aboutsummaryrefslogtreecommitdiff
path: root/Preorder/Primitive.agda
diff options
context:
space:
mode:
authorJacques Comeaux <jacquesrcomeaux@protonmail.com>2026-01-05 17:09:25 -0600
committerJacques Comeaux <jacquesrcomeaux@protonmail.com>2026-01-05 17:09:25 -0600
commit1c0a486856d80ad7d8cb6174c49ad990d5f36088 (patch)
tree764a695b55dd3d3e2788e0a0d8fc2b6b9342842b /Preorder/Primitive.agda
parent3386254cb6f5fc36c5cb18b7240edde3210a376c (diff)
Add non-setoid-based preorders
Diffstat (limited to 'Preorder/Primitive.agda')
-rw-r--r--Preorder/Primitive.agda83
1 files changed, 83 insertions, 0 deletions
diff --git a/Preorder/Primitive.agda b/Preorder/Primitive.agda
new file mode 100644
index 0000000..04e052f
--- /dev/null
+++ b/Preorder/Primitive.agda
@@ -0,0 +1,83 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Level using (Level; _⊔_; suc)
+
+module Preorder.Primitive where
+
+import Relation.Binary.Bundles as SetoidBased using (Preorder)
+
+open import Relation.Binary using (Rel; Reflexive; Symmetric; Transitive; IsEquivalence)
+
+-- A primitive preorder is a type with a reflexive and transitive
+-- relation (in other words, a preorder). The "primitive" qualifier
+-- is used to distinguish it from preorders in the Agda standard library,
+-- which include an underlying equivalence relation on the carrier set.
+
+record Preorder (c ℓ : Level) : Set (suc (c ⊔ ℓ)) where
+
+ field
+ Carrier : Set c
+ _≲_ : Rel Carrier ℓ
+ refl : Reflexive _≲_
+ trans : Transitive _≲_
+
+ infix 4 _≲_
+
+-- Isomorphism in a primitive preorder
+
+module Isomorphism {c ℓ : Level} (P : Preorder c ℓ) where
+
+ open Preorder P
+
+ record _≅_ (x y : Carrier) : Set ℓ where
+ field
+ from : x ≲ y
+ to : y ≲ x
+
+ infix 4 _≅_
+
+ private
+
+ ≅-refl : Reflexive _≅_
+ ≅-refl = record
+ { from = refl
+ ; to = refl
+ }
+
+ ≅-sym : Symmetric _≅_
+ ≅-sym x≅y = let open _≅_ x≅y in record
+ { from = to
+ ; to = from
+ }
+
+ ≅-trans : Transitive _≅_
+ ≅-trans x≅y y≅z = let open _≅_ in record
+ { from = trans (from x≅y) (from y≅z)
+ ; to = trans (to y≅z) (to x≅y)
+ }
+
+ ≅-isEquivalence : IsEquivalence _≅_
+ ≅-isEquivalence = record
+ { refl = ≅-refl
+ ; sym = ≅-sym
+ ; trans = ≅-trans
+ }
+
+ module ≅ = IsEquivalence ≅-isEquivalence
+
+-- Every primitive preorder can be extended to a setoid-based preorder
+-- using isomorphism (_≅_) as the underlying equivalence relation.
+setoidBased : {c ℓ : Level} → Preorder c ℓ → SetoidBased.Preorder c ℓ ℓ
+setoidBased P = record
+ { Carrier = Carrier
+ ; _≈_ = _≅_
+ ; _≲_ = _≲_
+ ; isPreorder = record
+ { isEquivalence = ≅-isEquivalence
+ ; reflexive = _≅_.from
+ ; trans = trans
+ }
+ }
+ where
+ open Preorder P
+ open Isomorphism P