diff options
| author | Jacques Comeaux <jacquesrcomeaux@protonmail.com> | 2026-01-05 17:09:25 -0600 |
|---|---|---|
| committer | Jacques Comeaux <jacquesrcomeaux@protonmail.com> | 2026-01-05 17:09:25 -0600 |
| commit | 1c0a486856d80ad7d8cb6174c49ad990d5f36088 (patch) | |
| tree | 764a695b55dd3d3e2788e0a0d8fc2b6b9342842b /Preorder | |
| parent | 3386254cb6f5fc36c5cb18b7240edde3210a376c (diff) | |
Add non-setoid-based preorders
Diffstat (limited to 'Preorder')
| -rw-r--r-- | Preorder/Primitive.agda | 83 | ||||
| -rw-r--r-- | Preorder/Primitive/MonotoneMap.agda | 65 |
2 files changed, 148 insertions, 0 deletions
diff --git a/Preorder/Primitive.agda b/Preorder/Primitive.agda new file mode 100644 index 0000000..04e052f --- /dev/null +++ b/Preorder/Primitive.agda @@ -0,0 +1,83 @@ +{-# OPTIONS --without-K --safe #-} + +open import Level using (Level; _⊔_; suc) + +module Preorder.Primitive where + +import Relation.Binary.Bundles as SetoidBased using (Preorder) + +open import Relation.Binary using (Rel; Reflexive; Symmetric; Transitive; IsEquivalence) + +-- A primitive preorder is a type with a reflexive and transitive +-- relation (in other words, a preorder). The "primitive" qualifier +-- is used to distinguish it from preorders in the Agda standard library, +-- which include an underlying equivalence relation on the carrier set. + +record Preorder (c ℓ : Level) : Set (suc (c ⊔ ℓ)) where + + field + Carrier : Set c + _≲_ : Rel Carrier ℓ + refl : Reflexive _≲_ + trans : Transitive _≲_ + + infix 4 _≲_ + +-- Isomorphism in a primitive preorder + +module Isomorphism {c ℓ : Level} (P : Preorder c ℓ) where + + open Preorder P + + record _≅_ (x y : Carrier) : Set ℓ where + field + from : x ≲ y + to : y ≲ x + + infix 4 _≅_ + + private + + ≅-refl : Reflexive _≅_ + ≅-refl = record + { from = refl + ; to = refl + } + + ≅-sym : Symmetric _≅_ + ≅-sym x≅y = let open _≅_ x≅y in record + { from = to + ; to = from + } + + ≅-trans : Transitive _≅_ + ≅-trans x≅y y≅z = let open _≅_ in record + { from = trans (from x≅y) (from y≅z) + ; to = trans (to y≅z) (to x≅y) + } + + ≅-isEquivalence : IsEquivalence _≅_ + ≅-isEquivalence = record + { refl = ≅-refl + ; sym = ≅-sym + ; trans = ≅-trans + } + + module ≅ = IsEquivalence ≅-isEquivalence + +-- Every primitive preorder can be extended to a setoid-based preorder +-- using isomorphism (_≅_) as the underlying equivalence relation. +setoidBased : {c ℓ : Level} → Preorder c ℓ → SetoidBased.Preorder c ℓ ℓ +setoidBased P = record + { Carrier = Carrier + ; _≈_ = _≅_ + ; _≲_ = _≲_ + ; isPreorder = record + { isEquivalence = ≅-isEquivalence + ; reflexive = _≅_.from + ; trans = trans + } + } + where + open Preorder P + open Isomorphism P diff --git a/Preorder/Primitive/MonotoneMap.agda b/Preorder/Primitive/MonotoneMap.agda new file mode 100644 index 0000000..6a2224b --- /dev/null +++ b/Preorder/Primitive/MonotoneMap.agda @@ -0,0 +1,65 @@ +{-# OPTIONS --without-K --safe #-} + +module Preorder.Primitive.MonotoneMap where + +open import Level using (Level; _⊔_) +open import Preorder.Primitive using (Preorder; module Isomorphism) +open import Relation.Binary using (Rel; Reflexive; Symmetric; Transitive; IsEquivalence) + +-- Monotone (order preserving) maps betweeen primitive preorders + +record MonotoneMap {c₁ c₂ ℓ₁ ℓ₂ : Level} (P : Preorder c₁ ℓ₁) (Q : Preorder c₂ ℓ₂) : Set (c₁ ⊔ c₂ ⊔ ℓ₁ ⊔ ℓ₂) where + + private + module P = Preorder P + module Q = Preorder Q + + field + map : P.Carrier → Q.Carrier + mono : {x y : P.Carrier} → x P.≲ y → map x Q.≲ map y + +-- Pointwise isomorphism of monotone maps + +module _ {c₁ c₂ ℓ₁ ℓ₂ : Level} {P : Preorder c₁ ℓ₁} {Q : Preorder c₂ ℓ₂} where + + private + module P where + open Preorder P public + open Isomorphism P public + module Q = Isomorphism Q + + open MonotoneMap using (map) + + _≃_ : Rel (MonotoneMap P Q) (c₁ ⊔ ℓ₂) + _≃_ f g = (x : P.Carrier) → map f x Q.≅ map g x + + infix 4 _≃_ + + private + + ≃-refl : Reflexive _≃_ + ≃-refl {f} x = Q.≅.refl {map f x} + + ≃-sym : Symmetric _≃_ + ≃-sym f≃g x = Q.≅.sym (f≃g x) + + ≃-trans : Transitive _≃_ + ≃-trans f≃g g≃h x = Q.≅.trans (f≃g x) (g≃h x) + + ≃-isEquivalence : IsEquivalence _≃_ + ≃-isEquivalence = record + { refl = λ {f} → ≃-refl {f} + ; sym = λ {f g} → ≃-sym {f} {g} + ; trans = λ {f g h} → ≃-trans {f} {g} {h} + } + + module ≃ = IsEquivalence ≃-isEquivalence + + map-resp-≅ : (f : MonotoneMap P Q) {x y : P.Carrier} → x P.≅ y → map f x Q.≅ map f y + map-resp-≅ f x≅y = record + { from = mono from + ; to = mono to + } + where + open P._≅_ x≅y + open MonotoneMap f |
