aboutsummaryrefslogtreecommitdiff
path: root/NaturalTransformation
diff options
context:
space:
mode:
authorJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-11-13 13:24:21 -0600
committerJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-11-13 13:24:21 -0600
commit05cbf6f56bce1d45876630fe29b694dc57942e9c (patch)
treef2d888b155c44487cc1b8b9b590c6cf207578c4e /NaturalTransformation
parented5f0ae0f95a1675b272b205bb58724368031c01 (diff)
Add adjunction between free monoid and forget
Diffstat (limited to 'NaturalTransformation')
-rw-r--r--NaturalTransformation/Instance/EmptyList.agda32
-rw-r--r--NaturalTransformation/Instance/ListAppend.agda33
2 files changed, 37 insertions, 28 deletions
diff --git a/NaturalTransformation/Instance/EmptyList.agda b/NaturalTransformation/Instance/EmptyList.agda
index 9a558a2..0e069d2 100644
--- a/NaturalTransformation/Instance/EmptyList.agda
+++ b/NaturalTransformation/Instance/EmptyList.agda
@@ -1,23 +1,35 @@
{-# OPTIONS --without-K --safe #-}
-open import Level using (Level)
+open import Level using (Level; _⊔_)
module NaturalTransformation.Instance.EmptyList {c ℓ : Level} where
-import Function.Construct.Constant as Const
-
-open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
+open import Categories.Category.Instance.SingletonSet using () renaming (SingletonSetoid to ⊤ₛ)
open import Categories.Functor using (Functor)
-open import Categories.Category.Instance.SingletonSet using (SingletonSetoid)
open import Categories.Functor.Construction.Constant using (const)
-open import Data.List using ([])
+open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
+open import Data.Opaque.List using (Listₛ; []ₛ; mapₛ)
+open import Data.Setoid using (_⇒ₛ_)
+open import Function using (_⟶ₛ_)
+open import Function.Construct.Constant using () renaming (function to Const)
+open import Function.Construct.Setoid using (_∙_)
open import Functor.Instance.List {c} {ℓ} using (List)
open import Relation.Binary using (Setoid)
-module List = Functor List
+opaque
+
+ unfolding []ₛ
+
+ map-[]ₛ : {A B : Setoid c ℓ}
+ → (f : A ⟶ₛ B)
+ → (open Setoid (⊤ₛ ⇒ₛ Listₛ B))
+ → []ₛ ≈ mapₛ f ∙ []ₛ
+ map-[]ₛ {_} {B} f = refl
+ where
+ open Setoid (List.₀ B)
-⊤⇒[] : NaturalTransformation (const SingletonSetoid) List
+⊤⇒[] : NaturalTransformation (const ⊤ₛ) List
⊤⇒[] = ntHelper record
- { η = λ X → Const.function SingletonSetoid (List.₀ X) []
- ; commute = λ {_} {B} f → Setoid.refl (List.₀ B)
+ { η = λ X → []ₛ
+ ; commute = map-[]ₛ
}
diff --git a/NaturalTransformation/Instance/ListAppend.agda b/NaturalTransformation/Instance/ListAppend.agda
index 05a31f5..3f198e1 100644
--- a/NaturalTransformation/Instance/ListAppend.agda
+++ b/NaturalTransformation/Instance/ListAppend.agda
@@ -10,37 +10,34 @@ open import Categories.Category.BinaryProducts using (module BinaryProducts)
open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian)
open import Categories.Category.Cartesian using (Cartesian)
open import Categories.Functor using (Functor; _∘F_)
-open import Data.List using (_++_; map)
+open import Data.Opaque.List as L using (mapₛ; ++ₛ)
open import Data.List.Properties using (map-++)
-open import Data.List.Relation.Binary.Pointwise using (++⁺)
open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
open import Data.Product using (_,_)
open import Functor.Instance.List {c} {ℓ} using (List)
-open import Function using (Func; _⟶ₛ_)
+open import Function using (Func; _⟶ₛ_; _⟨$⟩_)
open import Relation.Binary using (Setoid)
-module List = Functor List
-
open Cartesian (Setoids-Cartesian {c} {c ⊔ ℓ}) using (products)
open BinaryProducts products using (-×-)
open Func
-++ₛ : {X : Setoid c ℓ} → List.₀ X ×ₛ List.₀ X ⟶ₛ List.₀ X
-++ₛ .to (xs , ys) = xs ++ ys
-++ₛ .cong (≈xs , ≈ys) = ++⁺ ≈xs ≈ys
+opaque
+
+ unfolding ++ₛ
-map-++ₛ
- : {A B : Setoid c ℓ}
- (f : Func A B)
- (xs ys : Data.List.List (Setoid.Carrier A))
- → (open Setoid (List.₀ B))
- → map (to f) xs ++ map (to f) ys ≈ map (to f) (xs ++ ys)
-map-++ₛ {_} {B} f xs ys = ListB.sym (ListB.reflexive (map-++ (to f) xs ys))
- where
- module ListB = Setoid (List.₀ B)
+ map-++ₛ
+ : {A B : Setoid c ℓ}
+ (f : Func A B)
+ (xs ys : Setoid.Carrier (L.Listₛ A))
+ (open Setoid (L.Listₛ B))
+ → ++ₛ ⟨$⟩ (mapₛ f ⟨$⟩ xs , mapₛ f ⟨$⟩ ys) ≈ mapₛ f ⟨$⟩ (++ₛ ⟨$⟩ (xs , ys))
+ map-++ₛ {_} {B} f xs ys = sym (reflexive (map-++ (to f) xs ys))
+ where
+ open Setoid (List.₀ B)
++ : NaturalTransformation (-×- ∘F (List ※ List)) List
++ = ntHelper record
- { η = λ X → ++ₛ {X}
+ { η = λ X → ++ₛ {c} {ℓ} {X}
; commute = λ { {A} {B} f {xs , ys} → map-++ₛ f xs ys }
}