diff options
| author | Jacques Comeaux <jacquesrcomeaux@protonmail.com> | 2025-10-28 12:26:54 -0500 |
|---|---|---|
| committer | Jacques Comeaux <jacquesrcomeaux@protonmail.com> | 2025-10-28 12:26:54 -0500 |
| commit | 8ac913160fcb3e6ec6af2b0f4cb25f45edd8212b (patch) | |
| tree | ea0ed1ba72624f8f654a820c10521c8acac9ffec /Functor/Monoidal/Instance/Nat/Pull.agda | |
| parent | 117ecc76cb40ad6367d8fe6d5b854cbe13a613bf (diff) | |
Add symmetric monoidal structure to Pull and System
Diffstat (limited to 'Functor/Monoidal/Instance/Nat/Pull.agda')
| -rw-r--r-- | Functor/Monoidal/Instance/Nat/Pull.agda | 192 |
1 files changed, 192 insertions, 0 deletions
diff --git a/Functor/Monoidal/Instance/Nat/Pull.agda b/Functor/Monoidal/Instance/Nat/Pull.agda new file mode 100644 index 0000000..c2b6958 --- /dev/null +++ b/Functor/Monoidal/Instance/Nat/Pull.agda @@ -0,0 +1,192 @@ +{-# OPTIONS --without-K --safe #-} + +module Functor.Monoidal.Instance.Nat.Pull where + +open import Category.Monoidal.Instance.Nat using (Natop,+,0; Natop-Cartesian) +open import Categories.Category.Instance.Nat using (Nat-Cocartesian) +open import Categories.Category.Instance.SingletonSet using (SingletonSetoid) +open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) +open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; niHelper) +open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian) +open import Categories.Category.BinaryProducts using (module BinaryProducts) +open import Categories.Category.Cartesian using (Cartesian) +open import Categories.Category.Cocartesian using (Cocartesian; BinaryCoproducts) +open import Categories.Category.Product using (_⁂_) +open import Categories.Functor using (_∘F_) +open import Data.Subset.Functional using (Subset) +open import Data.Nat.Base using (ℕ; _+_) +open import Relation.Binary using (Setoid) +open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_) +open import Data.Product.Base using (_,_; _×_; Σ) +open import Data.Vec.Functional using ([]; _++_) +open import Data.Vec.Functional.Properties using (++-cong) +open import Data.Vec.Functional using (Vector; []) +open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_) +open import Functor.Instance.Nat.Pull using (Pull; Pull₁) +open import Level using (0ℓ; Level) + +open import Data.Fin.Permutation using (Permutation; _⟨$⟩ʳ_; _⟨$⟩ˡ_) +open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using (products) +open BinaryProducts products using (-×-) +open Cocartesian Nat-Cocartesian using (module Dual; _+₁_; +-assocʳ; +-comm; +-swap; +₁∘+-swap; i₁; i₂) +open Dual.op-binaryProducts using () renaming (-×- to -+-; assocˡ∘⟨⟩ to []∘assocʳ; swap∘⟨⟩ to []∘swap) + +open import Data.Fin.Base using (Fin; splitAt; join; _↑ˡ_; _↑ʳ_) +open import Data.Fin.Properties using (splitAt-join; splitAt-↑ˡ; splitAt-↑ʳ; join-splitAt) +open import Data.Sum.Base using ([_,_]′; map; map₁; map₂; inj₁; inj₂) +open import Data.Sum.Properties