aboutsummaryrefslogtreecommitdiff
path: root/Functor/Monoidal/Instance/Nat
diff options
context:
space:
mode:
authorJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-11-05 08:11:48 -0600
committerJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-11-05 08:11:48 -0600
commit5f4d1cf740591476d3c7bc270fd11a2c578ab7e6 (patch)
tree18e541e617682773e76041166cd516d9fe9dd668 /Functor/Monoidal/Instance/Nat
parent0ce2b2ee7bc6f37473de60d801391dd3ff2dc024 (diff)
Adjust universe levels
Diffstat (limited to 'Functor/Monoidal/Instance/Nat')
-rw-r--r--Functor/Monoidal/Instance/Nat/System.agda36
1 files changed, 20 insertions, 16 deletions
diff --git a/Functor/Monoidal/Instance/Nat/System.agda b/Functor/Monoidal/Instance/Nat/System.agda
index 1b3bb34..d86588f 100644
--- a/Functor/Monoidal/Instance/Nat/System.agda
+++ b/Functor/Monoidal/Instance/Nat/System.agda
@@ -1,25 +1,25 @@
{-# OPTIONS --without-K --safe #-}
-open import Level using (Level; 0ℓ; suc)
-
-module Functor.Monoidal.Instance.Nat.System {ℓ : Level} where
+module Functor.Monoidal.Instance.Nat.System where
open import Function.Construct.Identity using () renaming (function to Id)
import Function.Construct.Constant as Const
+open import Level using (0ℓ; suc; Level)
+
open import Category.Monoidal.Instance.Nat using (Nat,+,0; Natop,+,0)
open import Categories.Category.Instance.Nat using (Natop)
-open import Category.Instance.Setoids.SymmetricMonoidal {suc ℓ} {ℓ} using (Setoids-×)
+open import Category.Instance.Setoids.SymmetricMonoidal {suc 0ℓ} {suc 0ℓ} using (Setoids-×)
open import Categories.Category.Instance.SingletonSet using (SingletonSetoid)
open import Data.Circuit.Value using (Value)
open import Data.Setoid using (_⇒ₛ_; ∣_∣)
-open import Data.System {ℓ} using (Systemₛ; System; ≤-System)
+open import Data.System {suc 0ℓ} using (Systemₛ; System; ≤-System)
open import Data.System.Values Value using (Values; _≋_; module ≋)
open import Data.Unit.Polymorphic using (⊤; tt)
open import Data.Vec.Functional using ([])
open import Relation.Binary using (Setoid)
open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_)
-open import Functor.Instance.Nat.System {ℓ} using (Sys; map)
+open import Functor.Instance.Nat.System using (Sys; map)
open import Function.Base using (_∘_)
open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_)
open import Function.Construct.Setoid using (setoid)
@@ -36,12 +36,12 @@ module _ where
discrete .fₛ = Const.function (Values 0) (SingletonSetoid ⇒ₛ SingletonSetoid) (Id SingletonSetoid)
discrete .fₒ = Const.function SingletonSetoid (Values 0) []
-Sys-ε : SingletonSetoid {suc ℓ} {ℓ} ⟶ₛ Systemₛ 0
+Sys-ε : SingletonSetoid {suc 0ℓ} {suc 0ℓ} ⟶ₛ Systemₛ 0
Sys-ε = Const.function SingletonSetoid (Systemₛ 0) discrete
open import Categories.Category.Cartesian using (Cartesian)
open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian)
-open Cartesian (Setoids-Cartesian {suc ℓ} {ℓ}) using (products)
+open Cartesian (Setoids-Cartesian {suc 0ℓ} {suc 0ℓ}) using (products)
open import Categories.Category.BinaryProducts using (module BinaryProducts)
open BinaryProducts products using (-×-)
open import Categories.Functor using (_∘F_)
@@ -216,12 +216,14 @@ System-⊗-≥ {n} {n′} {m} {m′} X Y f g = record
where
open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using () renaming (products to 0ℓ-products)
