aboutsummaryrefslogtreecommitdiff
path: root/Functor/Monoidal/Instance/Nat/System.agda
diff options
context:
space:
mode:
authorJacques Comeaux <jacquesrcomeaux@protonmail.com>2026-01-13 17:15:31 -0600
committerJacques Comeaux <jacquesrcomeaux@protonmail.com>2026-01-13 17:15:31 -0600
commit3bf15830058dab0baca2b8518e4fe1c4a7363e45 (patch)
treea957eb783c77c2f4ec69b507a0e5cd51ed503379 /Functor/Monoidal/Instance/Nat/System.agda
parentc65be5a260a44f35e26b771026153643ad2464b3 (diff)
Remove old monoidal functors
Diffstat (limited to 'Functor/Monoidal/Instance/Nat/System.agda')
-rw-r--r--Functor/Monoidal/Instance/Nat/System.agda394
1 files changed, 0 insertions, 394 deletions
diff --git a/Functor/Monoidal/Instance/Nat/System.agda b/Functor/Monoidal/Instance/Nat/System.agda
deleted file mode 100644
index 6659fb3..0000000
--- a/Functor/Monoidal/Instance/Nat/System.agda
+++ /dev/null
@@ -1,394 +0,0 @@
-{-# OPTIONS --without-K --safe #-}
-
-module Functor.Monoidal.Instance.Nat.System where
-
-import Categories.Category.Monoidal.Utilities as ⊗-Util
-import Data.Circuit.Value as Value
-import Data.Vec.Functional as Vec
-import Relation.Binary.PropositionalEquality as ≡
-
-open import Level using (0ℓ; suc; Level)
-
-open import Category.Monoidal.Instance.Nat using (Nat,+,0; Natop,+,0)
-open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory; BraidedMonoidalCategory)
-open import Category.Instance.Setoids.SymmetricMonoidal {0ℓ} {0ℓ} using () renaming (Setoids-× to 0ℓ-Setoids-×)
-open import Category.Instance.Setoids.SymmetricMonoidal {suc 0ℓ} {suc 0ℓ} using (Setoids-×)
-
-module Natop,+,0 = SymmetricMonoidalCategory Natop,+,0 renaming (braidedMonoidalCategory to B)
-module 0ℓ-Setoids-× = SymmetricMonoidalCategory 0ℓ-Setoids-× renaming (braidedMonoidalCategory to B)
-
-open import Functor.Monoidal.Instance.Nat.Pull using (Pull,++,[])
-open import Categories.Functor.Monoidal.Braided Natop,+,0.B 0ℓ-Setoids-×.B using (module Strong)
-
-Pull,++,[]B : Strong.BraidedMonoidalFunctor
-Pull,++,[]B = record { isBraidedMonoidal = Pull,++,[].isBraidedMonoidal }
-module Pull,++,[]B = Strong.BraidedMonoidalFunctor (record { isBraidedMonoidal = Pull,++,[].isBraidedMonoidal })
-
-open import Categories.Category.BinaryProducts using (module BinaryProducts)
-open import Categories.Category.Cartesian using (Cartesian)
-open import Categories.Category.Cocartesian using (Cocartesian)
-open import Categories.Category.Instance.Nat using (Nat; Nat-Cocartesian; Natop)
-open import Categories.Category.Instance.Setoids using (Setoids)
-open import Data.Setoid.Unit using (⊤ₛ)