using ([,]-map; [,]-cong; [-,]-cong; [,-]-cong; [,]-∘) +open import Data.Fin.Preimage using (preimage) +open import Function.Base using (_∘_; id) +open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_; module ≡-Reasoning) +open import Data.Bool.Base using (Bool) +open import Data.Setoid using (∣_∣) +open import Data.Circuit.Value using (Value) +open import Data.System.Values Value using (Values) + +open import Category.Instance.Setoids.SymmetricMonoidal {0ℓ} {0ℓ} using (Setoids-×) +open import Categories.Functor.Monoidal.Symmetric Natop,+,0 Setoids-× using (module Strong) +open Strong using (SymmetricMonoidalFunctor) +open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory) + +module Setoids-× = SymmetricMonoidalCategory Setoids-× +import Function.Construct.Constant as Const + +open Func + +module _ where + + open import Categories.Morphism (Setoids-×.U) using (_≅_; module Iso) + open import Data.Unit.Polymorphic using (tt) + open _≅_ + open Iso + + Pull-ε : SingletonSetoid ≅ Values 0 + from Pull-ε = Const.function SingletonSetoid (Values 0) [] + to Pull-ε = Const.function (Values 0) SingletonSetoid tt + isoˡ (iso Pull-ε) = tt + isoʳ (iso Pull-ε) () + +++ₛ : {n m : ℕ} → Values n ×ₛ Values m ⟶ₛ Values (n + m) +to ++ₛ (xs , ys) = xs ++ ys +cong ++ₛ (≗xs , ≗ys) = ++-cong _ _ ≗xs ≗ys + +splitₛ : {n m : ℕ} → Values (n + m) ⟶ₛ Values n ×ₛ Values m +to (splitₛ {n} {m}) v = v ∘ (_↑ˡ m) , v ∘ (n ↑ʳ_) +cong (splitₛ {n} {m}) v₁≋v₂ = v₁≋v₂ ∘ (_↑ˡ m) , v₁≋v₂ ∘ (n ↑ʳ_) + +Pull-++ + : {n n′ m m′ : ℕ} + (f : Fin n → Fin n′) + (g : Fin m → Fin m′) + {xs : ∣ Values n′ ∣} + {ys : ∣ Values m′ ∣} + → (Pull₁ f ⟨$⟩ xs) ++ (Pull₁ g ⟨$⟩ ys) ≗ Pull₁ (f +₁ g) ⟨$⟩ (xs ++ ys) +Pull-++ {n} {n′} {m} {m′} f g {xs} {ys} e = begin + (xs ∘ f ++ ys ∘ g) e ≡⟨ [,]-map (splitAt n e) ⟨ + [ xs , ys ]′ (map f g (splitAt n e)) ≡⟨ ≡.cong [ xs , ys ]′ (splitAt-join n′ m′ (map f g (splitAt n e))) ⟨ + [ xs , ys ]′ (splitAt n′ (join n′ m′ (map f g (splitAt n e)))) ≡⟨ ≡.cong ([ xs , ys ]′ ∘ splitAt n′) ([,]-map (splitAt n e)) ⟩ + [ xs , ys ]′ (splitAt n′ ((f +₁ g) e)) ∎ + where + open ≡-Reasoning + +⊗-homomorphism : NaturalIsomorphism (-×- ∘F (Pull ⁂ Pull)) (Pull ∘F -+-) +⊗-homomorphism = niHelper record + { η = λ (n , m) → ++ₛ {n} {m} + ; η⁻¹ = λ (n , m) → splitₛ {n} {m} + ; commute = λ (f , g) → Pull-++ f g + ; iso = λ (n , m) → record + { isoˡ = λ { {x , y} → (λ i → ≡.cong [ x , y ] (splitAt-↑ˡ n i m)) , (λ i → ≡.cong [ x , y ] (splitAt-↑ʳ n m i)) } + ; isoʳ = λ { {x} i → ≡.trans (≡.sym ([,]-∘ x (splitAt n i))) (≡.cong x (join-splitAt n m i)) } + } + } + where + open import Data.Sum.Base using ([_,_]) + open import Data.Product.Base using (proj₁; proj₂) + +++-↑ˡ + : {n m : ℕ} + (X : ∣ Values n ∣) + (Y : ∣ Values m ∣) + → (X ++ Y) ∘ i₁ ≗ X +++-↑ˡ {n} {m} X Y i = ≡.cong [ X , Y ]′ (splitAt-↑ˡ n i m) + +++-↑ʳ + : {n m : ℕ} + (X : ∣ Values n ∣) + (Y : ∣ Values m ∣) + → (X ++ Y) ∘ i₂ ≗ Y +++-↑ʳ {n} {m} X Y i = ≡.cong [ X , Y ]′ (splitAt-↑ʳ n m i) + +-- TODO move to Data.Vector +++-assoc + : {m n o : ℕ} + (X : ∣ Values m ∣) + (Y : ∣ Values n ∣) + (Z : ∣ Values o ∣) + → ((X ++ Y) ++ Z) ∘ +-assocʳ {m} ≗ X ++ (Y ++ Z) +++-assoc {m} {n} {o} X Y Z i = begin + ((X ++ Y) ++ Z) (+-assocʳ {m} i) ≡⟨⟩ + ((X ++ Y) ++ Z) ([ i₁ ∘ i₁ , _ ]′ (splitAt m i)) ≡⟨ [,]-∘ ((X ++ Y) ++ Z) (splitAt m i) ⟩ + [ ((X ++ Y) ++ Z) ∘ i₁ ∘ i₁ , _ ]′ (splitAt m i) ≡⟨ [-,]-cong (++-↑ˡ (X ++ Y) Z ∘ i₁) (splitAt m i) ⟩ + [ (X ++ Y) ∘ i₁ , _ ]′ (splitAt m i) ≡⟨ [-,]-cong (++-↑ˡ X Y) (splitAt m i) ⟩ + [ X , ((X ++ Y) ++ Z) ∘ [ _ , _ ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,-]-cong ([,]-∘ ((X ++ Y) ++ Z) ∘ splitAt n) (splitAt m i) ⟩ + [ X , [ (_ ++ Z) ∘ i₁ ∘ i₂ {m} , _ ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,-]-cong ([-,]-cong (++-↑ˡ (X ++ Y) Z ∘ i₂) ∘ splitAt n) (splitAt m i) ⟩ + [ X , [ (X ++ Y) ∘ i₂ , _ ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,-]-cong ([-,]-cong (++-↑ʳ X Y) ∘ splitAt n) (splitAt m i) ⟩ + [ X , [ Y , ((X ++ Y) ++ Z) ∘ i₂ ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,-]-cong ([,-]-cong (++-↑ʳ (X ++ Y) Z) ∘ splitAt n) (splitAt m i) ⟩ + [ X , [ Y , Z ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨⟩ + (X ++ (Y ++ Z)) i ∎ + where + open Bool + open Fin + open ≡-Reasoning + +-- TODO also Data.Vector +Pull-unitaryˡ + : {n : ℕ} + (X : ∣ Values n ∣) + → (X ++ []) ∘ i₁ ≗ X +Pull-unitaryˡ {n} X i = begin + [ X , [] ]′ (splitAt _ (i ↑ˡ 0)) ≡⟨ ≡.cong ([ X , [] ]′) (splitAt-↑ˡ n i 0) ⟩ + [ X , [] ]′ (inj₁ i) ≡⟨⟩ + X i ∎ + where + open ≡-Reasoning + +open import Function.Bundles using (Inverse) +open import Categories.Category.Instance.Nat using (Nat) +open import Categories.Morphism Nat using (_≅_) +Pull-swap + : {n m : ℕ} + (X : ∣ Values n ∣) + (Y : ∣ Values m ∣) + → (X ++ Y) ∘ (+-swap {n}) ≗ Y ++ X +Pull-swap {n} {m} X Y i = begin + ((X ++ Y) ∘ +-swap {n}) i ≡⟨ [,]-∘ (X ++ Y) (splitAt m i) ⟩ + [ (X ++ Y) ∘ i₂ , (X ++ Y) ∘ i₁ ]′ (splitAt m i) ≡⟨ [-,]-cong (++-↑ʳ X Y) (splitAt m i) ⟩ + [ Y , (X ++ Y) ∘ i₁ ]′ (splitAt m i) ≡⟨ [,-]-cong (++-↑ˡ X Y) (splitAt m i) ⟩ + [ Y , X ]′ (splitAt m i) ≡⟨⟩ + (Y ++ X) i ∎ + where + open ≡-Reasoning + open Inverse + module +-swap = _≅_ (+-comm {m} {n}) + n+m↔m+n : Permutation (n + m) (m + n) + n+m↔m+n .to = +-swap.to + n+m↔m+n .from = +-swap.from + n+m↔m+n .to-cong ≡.refl = ≡.refl + n+m↔m+n .from-cong ≡.refl = ≡.refl + n+m↔m+n .inverse = (λ { ≡.refl → +-swap.isoˡ _ }) , (λ { ≡.refl → +-swap.isoʳ _ }) + +open SymmetricMonoidalFunctor +Pull,++,[] : SymmetricMonoidalFunctor +Pull,++,[] .F = Pull +Pull,++,[] .isBraidedMonoidal = record + { isStrongMonoidal = record + { ε = Pull-ε + ; ⊗-homo = ⊗-homomorphism + ; associativity = λ { {m} {n} {o} {(X , Y) , Z} i → ++-assoc X Y Z i } + ; unitaryˡ = λ _ → ≡.refl + ; unitaryʳ = λ { {n} {X , _} i → Pull-unitaryˡ X i } + } + ; braiding-compat = λ { {n} {m} {X , Y} i → Pull-swap X Y i } + } |
