diff options
| author | Jacques Comeaux <jacquesrcomeaux@protonmail.com> | 2026-01-13 17:15:31 -0600 |
|---|---|---|
| committer | Jacques Comeaux <jacquesrcomeaux@protonmail.com> | 2026-01-13 17:15:31 -0600 |
| commit | 3bf15830058dab0baca2b8518e4fe1c4a7363e45 (patch) | |
| tree | a957eb783c77c2f4ec69b507a0e5cd51ed503379 /Functor/Monoidal/Instance/Nat/System.agda | |
| parent | c65be5a260a44f35e26b771026153643ad2464b3 (diff) | |
Remove old monoidal functors
Diffstat (limited to 'Functor/Monoidal/Instance/Nat/System.agda')
| -rw-r--r-- | Functor/Monoidal/Instance/Nat/System.agda | 394 |
1 files changed, 0 insertions, 394 deletions
diff --git a/Functor/Monoidal/Instance/Nat/System.agda b/Functor/Monoidal/Instance/Nat/System.agda deleted file mode 100644 index 6659fb3..0000000 --- a/Functor/Monoidal/Instance/Nat/System.agda +++ /dev/null @@ -1,394 +0,0 @@ -{-# OPTIONS --without-K --safe #-} - -module Functor.Monoidal.Instance.Nat.System where - -import Categories.Category.Monoidal.Utilities as ⊗-Util -import Data.Circuit.Value as Value -import Data.Vec.Functional as Vec -import Relation.Binary.PropositionalEquality as ≡ - -open import Level using (0ℓ; suc; Level) - -open import Category.Monoidal.Instance.Nat using (Nat,+,0; Natop,+,0) -open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory; BraidedMonoidalCategory) -open import Category.Instance.Setoids.SymmetricMonoidal {0ℓ} {0ℓ} using () renaming (Setoids-× to 0ℓ-Setoids-×) -open import Category.Instance.Setoids.SymmetricMonoidal {suc 0ℓ} {suc 0ℓ} using (Setoids-×) - -module Natop,+,0 = SymmetricMonoidalCategory Natop,+,0 renaming (braidedMonoidalCategory to B) -module 0ℓ-Setoids-× = SymmetricMonoidalCategory 0ℓ-Setoids-× renaming (braidedMonoidalCategory to B) - -open import Functor.Monoidal.Instance.Nat.Pull using (Pull,++,[]) -open import Categories.Functor.Monoidal.Braided Natop,+,0.B 0ℓ-Setoids-×.B using (module Strong) - -Pull,++,[]B : Strong.BraidedMonoidalFunctor -Pull,++,[]B = record { isBraidedMonoidal = Pull,++,[].isBraidedMonoidal } -module Pull,++,[]B = Strong.BraidedMonoidalFunctor (record { isBraidedMonoidal = Pull,++,[].isBraidedMonoidal }) - -open import Categories.Category.BinaryProducts using (module BinaryProducts) -open import Categories.Category.Cartesian using (Cartesian) -open import Categories.Category.Cocartesian using (Cocartesian) -open import Categories.Category.Instance.Nat using (Nat; Nat-Cocartesian; Natop) -open import Categories.Category.Instance.Setoids using (Setoids) -open import Data.Setoid.Unit using (⊤ₛ) -open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian) -open import Categories.Category.Product using (Product) -open import Categories.Category.Product using (_⁂_) -open import Categories.Functor using (Functor) -open import Categories.Functor using (_∘F_) -open import Categories.Functor.Monoidal.Symmetric Nat,+,0 Setoids-× using (module Lax) -open import Categories.NaturalTransformation.Core using (NaturalTransformation; ntHelper) -open import Data.Circuit.Value using (Monoid) -open import Data.Fin using (Fin) -open import Data.Nat using (ℕ; _+_) -open import Data.Product using (_,_; dmap; _×_) renaming (map to ×-map) -open import Data.Product.Function.NonDependent.Setoid using (_×-function_; proj₁ₛ; proj₂ₛ; <_,_>ₛ; swapₛ) -open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_) -open import Data.Setoid using (_⇒ₛ_; ∣_∣) -open import Data.System {suc 0ℓ} using (Systemₛ; System; discrete; _≤_) -open import Data.System.Values Monoid using (++ₛ; splitₛ; Values; ++-cong; _++_; []) -open import Data.System.Values Value.Monoid using (_≋_; module ≋) -open import Data.Unit.Polymorphic using (⊤; tt) -open import Function using (Func; _⟶ₛ_; _⟨$⟩_; _∘_; id; case_of_) -open import Function.Construct.Constant using () renaming (function to Const) -open import Function.Construct.Identity using () renaming (function to Id) -open import Function.Construct.Setoid using (_∙_; setoid) -open import Functor.Instance.Nat.Pull using (Pull) -open import Functor.Instance.Nat.Push using (Push) -open import Functor.Instance.Nat.System using (Sys; Sys-defs) -open import Functor.Monoidal.Braided.Strong.Properties Pull,++,[]B using (braiding-compat-inv) -open import Functor.Monoidal.Instance.Nat.Push using (Push,++,[]) -open import Functor.Monoidal.Strong.Properties Pull,++,[].monoidalFunctor using (associativity-inv) -open import Functor.Monoidal.Strong.Properties Pull,++,[].monoidalFunctor using (unitaryʳ-inv; unitaryˡ-inv; module Shorthands) -open import Relation.Binary using (Setoid) -open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_) - -open module ⇒ₛ {A} {B} = Setoid (setoid {0ℓ} {0ℓ} {0ℓ} {0ℓ} A B) using (_≈_) - -open Cartesian (Setoids-Cartesian {suc 0ℓ} {suc 0ℓ}) using (products) - -open BinaryProducts products using (-×-) -open Cocartesian Nat-Cocartesian using (module Dual; i₁; i₂; -+-; _+₁_; +-assocʳ; +-assocˡ; +-comm; +-swap; +₁∘+-swap; +₁∘i₁; +₁∘i₂) -open Dual.op-binaryProducts using () renaming (×-assoc to +-assoc) -open SymmetricMonoidalCategory using () renaming (braidedMonoidalCategory to B) - -open Func - -Sys-ε : ⊤ₛ {suc 0ℓ} {suc 0ℓ} ⟶ₛ Systemₛ 0 -Sys-ε = Const ⊤ₛ (Systemₛ 0) (discrete 0) - -private - - variable - n m o : ℕ - c₁ c₂ c₃ c₄ c₅ c₆ : Level - ℓ₁ ℓ₂ ℓ₃ ℓ₄ ℓ₅ ℓ₆ : Level - -_×-⇒_ - : {A : Setoid c₁ ℓ₁} - {B : Setoid c₂ ℓ₂} - {C : Setoid c₃ ℓ₃} - {D : Setoid c₄ ℓ₄} - {E : Setoid c₅ ℓ₅} - {F : Setoid c₆ ℓ₆} - → A ⟶ₛ B ⇒ₛ C - → D ⟶ₛ E ⇒ₛ F - → A ×ₛ D ⟶ₛ B ×ₛ E ⇒ₛ C ×ₛ F -_×-⇒_ f g .to (x , y) = to f x ×-function to g y -_×-⇒_ f g .cong (x , y) = cong f x , cong g y - -⊗ : System n × System m → System (n + m) -⊗ {n} {m} (S₁ , S₂) = record - { S = S₁.S ×ₛ S₂.S - ; fₛ = S₁.fₛ ×-⇒ S₂.fₛ ∙ splitₛ - ; fₒ = ++ₛ ∙ S₁.fₒ ×-function S₂.fₒ - } - where - module S₁ = System S₁ - module S₂ = System S₂ - -opaque - - _~_ : {A B : Setoid 0ℓ 0ℓ} → Func A B → Func A B → Set - _~_ = _≈_ - infix 4 _~_ - - sym-~ - : {A B : Setoid 0ℓ 0ℓ} - {x y : Func A B} - → x ~ y - → y ~ x - sym-~ {A} {B} {x} {y} = 0ℓ-Setoids-×.Equiv.sym {A} {B} {x} {y} - -⊗ₛ - : {n m : ℕ} - → Systemₛ n ×ₛ Systemₛ m ⟶ₛ Systemₛ (n + m) -⊗ₛ .to = ⊗ -⊗ₛ {n} {m} .cong {a , b} {c , d} ((a≤c , c≤a) , (b≤d , d≤b)) = left , right - where - module a = System a - module b = System b - module c = System c - module d = System d - module a≤c = _≤_ a≤c - module b≤d = _≤_ b≤d - module c≤a = _≤_ c≤a - module d≤b = _≤_ d≤b - - open _≤_ - left : ⊗ₛ ⟨$⟩ (a , b) ≤ ⊗ₛ ⟨$⟩ (c , d) - left .⇒S = a≤c.⇒S ×-function b≤d.⇒S - left .≗-fₛ i with (i₁ , i₂) ← splitₛ ⟨$⟩ i = dmap (a≤c.≗-fₛ i₁) (b≤d.≗-fₛ i₂) - left .≗-fₒ = cong ++ₛ ∘ dmap a≤c.≗-fₒ b≤d.≗-fₒ - - right : ⊗ₛ ⟨$⟩ (c , d) ≤ ⊗ₛ ⟨$⟩ (a , b) - right .⇒S = c≤a.⇒S ×-function d≤b.⇒S - right .≗-fₛ i with (i₁ , i₂) ← splitₛ ⟨$⟩ i = dmap (c≤a.≗-fₛ i₁) (d≤b.≗-fₛ i₂) - right .≗-fₒ = cong ++ₛ ∘ dmap c≤a.≗-fₒ d≤b.≗-fₒ - -opaque - - unfolding Sys-defs - - System-⊗-≤ - : {n n′ m m′ : ℕ} - (X : System n) - (Y : System m) - (f : Fin n → Fin n′) - (g : Fin m → Fin m′) - → ⊗ (Sys.₁ f ⟨$⟩ X , Sys.₁ g ⟨$⟩ Y) ≤ Sys.₁ (f +₁ g) ⟨$⟩ ⊗ (X , Y) - System-⊗-≤ {n} {n′} {m} {m′} X Y f g = record - { ⇒S = Id (X.S ×ₛ Y.S) - ; ≗-fₛ = λ i s → cong (X.fₛ ×-⇒ Y.fₛ) (Pull,++,[].⊗-homo.⇐.sym-commute (f , g) {i}) {s} - ; ≗-fₒ = λ (s₁ , s₂) → Push,++,[].⊗-homo.commute (f , g) {X.fₒ′ s₁ , Y.fₒ′ s₂} - } - where - module X = System X - module Y = System Y - - System-⊗-≥ - : {n n′ m m′ : ℕ} - (X : System n) - (Y : System m) - (f : Fin n → Fin n′) - (g : Fin m → Fin m′) - → Sys.₁ (f +₁ g) ⟨$⟩ (⊗ (X , Y)) ≤ ⊗ (Sys.₁ f ⟨$⟩ X , Sys.₁ g ⟨$⟩ Y) - System-⊗-≥ {n} {n′} {m} {m′} X Y f g = record - { ⇒S = Id (X.S ×ₛ Y.S) - ; ≗-fₛ = λ i s → cong (X.fₛ ×-⇒ Y.fₛ) (Pull,++,[].⊗-homo.