aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Adjoint/Instance/List.agda107
-rw-r--r--Adjoint/Instance/Multiset.agda112
-rw-r--r--Category/Cartesian/Instance/FinitelyCocompletes.agda (renamed from Category/Instance/Properties/FinitelyCocompletes.agda)44
-rw-r--r--Category/Cartesian/Instance/SymMonCat.agda16
-rw-r--r--Category/Cocomplete/Finitely/Bundle.agda1
-rw-r--r--Category/Cocomplete/Finitely/SymmetricMonoidal.agda4
-rw-r--r--Category/Construction/CMonoids.agda57
-rw-r--r--Category/Construction/CMonoids/Properties.agda74
-rw-r--r--Category/Construction/Monoids/Properties.agda108
-rw-r--r--Category/Diagram/Cospan.agda117
-rw-r--r--Category/Instance/Cospans.agda281
-rw-r--r--Category/Instance/DecoratedCospans.agda633
-rw-r--r--Category/Instance/FinitelyCocompletes.agda18
-rw-r--r--Category/Instance/One/Properties.agda24
-rw-r--r--Category/Instance/Properties/SymMonCat.agda166
-rw-r--r--Category/Instance/Setoids/SymmetricMonoidal.agda40
-rw-r--r--Category/Instance/SymMonCat.agda74
-rw-r--r--Category/Monoidal/Instance/Cospans.agda15
-rw-r--r--Category/Monoidal/Instance/Cospans/Lift.agda15
-rw-r--r--Category/Monoidal/Instance/DecoratedCospans.agda410
-rw-r--r--Category/Monoidal/Instance/DecoratedCospans/Lift.agda114
-rw-r--r--Category/Monoidal/Instance/DecoratedCospans/Products.agda104
-rw-r--r--Category/Monoidal/Instance/Nat.agda71
-rw-r--r--Cospan/Decorated.agda2
-rw-r--r--Data/CMonoid.agda77
-rw-r--r--Data/Castable.agda50
-rw-r--r--Data/Circuit.agda42
-rw-r--r--Data/Circuit/Convert.agda181
-rw-r--r--Data/Circuit/Gate.agda137
-rw-r--r--Data/Circuit/Merge.agda427
-rw-r--r--Data/Circuit/Typecheck.agda78
-rw-r--r--Data/Circuit/Value.agda180
-rw-r--r--Data/Fin/Preimage.agda48
-rw-r--r--Data/Hypergraph.agda86
-rw-r--r--Data/Hypergraph/Edge.agda113
-rw-r--r--Data/Hypergraph/Edge/Order.agda280
-rw-r--r--Data/Hypergraph/Label.agda36
-rw-r--r--Data/Monoid.agda86
-rw-r--r--Data/Opaque/List.agda165
-rw-r--r--Data/Opaque/Multiset.agda131
-rw-r--r--Data/Permutation.agda217
-rw-r--r--Data/Permutation/Sort.agda29
-rw-r--r--Data/SExp.agda75
-rw-r--r--Data/SExp/Parser.agda73
-rw-r--r--Data/Setoid.agda8
-rw-r--r--Data/Setoid/Unit.agda11
-rw-r--r--Data/Subset/Functional.agda162
-rw-r--r--Data/System.agda144
-rw-r--r--Data/System/Values.agda146
-rw-r--r--Data/Vector.agda126
-rw-r--r--DecorationFunctor/Graph.agda565
-rw-r--r--DecorationFunctor/Hypergraph.agda653
-rw-r--r--DecorationFunctor/Hypergraph/Labeled.agda689
-rw-r--r--DecorationFunctor/Trivial.agda98
-rw-r--r--FinMerge.agda3
-rw-r--r--FinMerge/Properties.agda3
-rw-r--r--FinMerge/Util.agda (renamed from Util.agda)2
-rw-r--r--Functor/Cartesian/Instance/Underlying/SymmetricMonoidal/FinitelyCocomplete.agda169
-rw-r--r--Functor/Exact/Instance/Swap.agda79
-rw-r--r--Functor/Forgetful/Instance/CMonoid.agda36
-rw-r--r--Functor/Forgetful/Instance/Monoid.agda29
-rw-r--r--Functor/Free/Instance/CMonoid.agda116
-rw-r--r--Functor/Free/Instance/Monoid.agda116
-rw-r--r--Functor/Instance/Cospan/Embed.agda103
-rw-r--r--Functor/Instance/Cospan/Stack.agda98
-rw-r--r--Functor/Instance/Decorate.agda165
-rw-r--r--Functor/Instance/DecoratedCospan/Embed.agda275
-rw-r--r--Functor/Instance/DecoratedCospan/Stack.agda430
-rw-r--r--Functor/Instance/Endo/List.agda15
-rw-r--r--Functor/Instance/List.agda67
-rw-r--r--Functor/Instance/Monoidalize.agda43
-rw-r--r--Functor/Instance/Multiset.agda72
-rw-r--r--Functor/Instance/Nat/Circ.agda56
-rw-r--r--Functor/Instance/Nat/Edge.agda60
-rw-r--r--Functor/Instance/Nat/Preimage.agda65
-rw-r--r--Functor/Instance/Nat/Pull.agda81
-rw-r--r--Functor/Instance/Nat/Push.agda79
-rw-r--r--Functor/Instance/Nat/System.agda110
-rw-r--r--Functor/Instance/Underlying/SymmetricMonoidal/FinitelyCocomplete.agda229
-rw-r--r--Functor/Monoidal/Braided/Strong/Properties.agda59
-rw-r--r--Functor/Monoidal/Construction/MonoidValued.agda214
-rw-r--r--Functor/Monoidal/Construction/MultisetOf.agda89
-rw-r--r--Functor/Monoidal/Instance/Nat/Circ.agda87
-rw-r--r--Functor/Monoidal/Instance/Nat/Preimage.agda164
-rw-r--r--Functor/Monoidal/Instance/Nat/Pull.agda166
-rw-r--r--Functor/Monoidal/Instance/Nat/Push.agda209
-rw-r--r--Functor/Monoidal/Instance/Nat/System.agda394
-rw-r--r--Functor/Monoidal/Strong/Properties.agda104
-rw-r--r--Functor/Properties.agda77
-rw-r--r--Nat/Properties.agda5
-rw-r--r--NaturalTransformation/Instance/EmptyList.agda35
-rw-r--r--NaturalTransformation/Instance/EmptyMultiset.agda34
-rw-r--r--NaturalTransformation/Instance/ListAppend.agda43
-rw-r--r--NaturalTransformation/Instance/MultisetAppend.agda45
-rw-r--r--NaturalTransformation/Monoidal/Construction/MonoidValued.agda110
-rw-r--r--Object/Monoid/Commutative.agda48
-rw-r--r--racket/circuits/expander.rkt15
-rw-r--r--racket/circuits/hypergraph.rkt36
-rw-r--r--racket/circuits/lexer.rkt33
-rw-r--r--racket/circuits/main.rkt5
-rw-r--r--racket/circuits/parser.rkt35
-rw-r--r--racket/circuits/reader.rkt17
102 files changed, 11239 insertions, 1006 deletions
diff --git a/Adjoint/Instance/List.agda b/Adjoint/Instance/List.agda
new file mode 100644
index 0000000..1b65985
--- /dev/null
+++ b/Adjoint/Instance/List.agda
@@ -0,0 +1,107 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Level using (Level; _⊔_; suc)
+
+module Adjoint.Instance.List {ℓ : Level} where
+
+import Data.List as L
+import Data.List.Relation.Binary.Pointwise as PW
+
+open import Categories.Category.Monoidal.Bundle using (MonoidalCategory; SymmetricMonoidalCategory)
+open import Category.Instance.Setoids.SymmetricMonoidal {ℓ} {ℓ} using (Setoids-×)
+
+module S = SymmetricMonoidalCategory Setoids-×
+
+open import Categories.Adjoint using (_⊣_)
+open import Categories.Category.Construction.Monoids using (Monoids)
