aboutsummaryrefslogtreecommitdiff
path: root/NaturalTransformation/Instance/EmptyList.agda
diff options
context:
space:
mode:
authorJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-10-30 17:20:33 -0500
committerJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-10-30 17:20:33 -0500
commita34e05e875802477f8794ecb330b01c473c024c4 (patch)
tree5d7edd74a169b182be670dc9aff961fe9cc22065 /NaturalTransformation/Instance/EmptyList.agda
parent716411e0c02f5900d7ef81d1ca08f8b83dc13351 (diff)
Make list natural transformations level-polymorphic
Diffstat (limited to 'NaturalTransformation/Instance/EmptyList.agda')
-rw-r--r--NaturalTransformation/Instance/EmptyList.agda10
1 files changed, 5 insertions, 5 deletions
diff --git a/NaturalTransformation/Instance/EmptyList.agda b/NaturalTransformation/Instance/EmptyList.agda
index 2164d6c..9a558a2 100644
--- a/NaturalTransformation/Instance/EmptyList.agda
+++ b/NaturalTransformation/Instance/EmptyList.agda
@@ -1,6 +1,8 @@
{-# OPTIONS --without-K --safe #-}
-module NaturalTransformation.Instance.EmptyList where
+open import Level using (Level)
+
+module NaturalTransformation.Instance.EmptyList {c ℓ : Level} where
import Function.Construct.Constant as Const
@@ -8,10 +10,8 @@ open import Categories.NaturalTransformation using (NaturalTransformation; ntHel
open import Categories.Functor using (Functor)
open import Categories.Category.Instance.SingletonSet using (SingletonSetoid)
open import Categories.Functor.Construction.Constant using (const)
-open import Data.List.Relation.Binary.Pointwise using (refl)
open import Data.List using ([])
-open import Level using (0ℓ)
-open import Functor.Instance.List {0ℓ} {0ℓ} using (List)
+open import Functor.Instance.List {c} {ℓ} using (List)
open import Relation.Binary using (Setoid)
module List = Functor List
@@ -19,5 +19,5 @@ module List = Functor List
⊤⇒[] : NaturalTransformation (const SingletonSetoid) List
⊤⇒[] = ntHelper record
{ η = λ X → Const.function SingletonSetoid (List.₀ X) []
- ; commute = λ {_} {B} f → let module B = Setoid B in refl B.refl
+ ; commute = λ {_} {B} f → Setoid.refl (List.₀ B)
}