aboutsummaryrefslogtreecommitdiff
path: root/Object/Monoid/Commutative.agda
diff options
context:
space:
mode:
authorJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-11-05 01:02:33 -0600
committerJacques Comeaux <jacquesrcomeaux@protonmail.com>2025-11-05 01:02:33 -0600
commit821832147fb2b3b06ebda7e991ad880eaba15bcc (patch)
treebde841cc6c24b863f1f2a20bf39e91feb86acd89 /Object/Monoid/Commutative.agda
parente70481cf98eeb00154536e364dec58e79b034cc5 (diff)
Add category of commutative monoids
Diffstat (limited to 'Object/Monoid/Commutative.agda')
-rw-r--r--Object/Monoid/Commutative.agda48
1 files changed, 48 insertions, 0 deletions
diff --git a/Object/Monoid/Commutative.agda b/Object/Monoid/Commutative.agda
new file mode 100644
index 0000000..8a8c756
--- /dev/null
+++ b/Object/Monoid/Commutative.agda
@@ -0,0 +1,48 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Categories.Category.Core using (Category)
+open import Categories.Category.Monoidal.Core using (Monoidal)
+open import Categories.Category.Monoidal.Symmetric using (Symmetric)
+open import Level using (Level; _⊔_)
+
+module Object.Monoid.Commutative {o ℓ e : Level} {𝒞 : Category o ℓ e} {M : Monoidal 𝒞} (sym : Symmetric M) where
+
+open import Categories.Object.Monoid M using (IsMonoid; Monoid; Monoid⇒)
+
+-- a commutative monoid object in a symmetric monoidal category
+
+open Category 𝒞
+open Symmetric sym using (module braiding; _⊗₁_)
+
+record IsCommutativeMonoid (M : Obj) : Set (ℓ ⊔ e) where
+
+ field
+ isMonoid : IsMonoid M
+
+ open IsMonoid isMonoid public
+
+ field
+ commutative : μ ≈ μ ∘ braiding.⇒.η _
+
+record CommutativeMonoid : Set (o ⊔ ℓ ⊔ e) where
+
+ field
+ Carrier : Obj
+ isCommutativeMonoid : IsCommutativeMonoid Carrier
+
+ open IsCommutativeMonoid isCommutativeMonoid public
+
+ monoid : Monoid
+ monoid = record { isMonoid = isMonoid }
+
+open CommutativeMonoid
+
+record CommutativeMonoid⇒ (M M′ : CommutativeMonoid) : Set (ℓ ⊔ e) where
+
+ module M = CommutativeMonoid M
+ module M′ = CommutativeMonoid M′
+
+ field
+ monoid⇒ : Monoid⇒ M.monoid M′.monoid
+
+ open Monoid⇒ monoid⇒ public