+open import Categories.Functor using (Functor; id; _∘F_)
+open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
+open import Categories.Object.Monoid S.monoidal using (Monoid; IsMonoid; Monoid⇒)
+open import Data.Monoid using (toMonoid; toMonoid⇒)
+open import Data.Opaque.List using ([-]ₛ; Listₛ; mapₛ; foldₛ; ++ₛ-homo; []ₛ-homo; fold-mapₛ; fold)
+open import Data.Product using (_,_; uncurry)
+open import Data.Setoid using (∣_∣)
+open import Function using (_⟶ₛ_; _⟨$⟩_)
+open import Functor.Forgetful.Instance.Monoid {suc ℓ} {ℓ} {ℓ} using () renaming (Forget to Forget′)
+open import Functor.Free.Instance.Monoid {ℓ} {ℓ} using (Listₘ; mapₘ; ListMonoid) renaming (Free to Free′)
+open import Relation.Binary using (Setoid)
+
+open Monoid
+open Monoid⇒
+
+open import Categories.Category using (Category)
+
+Mon[S] : Category (suc ℓ) ℓ ℓ
+Mon[S] = Monoids S.monoidal
+
+Free : Functor S.U Mon[S]
+Free = Free′
+
+Forget : Functor Mon[S] S.U
+Forget = Forget′ S.monoidal
+
+opaque
+ unfolding [-]ₛ mapₘ
+ map-[-]ₛ
+ : {X Y : Setoid ℓ ℓ}
+ (f : X ⟶ₛ Y)
+ {x : ∣ X ∣}
+ → (open Setoid (Listₛ Y))
+ → [-]ₛ ⟨$⟩ (f ⟨$⟩ x)
+ ≈ arr (mapₘ f) ⟨$⟩ ([-]ₛ ⟨$⟩ x)
+ map-[-]ₛ {X} {Y} f {x} = Setoid.refl (Listₛ Y)
+
+unit : NaturalTransformation id (Forget ∘F Free)
+unit = ntHelper record
+ { η = λ X → [-]ₛ {ℓ} {ℓ} {X}
+ ; commute = map-[-]ₛ
+ }
+
+opaque
+ unfolding toMonoid ListMonoid
+ foldₘ : (X : Monoid) → Monoid⇒ (Listₘ (Carrier X)) X
+ foldₘ X .arr = foldₛ (toMonoid X)
+ foldₘ X .preserves-μ {xs , ys} = ++ₛ-homo (toMonoid X) xs ys
+ foldₘ X .preserves-η {_} = []ₛ-homo (toMonoid X)
+
+opaque
+ unfolding foldₘ toMonoid⇒ mapₘ
+ fold-mapₘ
+ : {X Y : Monoid}
+ (f : Monoid⇒ X Y)
+ {x : ∣ Listₛ (Carrier X) ∣}
+ → (open Setoid (Carrier Y))
+ → arr (foldₘ Y) ⟨$⟩ (arr (mapₘ (arr f)) ⟨$⟩ x)
+ ≈ arr f ⟨$⟩ (arr (foldₘ X) ⟨$⟩ x)
+ fold-mapₘ {X} {Y} f = uncurry (fold-mapₛ (toMonoid X) (toMonoid Y)) (toMonoid⇒ X Y f)
+
+counit : NaturalTransformation (Free ∘F Forget) id
+counit = ntHelper record
+ { η = foldₘ
+ ; commute = fold-mapₘ
+ }
+
+opaque
+ unfolding mapₘ foldₘ fold
+ zig : (Aₛ : Setoid ℓ ℓ)
+ {xs : ∣ Listₛ Aₛ ∣}
+ → (open Setoid (Listₛ Aₛ))
+ → arr (foldₘ (Listₘ Aₛ)) ⟨$⟩ (arr (mapₘ [-]ₛ) ⟨$⟩ xs) ≈ xs
+ zig Aₛ {xs = L.[]} = Setoid.refl (Listₛ Aₛ)
+ zig Aₛ {xs = x L.∷ xs} = Setoid.refl Aₛ PW.∷ zig Aₛ {xs = xs}
+
+opaque
+ unfolding foldₘ fold
+ zag : (M : Monoid)
+ {x : ∣ Carrier M ∣}
+ → (open Setoid (Carrier M))
+ → arr (foldₘ M) ⟨$⟩ ([-]ₛ ⟨$⟩ x) ≈ x
+ zag M {x} = Setoid.sym (Carrier M) (identityʳ M {x , _})
+
+List⊣ : Free ⊣ Forget
+List⊣ = record
+ { unit = unit
+ ; counit = counit
+ ; zig = λ {X} → zig X
+ ; zag = λ {M} → zag M
+ }
diff --git a/Adjoint/Instance/Multiset.agda b/Adjoint/Instance/Multiset.agda
new file mode 100644
index 0000000..c51baa9
--- /dev/null
+++ b/Adjoint/Instance/Multiset.agda