⇐.commute (f , g) {i}) {s} - ; ≗-fₒ = λ (s₁ , s₂) → Push,++,[].⊗-homo.sym-commute (f , g) {X.fₒ′ s₁ , Y.fₒ′ s₂} - } - where - module X = System X - module Y = System Y - -⊗-homomorphism : NaturalTransformation (-×- ∘F (Sys ⁂ Sys)) (Sys ∘F -+-) -⊗-homomorphism = ntHelper record - { η = λ (n , m) → ⊗ₛ {n} {m} - ; commute = λ { (f , g) {X , Y} → System-⊗-≤ X Y f g , System-⊗-≥ X Y f g } - } - -opaque - - unfolding Sys-defs - - ⊗-assoc-≤ - : (X : System n) - (Y : System m) - (Z : System o) - → Sys.₁ (+-assocˡ {n}) ⟨$⟩ (⊗ (⊗ (X , Y) , Z)) ≤ ⊗ (X , ⊗ (Y , Z)) - ⊗-assoc-≤ {n} {m} {o} X Y Z = record - { ⇒S = assocˡ - ; ≗-fₛ = λ i ((s₁ , s₂) , s₃) → cong (X.fₛ ×-⇒ (Y.fₛ ×-⇒ Z.fₛ) ∙ assocˡ) (associativity-inv {x = i}) {s₁ , s₂ , s₃} - ; ≗-fₒ = λ ((s₁ , s₂) , s₃) → Push,++,[].associativity {x = (X.fₒ′ s₁ , Y.fₒ′ s₂) , Z.fₒ′ s₃} - } - where - open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using () renaming (products to 0ℓ-products) - open BinaryProducts 0ℓ-products using (assocˡ) - - module X = System X - module Y = System Y - module Z = System Z - - ⊗-assoc-≥ - : (X : System n) - (Y : System m) - (Z : System o) - → ⊗ (X , ⊗ (Y , Z)) ≤ Sys.₁ (+-assocˡ {n}) ⟨$⟩ (⊗ (⊗ (X , Y) , Z)) - ⊗-assoc-≥ {n} {m} {o} X Y Z = record - { ⇒S = ×-assocʳ - ; ≗-fₛ = λ i (s₁ , s₂ , s₃) → cong ((X.fₛ ×-⇒ Y.fₛ) ×-⇒ Z.fₛ) (sym-split-assoc {i}) {(s₁ , s₂) , s₃} - ; ≗-fₒ = λ (s₁ , s₂ , s₃) → sym-++-assoc {(X.fₒ′ s₁ , Y.fₒ′ s₂) , Z.fₒ′ s₃} - } - where - open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using () renaming (products to prod) - open BinaryProducts prod using () renaming (assocʳ to ×-assocʳ; assocˡ to ×-assocˡ) - - +-assocℓ : Fin ((n + m) + o) → Fin (n + (m + o)) - +-assocℓ = +-assocˡ {n} {m} {o} - - opaque - - unfolding _~_ - - associativity-inv-~ : splitₛ ×-function Id (Values o) ∙ splitₛ ∙ Pull.₁ +-assocℓ ~ ×-assocʳ ∙ Id (Values n) ×-function splitₛ ∙ splitₛ - associativity-inv-~ {i} = associativity-inv {n} {m} {o} {i} - - associativity-~ : Push.₁ (+-assocˡ {n} {m} {o}) ∙ ++ₛ ∙ ++ₛ ×-function Id (Values o) ~ ++ₛ ∙ Id (Values n) ×-function ++ₛ ∙ ×-assocˡ - associativity-~ {i} = Push,++,[].associativity {n} {m} {o} {i} - - sym-split-assoc-~ : ×-assocʳ ∙ Id (Values n) ×-function splitₛ ∙ splitₛ ~ splitₛ ×-function Id (Values o) ∙ splitₛ ∙ Pull.₁ +-assocℓ - sym-split-assoc-~ = sym-~ associativity-inv-~ - - sym-++-assoc-~ : ++ₛ ∙ Id (Values n) ×-function ++ₛ ∙ ×-assocˡ ~ Push.₁ (+-assocˡ {n} {m} {o}) ∙ ++ₛ ∙ ++ₛ ×-function Id (Values o) - sym-++-assoc-~ = sym-~ associativity-~ - - opaque - - unfolding _~_ - - sym-split-assoc : ×-assocʳ ∙ Id (Values n) ×-function splitₛ ∙ splitₛ ≈ splitₛ ×-function Id (Values o) ∙ splitₛ ∙ Pull.