-open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian)
-open import Categories.Category.Product using (Product)
-open import Categories.Category.Product using (_⁂_)
-open import Categories.Functor using (Functor)
-open import Categories.Functor using (_∘F_)
-open import Categories.Functor.Monoidal.Symmetric Nat,+,0 Setoids-× using (module Lax)
-open import Categories.NaturalTransformation.Core using (NaturalTransformation; ntHelper)
-open import Data.Circuit.Value using (Monoid)
-open import Data.Fin using (Fin)
-open import Data.Nat using (ℕ; _+_)
-open import Data.Product using (_,_; dmap; _×_) renaming (map to ×-map)
-open import Data.Product.Function.NonDependent.Setoid using (_×-function_; proj₁ₛ; proj₂ₛ; <_,_>ₛ; swapₛ)
-open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
-open import Data.Setoid using (_⇒ₛ_; ∣_∣)
-open import Data.System {suc 0ℓ} using (Systemₛ; System; discrete; _≤_)
-open import Data.System.Values Monoid using (++ₛ; splitₛ; Values; ++-cong; _++_; [])
-open import Data.System.Values Value.Monoid using (_≋_; module ≋)
-open import Data.Unit.Polymorphic using (⊤; tt)
-open import Function using (Func; _⟶ₛ_; _⟨$⟩_; _∘_; id; case_of_)
-open import Function.Construct.Constant using () renaming (function to Const)
-open import Function.Construct.Identity using () renaming (function to Id)
-open import Function.Construct.Setoid using (_∙_; setoid)
-open import Functor.Instance.Nat.Pull using (Pull)
-open import Functor.Instance.Nat.Push using (Push)
-open import Functor.Instance.Nat.System using (Sys; Sys-defs)
-open import Functor.Monoidal.Braided.Strong.Properties Pull,++,[]B using (braiding-compat-inv)
-open import Functor.Monoidal.Instance.Nat.Push using (Push,++,[])
-open import Functor.Monoidal.Strong.Properties Pull,++,[].monoidalFunctor using (associativity-inv)
-open import Functor.Monoidal.Strong.Properties Pull,++,[].monoidalFunctor using (unitaryʳ-inv; unitaryˡ-inv; module Shorthands)
-open import Relation.Binary using (Setoid)
-open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_)
-
-open module ⇒ₛ {A} {B} = Setoid (setoid {0ℓ} {0ℓ} {0ℓ} {0ℓ} A B) using (_≈_)
-
-open Cartesian (Setoids-Cartesian {suc 0ℓ} {suc 0ℓ}) using (products)
-
-open BinaryProducts products using (-×-)
-open Cocartesian Nat-Cocartesian using (module Dual; i₁; i₂; -+-; _+₁_; +-assocʳ; +-assocˡ; +-comm; +-swap; +₁∘+-swap; +₁∘i₁; +₁∘i₂)
-open Dual.op-binaryProducts using () renaming (×-assoc to +-assoc)
-open SymmetricMonoidalCategory using () renaming (braidedMonoidalCategory to B)
-