@@ -0,0 +1,112 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Level using (Level; _⊔_; suc; 0ℓ)
+
+module Adjoint.Instance.Multiset {ℓ : Level} where
+
+open import Category.Instance.Setoids.SymmetricMonoidal {ℓ} {ℓ} using (Setoids-×)
+
+private
+ module S = Setoids-×
+
+import Categories.Object.Monoid S.monoidal as MonoidObject
+import Data.List as L
+import Data.List.Relation.Binary.Permutation.Setoid as ↭
+import Functor.Forgetful.Instance.CMonoid S.symmetric as CMonoid
+import Functor.Forgetful.Instance.Monoid S.monoidal as Monoid
+import Object.Monoid.Commutative S.symmetric as CMonoidObject
+
+open import Categories.Adjoint using (_⊣_)
+open import Categories.Category using (Category)
+open import Categories.Functor using (Functor; id; _∘F_)
+open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
+open import Category.Construction.CMonoids using (CMonoids)
+open import Data.CMonoid using (toCMonoid; toCMonoid⇒)
+open import Data.Monoid using (toMonoid; toMonoid⇒)
+open import Data.Opaque.Multiset using ([-]ₛ; Multisetₛ; foldₛ; ++ₛ-homo; []ₛ-homo; fold-mapₛ; fold)
+open import Data.Product using (_,_; uncurry)
+open import Data.Setoid using (∣_∣)
+open import Function using (_⟶ₛ_; _⟨$⟩_)
+open import Functor.Free.Instance.CMonoid {ℓ} {ℓ} using (Multisetₘ; mapₘ; MultisetCMonoid) renaming (Free to Free′)
+open import Relation.Binary using (Setoid)
+
+open CMonoidObject using (CommutativeMonoid; CommutativeMonoid⇒)
+open CommutativeMonoid using (Carrier; monoid; identityʳ)
+open CommutativeMonoid⇒ using (arr; monoid⇒)
+open MonoidObject using (Monoid; Monoid⇒)
+open Monoid⇒ using (preserves-μ; preserves-η)
+
+CMon[S] : Category (suc ℓ) ℓ ℓ
+CMon[S] = CMonoids S.symmetric
+
+Free : Functor S.U CMon[S]
+Free = Free′
+
+Forget : Functor CMon[S] S.U
+Forget = Monoid.Forget ∘F CMonoid.Forget
+
+opaque
+ unfolding [-]ₛ
+ map-[-]ₛ
+ : {X Y : Setoid ℓ ℓ}
+ (f : X ⟶ₛ Y)
+ {x : ∣ X ∣}
+ → (open Setoid (Multisetₛ Y))
+ → [-]ₛ ⟨$⟩ (f ⟨$⟩ x)
+ ≈ arr (mapₘ f) ⟨$⟩ ([-]ₛ ⟨$⟩ x)
+ map-[-]ₛ {X} {Y} f {x} = Setoid.refl (Multisetₛ Y)
+
+unit : NaturalTransformation id (Forget ∘F Free)
+unit = ntHelper record
+ { η = λ X → [-]ₛ {ℓ} {ℓ} {X}
+ ; commute = map-[-]ₛ
+ }
+
+opaque
+ unfolding toMonoid MultisetCMonoid
+ foldₘ : (X : CommutativeMonoid) → CommutativeMonoid⇒ (Multisetₘ (Carrier X)) X
+ foldₘ X .monoid⇒ .Monoid⇒.arr = foldₛ (toCMonoid X)
+ foldₘ X .monoid⇒ .preserves-μ {xs , ys} = ++ₛ-homo (toCMonoid X) xs ys
+ foldₘ X .monoid⇒ .preserves-η {_} = []ₛ-homo (toCMonoid X)
+
+opaque
+ unfolding foldₘ toMonoid⇒
+ fold-mapₘ
+ : {X Y : CommutativeMonoid}
+ (f : CommutativeMonoid⇒ X Y)
+ {x : ∣ Multisetₛ (Carrier X) ∣}
+ → (open Setoid (Carrier Y))
+ → arr (foldₘ Y) ⟨$⟩ (arr (mapₘ (arr f)) ⟨$⟩ x)
+ ≈ arr f ⟨$⟩ (arr (foldₘ X) ⟨$⟩ x)
+ fold-mapₘ {X} {Y} f = uncurry (fold-mapₛ (toCMonoid X) (toCMonoid Y)) (toCMonoid⇒ X Y f)
+