open BinaryProducts 0ℓ-products using (assocˡ)
- open Cartesian (Setoids-Cartesian {ℓ} {ℓ}) using () renaming (products to prod)
+ open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using () renaming (products to prod)
open BinaryProducts prod using () renaming (assocˡ to ×-assocˡ)
module Pull,++,[] = SymmetricMonoidalFunctor Pull,++,[]
+ Pull,++,[]B : BraidedMonoidalFunctor
+ Pull,++,[]B = record { isBraidedMonoidal = Pull,++,[].isBraidedMonoidal }
module Pull,++,[]B = BraidedMonoidalFunctor (record { isBraidedMonoidal = Pull,++,[].isBraidedMonoidal })
- open import Functor.Monoidal.Braided.Strong.Properties Pull,++,[].braidedMonoidalFunctor using (associativity-inv)
+ open import Functor.Monoidal.Braided.Strong.Properties Pull,++,[]B using (associativity-inv)
module X = System X
module Y = System Y
@@ -238,7 +240,7 @@ System-⊗-≥ {n} {n′} {m} {m′} X Y f g = record
; ≗-fₒ = λ (s₁ , s₂ , s₃) → sym-++-assoc {(X.fₒ′ s₁ , Y.fₒ′ s₂) , Z.fₒ′ s₃}
}
where
- open Cartesian (Setoids-Cartesian {ℓ} {ℓ}) using () renaming (products to prod)
+ open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using () renaming (products to prod)
open BinaryProducts prod using () renaming (assocʳ to ×-assocʳ)
open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using () renaming (products to 0ℓ-products)
open BinaryProducts 0ℓ-products using (×-assoc; assocˡ; assocʳ)
@@ -323,7 +325,7 @@ Sys-unitaryʳ-≥ {n} X = record
{ ⇒S = < Id X.S , Const.function X.S SingletonSetoid tt >ₛ
; ≗-fₛ = λ i s →
cong
- (X.fₛ ×-⇒ Const.function (Values 0) (SingletonSetoid ⇒ₛ SingletonSetoid) (Id (SingletonSetoid {ℓ} {ℓ})) ∙ Id (Values n) ×-function ε⇒)
+ (X.fₛ ×-⇒ Const.function (Values 0) (SingletonSetoid ⇒ₛ SingletonSetoid) (Id (SingletonSetoid {suc 0ℓ} {0ℓ})) ∙ Id (Values n) ×-function ε⇒)
sym-split-unitaryʳ
{s , tt}
; ≗-fₒ = λ s → sym-++-unitaryʳ {X.fₒ′ s , tt}
@@ -371,8 +373,9 @@ Sys-braiding-compat-≤ {n} {m} X Y = record
module X = System X
module Y = System Y
module Pull,++,[] = SymmetricMonoidalFunctor Pull,++,[]
- module Pull,++,[]B = BraidedMonoidalFunctor (record { isBraidedMonoidal = Pull,++,[].isBraidedMonoidal })
- open import Functor.Monoidal.Braided.Strong.Properties Pull,++,[].braidedMonoidalFunctor using (braiding-compat-inv)
+ Pull,++,[]B : BraidedMonoidalFunctor
+ Pull,++,[]B = record { isBraidedMonoidal = Pull,++,[].isBraidedMonoidal }
+ open import Functor.Monoidal.Braided.Strong.Properties Pull,++,[]B using (braiding-compat-inv)
open import Categories.Functor.Monoidal.Symmetric Nat,+,0 0ℓ-Setoids-× using (module Lax)
module Push,++,[] = Lax.SymmetricMonoidalFunctor Push,++,[]
@@ -389,8 +392,9 @@ Sys-braiding-compat-≥ {n} {m} X Y = record
module X = System X
module Y = System Y
module Pull,++,[] = SymmetricMonoidalFunctor Pull,++,[]
- module Pull,++,[]B = BraidedMonoidalFunctor (record { isBraidedMonoidal = Pull,++,[].isBraidedMonoidal })
- open import Functor.Monoidal.Braided.Strong.Properties Pull,++,[].braidedMonoidalFunctor using (braiding-compat-inv)
+ Pull,++,[]B : BraidedMonoidalFunctor
+ Pull,++,[]B = record { isBraidedMonoidal = Pull,++,[].isBraidedMonoidal }
+ open import Functor.Monoidal.Braided.Strong.Properties Pull,++,[]B using (braiding-compat-inv)
open import Categories.Functor.Monoidal.Symmetric Nat,+,0 0ℓ-Setoids-× using (module Lax)
module Push,++,[] = Lax.SymmetricMonoidalFunctor Push,++,[]