-open Func
-
-Sys-ε : ⊤ₛ {suc 0ℓ} {suc 0ℓ} ⟶ₛ Systemₛ 0
-Sys-ε = Const ⊤ₛ (Systemₛ 0) (discrete 0)
-
-private
-
- variable
- n m o : ℕ
- c₁ c₂ c₃ c₄ c₅ c₆ : Level
- ℓ₁ ℓ₂ ℓ₃ ℓ₄ ℓ₅ ℓ₆ : Level
-
-_×-⇒_
- : {A : Setoid c₁ ℓ₁}
- {B : Setoid c₂ ℓ₂}
- {C : Setoid c₃ ℓ₃}
- {D : Setoid c₄ ℓ₄}
- {E : Setoid c₅ ℓ₅}
- {F : Setoid c₆ ℓ₆}
- → A ⟶ₛ B ⇒ₛ C
- → D ⟶ₛ E ⇒ₛ F
- → A ×ₛ D ⟶ₛ B ×ₛ E ⇒ₛ C ×ₛ F
-_×-⇒_ f g .to (x , y) = to f x ×-function to g y
-_×-⇒_ f g .cong (x , y) = cong f x , cong g y
-
-⊗ : System n × System m → System (n + m)
-⊗ {n} {m} (S₁ , S₂) = record
- { S = S₁.S ×ₛ S₂.S
- ; fₛ = S₁.fₛ ×-⇒ S₂.fₛ ∙ splitₛ
- ; fₒ = ++ₛ ∙ S₁.fₒ ×-function S₂.fₒ
- }
- where
- module S₁ = System S₁
- module S₂ = System S₂
-
-opaque
-
- _~_ : {A B : Setoid 0ℓ 0ℓ} → Func A B → Func A B → Set
- _~_ = _≈_
- infix 4 _~_
-
- sym-~
- : {A B : Setoid 0ℓ 0ℓ}
- {x y : Func A B}
- → x ~ y
- → y ~ x
- sym-~ {A} {B} {x} {y} = 0ℓ-Setoids-×.Equiv.sym {A} {B} {x} {y}
-
-⊗ₛ
- : {n m : ℕ}
- → Systemₛ n ×ₛ Systemₛ m ⟶ₛ Systemₛ (n + m)
-⊗ₛ .to = ⊗
-⊗ₛ {n} {m} .cong {a , b} {c , d} ((a≤c , c≤a) , (b≤d , d≤b)) = left , right
- where
- module a = System a
- module b = System b
- module c = System c
- module d = System d
- module a≤c = _≤_ a≤c
- module b≤d = _≤_ b≤d
- module c≤a = _≤_ c≤a
- module d≤b = _≤_ d≤b
-
- open _≤_
- left : ⊗ₛ ⟨$⟩ (a , b) ≤ ⊗ₛ ⟨$⟩ (c , d)
- left .⇒S = a≤c.⇒S ×-function b≤d.⇒S
- left .≗-fₛ i with (i₁ , i₂) ← splitₛ ⟨$⟩ i = dmap (a≤c.≗-fₛ i₁) (b≤d.≗-fₛ i₂)
- left .≗-fₒ = cong ++ₛ ∘ dmap a≤c.≗-fₒ b≤d.≗-fₒ
-
- right : ⊗ₛ ⟨$⟩ (c , d) ≤ ⊗ₛ ⟨$⟩ (a , b)
- right .⇒S = c≤a.⇒S ×-function d≤b.⇒S
- right .≗-fₛ i with (i₁ , i₂) ← splitₛ ⟨$⟩ i = dmap (c≤a.≗-fₛ i₁) (d≤b.≗-fₛ i₂)
- right .≗-fₒ = cong ++ₛ ∘ dmap c≤a.≗-fₒ d≤b.≗-fₒ
-
-opaque
-
- unfolding Sys-defs
-
- System-⊗-≤
- : {n n′ m m′ : ℕ}
- (X : System n)
- (Y : System m)
- (f : Fin n → Fin n′)
- (g : Fin m → Fin m′)
- → ⊗ (Sys.₁ f ⟨$⟩ X , Sys.₁ g ⟨$⟩ Y) ≤ Sys.₁ (f +₁ g) ⟨$⟩ ⊗ (X , Y)
- System-⊗-≤ {n} {n′} {m} {m′} X Y f g = record
- { ⇒S = Id (X.S ×ₛ Y.S)
- ; ≗-fₛ = λ i s → cong (X.fₛ ×-⇒ Y.fₛ) (Pull,++,[].⊗-homo.⇐.sym-commute (f , g) {i}) {s}
- ; ≗-fₒ = λ (s₁ , s₂) → Push,++,[].⊗-homo.commute (f , g) {X.fₒ′ s₁ , Y.fₒ′ s₂}
- }
- where
- module X = System X
- module Y = System Y
-
- System-⊗-≥
- : {n n′ m m′ : ℕ}
- (X : System n)
- (Y : System m)
- (f : Fin n → Fin n′)
- (g : Fin m → Fin m′)
- → Sys.₁ (f +₁ g) ⟨$⟩ (⊗ (X , Y)) ≤ ⊗ (Sys.₁ f ⟨$⟩ X , Sys.₁ g ⟨$⟩ Y)
- System-⊗-≥ {n} {n′} {m} {m′} X Y f g = record
- { ⇒S = Id (X.S ×ₛ Y.S)
- ; ≗-fₛ = λ i s → cong (X.fₛ ×-⇒ Y.fₛ) (Pull,++,[].⊗-homo.⇐.commute (f , g) {i}) {s}