₁ +-assocℓ - sym-split-assoc {i} = sym-split-assoc-~ {i} - - sym-++-assoc : ++ₛ ∙ Id (Values n) ×-function ++ₛ ∙ ×-assocˡ ≈ Push.₁ (+-assocˡ {n} {m} {o}) ∙ ++ₛ ∙ ++ₛ ×-function Id (Values o) - sym-++-assoc {i} = sym-++-assoc-~ - - module X = System X - module Y = System Y - module Z = System Z - - Sys-unitaryˡ-≤ : (X : System n) → Sys.₁ id ⟨$⟩ (⊗ (discrete 0 , X)) ≤ X - Sys-unitaryˡ-≤ {n} X = record - { ⇒S = proj₂ₛ - ; ≗-fₛ = λ i (_ , s) → cong (X.fₛ ∙ proj₂ₛ {A = ⊤ₛ {0ℓ}}) (unitaryˡ-inv {n} {i}) - ; ≗-fₒ = λ (_ , s) → Push,++,[].unitaryˡ {n} {tt , X.fₒ′ s} - } - where - module X = System X - - Sys-unitaryˡ-≥ : (X : System n) → X ≤ Sys.₁ id ⟨$⟩ (⊗ (discrete 0 , X)) - Sys-unitaryˡ-≥ {n} X = record - { ⇒S = < Const X.S ⊤ₛ tt , Id X.S >ₛ - ; ≗-fₛ = λ i s → cong (disc.fₛ ×-⇒ X.fₛ ∙ ε⇒ ×-function Id (Values n)) (sym-split-unitaryˡ {i}) - ; ≗-fₒ = λ s → sym-++-unitaryˡ {_ , X.fₒ′ s} - } - where - module X = System X - open SymmetricMonoidalCategory 0ℓ-Setoids-× using (module Equiv) - open ⊗-Util.Shorthands 0ℓ-Setoids-×.monoidal using (λ⇐) - open Shorthands using (ε⇐; ε⇒) - module disc = System (discrete 0) - sym-split-unitaryˡ - : λ⇐ ≈ ε⇐ ×-function Id (Values n) ∙ splitₛ ∙ Pull.₁ ((λ ()) Vec.++ id) - sym-split-unitaryˡ = - 0ℓ-Setoids-×.Equiv.sym - {Values n} - {⊤ₛ ×ₛ Values n} - {ε⇐ ×-function Id (Values n) ∙ splitₛ ∙ Pull.₁ ((λ ()) Vec.++ id)} - {λ⇐} - (unitaryˡ-inv {n}) - sym-++-unitaryˡ : proj₂ₛ {A = ⊤ₛ {0ℓ} {0ℓ}} ≈ Push.₁ ((λ ()) Vec.++ id) ∙ ++ₛ ∙ Push,++,[].ε ×-function Id (Values n) - sym-++-unitaryˡ = - 0ℓ-Setoids-×.Equiv.sym - {⊤ₛ ×ₛ Values n} - {Values n} - {Push.₁ ((λ ()) Vec.++ id) ∙ ++ₛ ∙ Push,++,[].ε ×-function Id (Values n)} - {proj₂ₛ} - (Push,++,[].unitaryˡ {n}) - - - Sys-unitaryʳ-≤ : (X : System n) → Sys.₁ (id Vec.++ (λ ())) ⟨$⟩ (⊗ {n} {0} (X , discrete 0)) ≤ X - Sys-unitaryʳ-≤ {n} X = record - { ⇒S = proj₁ₛ - ; ≗-fₛ = λ i (s , _) → cong (X.fₛ ∙ proj₁ₛ {B = ⊤ₛ {0ℓ}}) (unitaryʳ-inv {n} {i}) - ; ≗-fₒ = λ (s , _) → Push,++,[].unitaryʳ {n} {X.fₒ′ s , tt} - } - where - module X = System X - - Sys-unitaryʳ-≥ : (X : System n) → X ≤ Sys.₁ (id Vec.++ (λ ())) ⟨$⟩ (⊗ {n} {0} (X , discrete 0)) - Sys-unitaryʳ-≥ {n} X = record - { ⇒S = < Id X.S , Const X.S ⊤ₛ tt >ₛ - ; ≗-fₛ = λ i s → cong (X.fₛ ×-⇒ disc.fₛ ∙ Id (Values n) ×-function ε⇒) sym-split-unitaryʳ {s , tt} - ; ≗-fₒ = λ s → sym-++-unitaryʳ {X.fₒ′ s , tt} - } - where - module X = System X - module disc = System (discrete 0) - open ⊗-Util.Shorthands 0ℓ-Setoids-×.monoidal using (ρ⇐) - open Shorthands using (ε⇐; ε⇒) - sym-split-unitaryʳ - : ρ⇐ ≈ Id (Values n) ×-function ε⇐ ∙ splitₛ ∙ Pull.