⟨⟩ to []∘assocʳ; swap∘⟨⟩ to []∘swap)
-open Func
-open Morphism (Setoids-×.U) using (_≅_; module Iso)
-open Strong using (SymmetricMonoidalFunctor)
-open ≡-Reasoning
-
-private
-
- open _≅_
- open Iso
-
- Pull-ε : ⊤ₛ ≅ Values 0
- from Pull-ε = Const ⊤ₛ (Values 0) []
- to Pull-ε = Const (Values 0) ⊤ₛ tt
- isoˡ (iso Pull-ε) = tt
- isoʳ (iso Pull-ε) {x} = []-unique [] x
-
- opaque
- unfolding _++_
- unfolding Pull-defs
- Pull-++
- : {n n′ m m′ : ℕ}
- (f : Fin n → Fin n′)
- (g : Fin m → Fin m′)
- {xs : ∣ Values n′ ∣}
- {ys : ∣ Values m′ ∣}
- → (Pull.₁ f ⟨$⟩ xs) ++ (Pull.₁ g ⟨$⟩ ys) ≋ Pull.₁ (f +₁ g) ⟨$⟩ (xs ++ ys)
- Pull-++ {n} {n′} {m} {m′} f g {xs} {ys} e = begin
- (xs ∘ f ++ ys ∘ g) e ≡⟨ [,]-map (splitAt n e) ⟨
- [ xs , ys ]′ (map f g (splitAt n e)) ≡⟨ ≡.cong [ xs , ys ]′ (splitAt-join n′ m′ (map f g (splitAt n e))) ⟨
- (xs ++ ys) (join n′ m′ (map f g (splitAt n e))) ≡⟨ ≡.cong (xs ++ ys) ([,]-map (splitAt n e)) ⟩
- (xs ++ ys) ((f +₁ g) e) ∎
-
- module _ {n m : ℕ} where
-
- opaque
- unfolding splitₛ
-
- open import Function.Construct.Setoid using (setoid)
- open module ⇒ₛ {A} {B} = Setoid (setoid {0ℓ} {0ℓ} {0ℓ} {0ℓ} A B) using (_≈_)
- open import Function.Construct.Setoid using (_∙_)
- open import Function.Construct.Identity using () renaming (function to Id)
-
- split∘++ : splitₛ ∙ ++ₛ ≈ Id (Values n ×ₛ Values m)
- split∘++ {xs , ys} .proj₁ i = ≡.cong [ xs , ys ]′ (splitAt-↑ˡ n i m)
- split∘++ {xs , ys} .proj₂ i = ≡.cong [ xs , ys ]′ (splitAt-↑ʳ n m i)
-
- ++∘split : ++ₛ {n} ∙ splitₛ ≈ Id (Values (n + m))
- ++∘split {x} i = ≡.trans (≡.sym ([,]-∘ x (splitAt n i))) (≡.cong x (join-splitAt n m i))
-
- ⊗-homomorphism : NaturalIsomorphism (-×- ∘F (Pull ⁂ Pull)) (Pull ∘F -+-)
- ⊗-homomorphism = niHelper record
- { η = λ (n , m) → ++ₛ {n} {m}
- ; η⁻¹ = λ (n , m) → splitₛ {n} {m}
- ; commute = λ { {n , m} {n′ , m′} (f , g) {xs , ys} → Pull-++ f g }
- ; iso = λ (n , m) → record
- { isoˡ = split∘++
- ; isoʳ = ++∘split
- }
- }
-
- module _ {n m : ℕ} where
-
- opaque
- unfolding Pull-++
-
- Pull-i₁
- : (X : ∣ Values n ∣)
- (Y : ∣ Values m ∣)
- → Pull.₁ i₁ ⟨$⟩ (X ++ Y) ≋ X
- Pull-i₁ X Y i = ≡.cong [ X , Y ]′ (splitAt-↑ˡ n i m)
-
- Pull-i₂
- : (X : ∣ Values n ∣)
- (Y : ∣ Values m ∣)
- → Pull.₁ i₂ ⟨$⟩ (X ++ Y) ≋ Y
- Pull-i₂ X Y i = ≡.cong [ X , Y ]′ (splitAt-↑ʳ n m i)
-
- opaque
- unfolding Pull-++
-
- Push-assoc
- : {m n o : ℕ}
- (X : ∣ Values m ∣)
- (Y : ∣ Values n ∣)
- (Z : ∣ Values o ∣)
- → Pull.₁ (+-assocʳ {m} {n} {o}) ⟨$⟩ ((X ++ Y) ++ Z) ≋ X ++ (Y ++ Z)
- Push-assoc {m} {n} {o} X Y Z i = ++-assoc X Y Z i
-
- Pull-swap
- : {n m : ℕ}
- (X : ∣ Values n ∣)
- (Y : ∣ Values m ∣)
- → Pull.₁ (+-swap {n}) ⟨$⟩ (X ++ Y) ≋ Y ++ X
- Pull-swap {n} {m} X Y i = begin
- ((X ++ Y) ∘ +-swap {n}) i ≡⟨ [,]-∘ (X ++ Y) (splitAt m i) ⟩
- [ (X ++ Y) ∘ i₂ , (X ++ Y) ∘ i₁ ]′ (splitAt m i) ≡⟨ [-,]-cong (Pull-i₂ X Y) (splitAt m i) ⟩
- [ Y , (X ++ Y) ∘ i₁ ]′ (splitAt m i) ≡⟨ [,-]-cong (Pull-i₁ X Y) (splitAt m i) ⟩
- [ Y , X ]′ (splitAt m i) ≡⟨⟩
- (Y ++ X) i ∎
-
-open SymmetricMonoidalFunctor
-
-Pull,++,[] : SymmetricMonoidalFunctor
-Pull,++,[] .F = Pull
-Pull,++,[] .isBraidedMonoidal = record
- { isStrongMonoidal = record
- { ε = Pull-ε
- ; ⊗-homo = ⊗-homomorphism
- ; associativity = λ { {_} {_} {_} {(X , Y) , Z} → Push-assoc X Y Z }
- ; unitaryˡ = λ { {n} {_ , X} → Pull-i₂ {0} {n} [] X }
- ; unitaryʳ = λ { {n} {X , _} → Pull-i₁ {n} {0} X [] }
- }
- ; braiding-compat = λ { {n} {m} {X , Y} → Pull-swap X Y }
- }
-
-module Pull,++,[] = SymmetricMonoidalFunctor Pull,++,[]