- ; ≗-fₒ = λ (s₁ , s₂) → Push,++,[].⊗-homo.sym-commute (f , g) {X.fₒ′ s₁ , Y.fₒ′ s₂}
- }
- where
- module X = System X
- module Y = System Y
-
-⊗-homomorphism : NaturalTransformation (-×- ∘F (Sys ⁂ Sys)) (Sys ∘F -+-)
-⊗-homomorphism = ntHelper record
- { η = λ (n , m) → ⊗ₛ {n} {m}
- ; commute = λ { (f , g) {X , Y} → System-⊗-≤ X Y f g , System-⊗-≥ X Y f g }
- }
-
-opaque
-
- unfolding Sys-defs
-
- ⊗-assoc-≤
- : (X : System n)
- (Y : System m)
- (Z : System o)
- → Sys.₁ (+-assocˡ {n}) ⟨$⟩ (⊗ (⊗ (X , Y) , Z)) ≤ ⊗ (X , ⊗ (Y , Z))
- ⊗-assoc-≤ {n} {m} {o} X Y Z = record
- { ⇒S = assocˡ
- ; ≗-fₛ = λ i ((s₁ , s₂) , s₃) → cong (X.fₛ ×-⇒ (Y.fₛ ×-⇒ Z.fₛ) ∙ assocˡ) (associativity-inv {x = i}) {s₁ , s₂ , s₃}
- ; ≗-fₒ = λ ((s₁ , s₂) , s₃) → Push,++,[].associativity {x = (X.fₒ′ s₁ , Y.fₒ′ s₂) , Z.fₒ′ s₃}
- }
- where
- open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using () renaming (products to 0ℓ-products)
- open BinaryProducts 0ℓ-products using (assocˡ)
-
- module X = System X
- module Y = System Y
- module Z = System Z
-
- ⊗-assoc-≥
- : (X : System n)
- (Y : System m)
- (Z : System o)
- → ⊗ (X , ⊗ (Y , Z)) ≤ Sys.₁ (+-assocˡ {n}) ⟨$⟩ (⊗ (⊗ (X , Y) , Z))
- ⊗-assoc-≥ {n} {m} {o} X Y Z = record
- { ⇒S = ×-assocʳ
- ; ≗-fₛ = λ i (s₁ , s₂ , s₃) → cong ((X.fₛ ×-⇒ Y.fₛ) ×-⇒ Z.fₛ) (sym-split-assoc {i}) {(s₁ , s₂) , s₃}
- ; ≗-fₒ = λ (s₁ , s₂ , s₃) → sym-++-assoc {(X.fₒ′ s₁ , Y.fₒ′ s₂) , Z.fₒ′ s₃}
- }
- where
- open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using () renaming (products to prod)
- open BinaryProducts prod using () renaming (assocʳ to ×-assocʳ; assocˡ to ×-assocˡ)
-
- +-assocℓ : Fin ((n + m) + o) → Fin (n + (m + o))
- +-assocℓ = +-assocˡ {n} {m} {o}
-
- opaque
-
- unfolding _~_
-
- associativity-inv-~ : splitₛ ×-function Id (Values o) ∙ splitₛ ∙ Pull.₁ +-assocℓ ~ ×-assocʳ ∙ Id (Values n) ×-function splitₛ ∙ splitₛ
- associativity-inv-~ {i} = associativity-inv {n} {m} {o} {i}
-
- associativity-~ : Push.₁ (+-assocˡ {n} {m} {o}) ∙ ++ₛ ∙ ++ₛ ×-function Id (Values o) ~ ++ₛ ∙ Id (Values n) ×-function ++ₛ ∙ ×-assocˡ
- associativity-~ {i} = Push,++,[].associativity {n} {m} {o} {i}
-
- sym-split-assoc-~ : ×-assocʳ ∙ Id (Values n) ×-function splitₛ ∙ splitₛ ~ splitₛ ×-function Id (Values o) ∙ splitₛ ∙ Pull.₁ +-assocℓ
- sym-split-assoc-~ = sym-~ associativity-inv-~
-
- sym-++-assoc-~ : ++ₛ ∙ Id (Values n) ×-function ++ₛ ∙ ×-assocˡ ~ Push.₁ (+-assocˡ {n} {m} {o}) ∙ ++ₛ ∙ ++ₛ ×-function Id (Values o)
- sym-++-assoc-~ = sym-~ associativity-~
-
- opaque
-
- unfolding _~_
-