+counit : NaturalTransformation (Free ∘F Forget) id
+counit = ntHelper record
+ { η = foldₘ
+ ; commute = fold-mapₘ
+ }
+
+opaque
+ unfolding foldₘ fold Multisetₛ
+ zig : (Aₛ : Setoid ℓ ℓ)
+ {xs : ∣ Multisetₛ Aₛ ∣}
+ → (open Setoid (Multisetₛ Aₛ))
+ → arr (foldₘ (Multisetₘ Aₛ)) ⟨$⟩ (arr (mapₘ [-]ₛ) ⟨$⟩ xs) ≈ xs
+ zig Aₛ {L.[]} = ↭.↭-refl Aₛ
+ zig Aₛ {x L.∷ xs} = ↭.prep (Setoid.refl Aₛ) (zig Aₛ)
+
+opaque
+ unfolding foldₘ fold
+ zag : (M : CommutativeMonoid)
+ {x : ∣ Carrier M ∣}
+ → (open Setoid (Carrier M))
+ → arr (foldₘ M) ⟨$⟩ ([-]ₛ ⟨$⟩ x) ≈ x
+ zag M {x} = Setoid.sym (Carrier M) (identityʳ M {x , _})
+
+Multiset⊣ : Free ⊣ Forget
+Multiset⊣ = record
+ { unit = unit
+ ; counit = counit
+ ; zig = λ {X} → zig X
+ ; zag = λ {M} → zag M
+ }
diff --git a/Category/Instance/Properties/FinitelyCocompletes.agda b/Category/Cartesian/Instance/FinitelyCocompletes.agda
index dedfa16..5425233 100644
--- a/Category/Instance/Properties/FinitelyCocompletes.agda
+++ b/Category/Cartesian/Instance/FinitelyCocompletes.agda
@@ -1,23 +1,27 @@
{-# OPTIONS --without-K --safe #-}
-open import Level using (Level)
-module Category.Instance.Properties.FinitelyCocompletes {o ℓ e : Level} where
+open import Level using (Level; suc; _⊔_)
+module Category.Cartesian.Instance.FinitelyCocompletes {o ℓ e : Level} where
+
+import Categories.Morphism as Morphism
import Categories.Morphism.Reasoning as ⇒-Reasoning
open import Categories.Category.BinaryProducts using (BinaryProducts)
open import Categories.Category.Cartesian.Bundle using (CartesianCategory)
-open import Categories.Category.Product using (Product) renaming (_⁂_ to _⁂′_)
open import Categories.Diagram.Coequalizer using (IsCoequalizer)
+open import Categories.Functor.Bifunctor using (flip-bifunctor)
open import Categories.Functor.Core using (Functor)
-open import Categories.Functor using (_∘F_) renaming (id to idF)
+open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_; niHelper)
+open import Categories.NaturalTransformation.NaturalIsomorphism.Properties using (pointwise-iso)
open import Categories.Object.Coproduct using (IsCoproduct; IsCoproduct⇒Coproduct; Coproduct)
open import Categories.Object.Initial using (IsInitial)
+open import Data.Product.Base using (_,_) renaming (_×_ to _×′_)
+
open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)
open import Category.Instance.FinitelyCocompletes {o} {ℓ} {e} using (FinitelyCocompletes; FinitelyCocompletes-Cartesian; _×₁_)
-open import Data.Product.Base using (_,_) renaming (_×_ to _×′_)
open import Functor.Exact using (IsRightExact; RightExactFunctor)
-open import Level using (_⊔_; suc)
+open import Functor.Exact.Instance.Swap using (Swap)
FinitelyCocompletes-CC : CartesianCategory (suc (o ⊔ ℓ ⊔ e)) (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e)
FinitelyCocompletes-CC = record
@@ -202,9 +206,37 @@ module _ {𝒞 : FinitelyCocompleteCategory o ℓ e} where
