aboutsummaryrefslogtreecommitdiff
path: root/NaturalTransformation
diff options
context:
space:
mode:
authorJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-12-09 14:45:27 -0600
committerJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-12-09 14:45:27 -0600
commitd721f0a23f3b8c50fd1754c8958ac40b6f625cbd (patch)
tree7f5105b79482e7441d9b800f21a9bc870509d0f0 /NaturalTransformation
parentb5e583bb067749f80bd3f7e24e807674eba8b394 (diff)
Add free commutative monoid functor
Diffstat (limited to 'NaturalTransformation')
-rw-r--r--NaturalTransformation/Instance/EmptyMultiset.agda25
-rw-r--r--NaturalTransformation/Instance/MultisetAppend.agda41
2 files changed, 38 insertions, 28 deletions
diff --git a/NaturalTransformation/Instance/EmptyMultiset.agda b/NaturalTransformation/Instance/EmptyMultiset.agda
index 9c3a779..bfec451 100644
--- a/NaturalTransformation/Instance/EmptyMultiset.agda
+++ b/NaturalTransformation/Instance/EmptyMultiset.agda
@@ -1,6 +1,6 @@
{-# OPTIONS --without-K --safe #-}
-open import Level using (Level)
+open import Level using (Level; _⊔_)
module NaturalTransformation.Instance.EmptyMultiset {c ℓ : Level} where
@@ -8,16 +8,27 @@ import Function.Construct.Constant as Const
open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
open import Categories.Functor using (Functor)
-open import Categories.Category.Instance.SingletonSet using (SingletonSetoid)
+open import Data.Setoid.Unit {c} {c ⊔ ℓ} using (⊤ₛ)
open import Categories.Functor.Construction.Constant using (const)
-open import Data.List using ([])
+open import Data.Opaque.Multiset using (Multisetₛ; []ₛ; mapₛ)
open import Functor.Instance.Multiset {c} {ℓ} using (Multiset)
+open import Function.Construct.Constant using () renaming (function to Const)
open import Relation.Binary using (Setoid)
+open import Data.Setoid using (_⇒ₛ_)
+open import Function using (Func; _⟶ₛ_)
+open import Function.Construct.Setoid using (_∙_)
-module Multiset = Functor Multiset
+opaque
+ unfolding mapₛ
+ map-[]ₛ
+ : {A B : Setoid c ℓ}
+ → (f : A ⟶ₛ B)
+ → (open Setoid (⊤ₛ ⇒ₛ Multisetₛ B))
+ → []ₛ ≈ mapₛ f ∙ []ₛ
+ map-[]ₛ {B = B} f = Setoid.refl (Multisetₛ B)
-⊤⇒[] : NaturalTransformation (const SingletonSetoid) Multiset
+⊤⇒[] : NaturalTransformation (const ⊤ₛ) Multiset
⊤⇒[] = ntHelper record
- { η = λ X → Const.function SingletonSetoid (Multiset.₀ X) []
- ; commute = λ {_} {B} f → Setoid.refl (Multiset.₀ B)
+ { η = λ X → []ₛ {Aₛ = X}
+ ; commute = map-[]ₛ
}
diff --git a/NaturalTransformation/Instance/MultisetAppend.agda b/NaturalTransformation/Instance/MultisetAppend.agda
index b0e8bc4..f786124 100644
--- a/NaturalTransformation/Instance/MultisetAppend.agda
+++ b/NaturalTransformation/Instance/MultisetAppend.agda
@@ -4,43 +4,42 @@ open import Level using (Level; _⊔_)
module NaturalTransformation.Instance.MultisetAppend {c ℓ : Level} where
-open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
-open import Categories.Category.Product using (_※_)
+import Data.Opaque.List as L
+
open import Categories.Category.BinaryProducts using (module BinaryProducts)
-open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian)
open import Categories.Category.Cartesian using (Cartesian)
+open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian)
+open import Categories.Category.Product using (_※_)
open import Categories.Functor using (Functor; _∘F_)
-open import Data.List using (List; _++_; map)
+open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
open import Data.List.Properties using (map-++)
open import Data.List.Relation.Binary.Permutation.Setoid.Properties using (++⁺)
-open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
+open import Data.Opaque.Multiset using (Multisetₛ; mapₛ; ++ₛ)
open import Data.Product using (_,_)
+open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
+open import Function using (Func; _⟶ₛ_; _⟨$⟩_)
open import Functor.Instance.Multiset {c} {ℓ} using (Multiset)
-open import Function using (Func; _⟶ₛ_)
open import Relation.Binary using (Setoid)
-module Multiset = Functor Multiset
-
open Cartesian (Setoids-Cartesian {c} {c ⊔ ℓ}) using (products)
open BinaryProducts products using (-×-)
open Func
-++ₛ : {X : Setoid c ℓ} → Multiset.₀ X ×ₛ Multiset.₀ X ⟶ₛ Multiset.₀ X
-++ₛ .to (xs , ys) = xs ++ ys
-++ₛ {A} .cong (≈xs , ≈ys) = ++⁺ A ≈xs ≈ys
+opaque
+ unfolding ++ₛ mapₛ
-map-++ₛ
- : {A B : Setoid c ℓ}
- (f : Func A B)
- (xs ys : List (Setoid.Carrier A))
- → (open Setoid (Multiset.₀ B))
- → map (to f) xs ++ map (to f) ys ≈ map (to f) (xs ++ ys)
-map-++ₛ {_} {B} f xs ys = sym (reflexive (map-++ (to f) xs ys))
- where
- open Setoid (Multiset.₀ B)
+ map-++ₛ
+ : {A B : Setoid c ℓ}
+ (f : Func A B)
+ (xs ys : Setoid.Carrier (Multiset.₀ A))
+ → (open Setoid (Multiset.₀ B))
+ → ++ₛ ⟨$⟩ (mapₛ f ⟨$⟩ xs , mapₛ f ⟨$⟩ ys) ≈ mapₛ f ⟨$⟩ (++ₛ ⟨$⟩ (xs , ys))
+ map-++ₛ {A} {B} f xs ys = sym (reflexive (map-++ (to f) xs ys))
+ where
+ open Setoid (Multiset.₀ B)
++ : NaturalTransformation (-×- ∘F (Multiset ※ Multiset)) Multiset
++ = ntHelper record
- { η = λ X → ++ₛ {X}
+ { η = λ X → ++ₛ
; commute = λ { {A} {B} f {xs , ys} → map-++ₛ f xs ys }
}