- sym-split-assoc : ×-assocʳ ∙ Id (Values n) ×-function splitₛ ∙ splitₛ ≈ splitₛ ×-function Id (Values o) ∙ splitₛ ∙ Pull.₁ +-assocℓ
- sym-split-assoc {i} = sym-split-assoc-~ {i}
-
- sym-++-assoc : ++ₛ ∙ Id (Values n) ×-function ++ₛ ∙ ×-assocˡ ≈ Push.₁ (+-assocˡ {n} {m} {o}) ∙ ++ₛ ∙ ++ₛ ×-function Id (Values o)
- sym-++-assoc {i} = sym-++-assoc-~
-
- module X = System X
- module Y = System Y
- module Z = System Z
-
- Sys-unitaryˡ-≤ : (X : System n) → Sys.₁ id ⟨$⟩ (⊗ (discrete 0 , X)) ≤ X
- Sys-unitaryˡ-≤ {n} X = record
- { ⇒S = proj₂ₛ
- ; ≗-fₛ = λ i (_ , s) → cong (X.fₛ ∙ proj₂ₛ {A = ⊤ₛ {0ℓ}}) (unitaryˡ-inv {n} {i})
- ; ≗-fₒ = λ (_ , s) → Push,++,[].unitaryˡ {n} {tt , X.fₒ′ s}
- }
- where
- module X = System X
-
- Sys-unitaryˡ-≥ : (X : System n) → X ≤ Sys.₁ id ⟨$⟩ (⊗ (discrete 0 , X))
- Sys-unitaryˡ-≥ {n} X = record
- { ⇒S = < Const X.S ⊤ₛ tt , Id X.S >ₛ
- ; ≗-fₛ = λ i s → cong (disc.fₛ ×-⇒ X.fₛ ∙ ε⇒ ×-function Id (Values n)) (sym-split-unitaryˡ {i})
- ; ≗-fₒ = λ s → sym-++-unitaryˡ {_ , X.fₒ′ s}
- }
- where
- module X = System X
- open SymmetricMonoidalCategory 0ℓ-Setoids-× using (module Equiv)
- open ⊗-Util.Shorthands 0ℓ-Setoids-×.monoidal using (λ⇐)
- open Shorthands using (ε⇐; ε⇒)
- module disc = System (discrete 0)
- sym-split-unitaryˡ
- : λ⇐ ≈ ε⇐ ×-function Id (Values n) ∙ splitₛ ∙ Pull.₁ ((λ ()) Vec.++ id)
- sym-split-unitaryˡ =
- 0ℓ-Setoids-×.Equiv.sym
- {Values n}
- {⊤ₛ ×ₛ Values n}
- {ε⇐ ×-function Id (Values n) ∙ splitₛ ∙ Pull.₁ ((λ ()) Vec.++ id)}
- {λ⇐}
- (unitaryˡ-inv {n})
- sym-++-unitaryˡ : proj₂ₛ {A = ⊤ₛ {0ℓ} {0ℓ}} ≈ Push.₁ ((λ ()) Vec.++ id) ∙ ++ₛ ∙ Push,++,[].ε ×-function Id (Values n)
- sym-++-unitaryˡ =
- 0ℓ-Setoids-×.Equiv.sym
- {⊤ₛ ×ₛ Values n}
- {Values n}
- {Push.₁ ((λ ()) Vec.++ id) ∙ ++ₛ ∙ Push,++,[].ε ×-function Id (Values n)}
- {proj₂ₛ}
- (Push,++,[].unitaryˡ {n})
-
-
- Sys-unitaryʳ-≤ : (X : System n) → Sys.₁ (id Vec.++ (λ ())) ⟨$⟩ (⊗ {n} {0} (X , discrete 0)) ≤ X
- Sys-unitaryʳ-≤ {n} X = record
- { ⇒S = proj₁ₛ
- ; ≗-fₛ = λ i (s , _) → cong (X.fₛ ∙ proj₁ₛ {B = ⊤ₛ {0ℓ}}) (unitaryʳ-inv {n} {i})
- ; ≗-fₒ = λ (s , _) → Push,++,[].unitaryʳ {n} {X.fₒ′ s , tt}
- }
- where
- module X = System X
-
- Sys-unitaryʳ-≥ : (X : System n) → X ≤ Sys.₁ (id Vec.++ (λ ())) ⟨$⟩ (⊗ {n} {0} (X , discrete 0))
- Sys-unitaryʳ-≥ {n} X = record
- { ⇒S = < Id X.S , Const X.S ⊤ₛ tt >ₛ
- ; ≗-fₛ = λ i s → cong (X.fₛ ×-⇒ disc.fₛ ∙ Id (Values n) ×-function ε⇒) sym-split-unitaryʳ {s , tt}
- ; ≗-fₒ = λ s → sym-++-unitaryʳ {X.fₒ′ s , tt}
- }
- where
- module X = System X
- module disc = System (discrete 0)
- open ⊗-Util.Shorthands 0ℓ-Setoids-×.monoidal using (ρ⇐)