₁ (id Vec.++ (λ ())) - sym-split-unitaryʳ = - 0ℓ-Setoids-×.Equiv.sym - {Values n} - {Values n ×ₛ ⊤ₛ} - {Id (Values n) ×-function ε⇐ ∙ splitₛ ∙ Pull.₁ (id Vec.++ (λ ()))} - {ρ⇐} - (unitaryʳ-inv {n}) - sym-++-unitaryʳ : proj₁ₛ {B = ⊤ₛ {0ℓ}} ≈ Push.₁ (id Vec.++ (λ ())) ∙ ++ₛ ∙ Id (Values n) ×-function Push,++,[].ε - sym-++-unitaryʳ = - 0ℓ-Setoids-×.Equiv.sym - {Values n ×ₛ ⊤ₛ} - {Values n} - {Push.₁ (id Vec.++ (λ ())) ∙ ++ₛ ∙ Id (Values n) ×-function Push,++,[].ε} - {proj₁ₛ} - (Push,++,[].unitaryʳ {n}) - - Sys-braiding-compat-≤ - : (X : System n) - (Y : System m) - → Sys.₁ (+-swap {m} {n}) ⟨$⟩ (⊗ (X , Y)) ≤ ⊗ (Y , X) - Sys-braiding-compat-≤ {n} {m} X Y = record - { ⇒S = swapₛ - ; ≗-fₛ = λ i (s₁ , s₂) → cong (Y.fₛ ×-⇒ X.fₛ ∙ swapₛ) (braiding-compat-inv {m} {n} {i}) {s₂ , s₁} - ; ≗-fₒ = λ (s₁ , s₂) → Push,++,[].braiding-compat {n} {m} {X.fₒ′ s₁ , Y.fₒ′ s₂} - } - where - module X = System X - module Y = System Y - - Sys-braiding-compat-≥ - : (X : System n) - (Y : System m) - → ⊗ (Y , X) ≤ Sys.₁ (+-swap {m} {n}) ⟨$⟩ ⊗ (X , Y) - Sys-braiding-compat-≥ {n} {m} X Y = record - { ⇒S = swapₛ - ; ≗-fₛ = λ i (s₂ , s₁) → cong (X.fₛ ×-⇒ Y.fₛ) (sym-braiding-compat-inv {i}) - ; ≗-fₒ = λ (s₂ , s₁) → sym-braiding-compat-++ {X.fₒ′ s₁ , Y.fₒ′ s₂} - } - where - module X = System X - module Y = System Y - sym-braiding-compat-inv : swapₛ ∙ splitₛ {m} ≈ splitₛ ∙ Pull.₁ (+-swap {m} {n}) - sym-braiding-compat-inv {i} = - 0ℓ-Setoids-×.Equiv.sym - {Values (m + n)} - {Values n ×ₛ Values m} - {splitₛ ∙ Pull.₁ (+-swap {m} {n})} - {swapₛ ∙ splitₛ {m}} - (λ {j} → braiding-compat-inv {m} {n} {j}) {i} - sym-braiding-compat-++ : ++ₛ {m} ∙ swapₛ ≈ Push.₁ (+-swap {m} {n}) ∙ ++ₛ - sym-braiding-compat-++ {i} = - 0ℓ-Setoids-×.Equiv.sym - {Values n ×ₛ Values m} - {Values (m + n)} - {Push.₁ (+-swap {m} {n}) ∙ ++ₛ} - {++ₛ {m} ∙ swapₛ} - (Push,++,[].braiding-compat {n} {m}) - -open Lax.SymmetricMonoidalFunctor - -Sys,⊗,ε : Lax.SymmetricMonoidalFunctor -Sys,⊗,ε .F = Sys -Sys,⊗,ε .isBraidedMonoidal = record - { isMonoidal = record - { ε = Sys-ε - ; ⊗-homo = ⊗-homomorphism - ; associativity = λ { {n} {m} {o} {(X , Y), Z} → ⊗-assoc-≤ X Y Z , ⊗-assoc-≥ X Y Z } - ; unitaryˡ = λ { {n} {_ , X} → Sys-unitaryˡ-≤ X , Sys-unitaryˡ-≥ X } - ; unitaryʳ = λ { {n} {X , _} → Sys-unitaryʳ-≤ X , Sys-unitaryʳ-≥ X } - } - ; braiding-compat = λ { {n} {m} {X , Y} → Sys-braiding-compat-≤ X Y , Sys-braiding-compat-≥ X Y } - } - -module Sys,⊗,ε = Lax.SymmetricMonoidalFunctor Sys,⊗,ε |
