aboutsummaryrefslogtreecommitdiff
path: root/NaturalTransformation/Instance/EmptyMultiset.agda
diff options
context:
space:
mode:
authorJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-12-09 14:45:27 -0600
committerJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-12-09 14:45:27 -0600
commitd721f0a23f3b8c50fd1754c8958ac40b6f625cbd (patch)
tree7f5105b79482e7441d9b800f21a9bc870509d0f0 /NaturalTransformation/Instance/EmptyMultiset.agda
parentb5e583bb067749f80bd3f7e24e807674eba8b394 (diff)
Add free commutative monoid functor
Diffstat (limited to 'NaturalTransformation/Instance/EmptyMultiset.agda')
-rw-r--r--NaturalTransformation/Instance/EmptyMultiset.agda25
1 files changed, 18 insertions, 7 deletions
diff --git a/NaturalTransformation/Instance/EmptyMultiset.agda b/NaturalTransformation/Instance/EmptyMultiset.agda
index 9c3a779..bfec451 100644
--- a/NaturalTransformation/Instance/EmptyMultiset.agda
+++ b/NaturalTransformation/Instance/EmptyMultiset.agda
@@ -1,6 +1,6 @@
{-# OPTIONS --without-K --safe #-}
-open import Level using (Level)
+open import Level using (Level; _⊔_)
module NaturalTransformation.Instance.EmptyMultiset {c ℓ : Level} where
@@ -8,16 +8,27 @@ import Function.Construct.Constant as Const
open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
open import Categories.Functor using (Functor)
-open import Categories.Category.Instance.SingletonSet using (SingletonSetoid)
+open import Data.Setoid.Unit {c} {c ⊔ ℓ} using (⊤ₛ)
open import Categories.Functor.Construction.Constant using (const)
-open import Data.List using ([])
+open import Data.Opaque.Multiset using (Multisetₛ; []ₛ; mapₛ)
open import Functor.Instance.Multiset {c} {ℓ} using (Multiset)
+open import Function.Construct.Constant using () renaming (function to Const)
open import Relation.Binary using (Setoid)
+open import Data.Setoid using (_⇒ₛ_)
+open import Function using (Func; _⟶ₛ_)
+open import Function.Construct.Setoid using (_∙_)
-module Multiset = Functor Multiset
+opaque
+ unfolding mapₛ
+ map-[]ₛ
+ : {A B : Setoid c ℓ}
+ → (f : A ⟶ₛ B)
+ → (open Setoid (⊤ₛ ⇒ₛ Multisetₛ B))
+ → []ₛ ≈ mapₛ f ∙ []ₛ
+ map-[]ₛ {B = B} f = Setoid.refl (Multisetₛ B)
-⊤⇒[] : NaturalTransformation (const SingletonSetoid) Multiset
+⊤⇒[] : NaturalTransformation (const ⊤ₛ) Multiset
⊤⇒[] = ntHelper record
- { η = λ X → Const.function SingletonSetoid (Multiset.₀ X) []
- ; commute = λ {_} {B} f → Setoid.refl (Multiset.₀ B)
+ { η = λ X → []ₛ {Aₛ = X}
+ ; commute = map-[]ₛ
}