- open Shorthands using (ε⇐; ε⇒)
- sym-split-unitaryʳ
- : ρ⇐ ≈ Id (Values n) ×-function ε⇐ ∙ splitₛ ∙ Pull.₁ (id Vec.++ (λ ()))
- sym-split-unitaryʳ =
- 0ℓ-Setoids-×.Equiv.sym
- {Values n}
- {Values n ×ₛ ⊤ₛ}
- {Id (Values n) ×-function ε⇐ ∙ splitₛ ∙ Pull.₁ (id Vec.++ (λ ()))}
- {ρ⇐}
- (unitaryʳ-inv {n})
- sym-++-unitaryʳ : proj₁ₛ {B = ⊤ₛ {0ℓ}} ≈ Push.₁ (id Vec.++ (λ ())) ∙ ++ₛ ∙ Id (Values n) ×-function Push,++,[].ε
- sym-++-unitaryʳ =
- 0ℓ-Setoids-×.Equiv.sym
- {Values n ×ₛ ⊤ₛ}
- {Values n}
- {Push.₁ (id Vec.++ (λ ())) ∙ ++ₛ ∙ Id (Values n) ×-function Push,++,[].ε}
- {proj₁ₛ}
- (Push,++,[].unitaryʳ {n})
-
- Sys-braiding-compat-≤
- : (X : System n)
- (Y : System m)
- → Sys.₁ (+-swap {m} {n}) ⟨$⟩ (⊗ (X , Y)) ≤ ⊗ (Y , X)
- Sys-braiding-compat-≤ {n} {m} X Y = record
- { ⇒S = swapₛ
- ; ≗-fₛ = λ i (s₁ , s₂) → cong (Y.fₛ ×-⇒ X.fₛ ∙ swapₛ) (braiding-compat-inv {m} {n} {i}) {s₂ , s₁}
- ; ≗-fₒ = λ (s₁ , s₂) → Push,++,[].braiding-compat {n} {m} {X.fₒ′ s₁ , Y.fₒ′ s₂}
- }
- where
- module X = System X
- module Y = System Y
-
- Sys-braiding-compat-≥
- : (X : System n)
- (Y : System m)
- → ⊗ (Y , X) ≤ Sys.₁ (+-swap {m} {n}) ⟨$⟩ ⊗ (X , Y)
- Sys-braiding-compat-≥ {n} {m} X Y = record
- { ⇒S = swapₛ
- ; ≗-fₛ = λ i (s₂ , s₁) → cong (X.fₛ ×-⇒ Y.fₛ) (sym-braiding-compat-inv {i})
- ; ≗-fₒ = λ (s₂ , s₁) → sym-braiding-compat-++ {X.fₒ′ s₁ , Y.fₒ′ s₂}
- }
- where
- module X = System X
- module Y = System Y
- sym-braiding-compat-inv : swapₛ ∙ splitₛ {m} ≈ splitₛ ∙ Pull.₁ (+-swap {m} {n})
- sym-braiding-compat-inv {i} =
- 0ℓ-Setoids-×.Equiv.sym
- {Values (m + n)}
- {Values n ×ₛ Values m}
- {splitₛ ∙ Pull.₁ (+-swap {m} {n})}
- {swapₛ ∙ splitₛ {m}}
- (λ {j} → braiding-compat-inv {m} {n} {j}) {i}
- sym-braiding-compat-++ : ++ₛ {m} ∙ swapₛ ≈ Push.₁ (+-swap {m} {n}) ∙ ++ₛ
- sym-braiding-compat-++ {i} =
- 0ℓ-Setoids-×.Equiv.sym
- {Values n ×ₛ Values m}
- {Values (m + n)}
- {Push.₁ (+-swap {m} {n}) ∙ ++ₛ}
- {++ₛ {m} ∙ swapₛ}
- (Push,++,[].braiding-compat {n} {m})
-
-open Lax.SymmetricMonoidalFunctor
-
-Sys,⊗,ε : Lax.SymmetricMonoidalFunctor
-Sys,⊗,ε .F = Sys
-Sys,⊗,ε .isBraidedMonoidal = record
- { isMonoidal = record
- { ε = Sys-ε
- ; ⊗-homo = ⊗-homomorphism
- ; associativity = λ { {n} {m} {o} {(X , Y), Z} → ⊗-assoc-≤ X Y Z , ⊗-assoc-≥ X Y Z }
- ; unitaryˡ = λ { {n} {_ , X} → Sys-unitaryˡ-≤ X , Sys-unitaryˡ-≥ X }
- ; unitaryʳ = λ { {n} {X , _} → Sys-unitaryʳ-≤ X , Sys-unitaryʳ-≥ X }
- }
- ; braiding-compat = λ { {n} {m} {X , Y} → Sys-braiding-compat-≤ X Y , Sys-braiding-compat-≥ X Y }
- }
-
-module Sys,⊗,ε = Lax.SymmetricMonoidalFunctor Sys,⊗,ε