; F-resp-coeq = +-resp-coeq 𝒞
}
}
+ module x+y = RightExactFunctor -+-
+
+ ↔-+- : 𝒞 × 𝒞 ⇒ 𝒞
+ ↔-+- = -+- ∘ Swap 𝒞 𝒞
+ module y+x = RightExactFunctor ↔-+-
[x+y]+z : (𝒞 × 𝒞) × 𝒞 ⇒ 𝒞
[x+y]+z = -+- ∘ (-+- ×₁ id)
+ module [x+y]+z = RightExactFunctor [x+y]+z
x+[y+z] : (𝒞 × 𝒞) × 𝒞 ⇒ 𝒞
x+[y+z] = -+- ∘ (id ×₁ -+-) ∘ assocˡ
+ module x+[y+z] = RightExactFunctor x+[y+z]
+
+ assoc-≃ : [x+y]+z.F ≃ x+[y+z].F
+ assoc-≃ = pointwise-iso (λ { ((X , Y) , Z) → ≅.sym (𝒞.+-assoc {X} {Y} {Z})}) commute
+ where
+ open 𝒞
+ module 𝒞×𝒞×𝒞 = FinitelyCocompleteCategory ((𝒞 × 𝒞) × 𝒞)
+ open Morphism U using (_≅_; module ≅)
+ module +-assoc {X} {Y} {Z} = _≅_ (≅.sym (+-assoc {X} {Y} {Z}))
+ open import Categories.Category.BinaryProducts using (BinaryProducts)
+ open import Categories.Object.Duality 𝒞.U using (Coproduct⇒coProduct)
+ op-binaryProducts : BinaryProducts op
+ op-binaryProducts = record { product = Coproduct⇒coProduct coproduct }
+ open BinaryProducts op-binaryProducts using () renaming (assocʳ∘⁂ to +₁∘assocˡ)
+ open Equiv
+ commute
+ : {((X , Y) , Z) : 𝒞×𝒞×𝒞.Obj}
+ {((X′ , Y′) , Z′) : 𝒞×𝒞×𝒞.Obj}
+ → (F : ((X , Y) , Z) 𝒞×𝒞×𝒞.⇒ ((X′ , Y′) , Z′))
+ → (+-assoc.from 𝒞.∘ [x+y]+z.₁ F)
+ ≈ (x+[y+z].₁ F 𝒞.∘ +-assoc.from)
+ commute {(X , Y) , Z} {(X′ , Y′) , Z′} ((F , G) , H) = sym +₁∘assocˡ
diff --git a/Category/Cartesian/Instance/SymMonCat.agda b/Category/Cartesian/Instance/SymMonCat.agda
new file mode 100644
index 0000000..7d91d52
--- /dev/null
+++ b/Category/Cartesian/Instance/SymMonCat.agda
@@ -0,0 +1,16 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Level using (Level; suc; _⊔_)
+
+module Category.Cartesian.Instance.SymMonCat {o ℓ e : Level} where
+
+open import Category.Instance.SymMonCat {o} {ℓ} {e} using (SymMonCat)
+open import Category.Instance.Properties.SymMonCat {o} {ℓ} {e} using (SymMonCat-Cartesian)
+open import Categories.Category.Cartesian.Bundle using (CartesianCategory)
+
+SymMonCat-CC : CartesianCategory (suc (o ⊔ ℓ ⊔ e)) (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e)
+SymMonCat-CC = record
+ { U = SymMonCat
+ ; cartesian = SymMonCat-Cartesian
+ }
+
diff --git a/Category/Cocomplete/Finitely/Bundle.agda b/Category/Cocomplete/Finitely/Bundle.agda
index 74f434f..8af8633 100644
--- a/Category/Cocomplete/Finitely/Bundle.agda
+++ b/Category/Cocomplete/Finitely/Bundle.agda
@@ -28,6 +28,7 @@ record FinitelyCocompleteCategory o ℓ e : Set (suc (o ⊔ ℓ ⊔ e)) where
; monoidal = monoidal
; symmetric = symmetric
}
+ {-# INJECTIVE_FOR_INFERENCE symmetricMonoidalCategory #-}
cocartesianCategory : CocartesianCategory o ℓ e
cocartesianCategory = record
diff --git a/Category/Cocomplete/Finitely/SymmetricMonoidal.agda b/Category/Cocomplete/Finitely/SymmetricMonoidal.agda
index 26813eb..2b66d19 100644
--- a/Category/Cocomplete/Finitely/SymmetricMonoidal.agda
+++ b/Category/Cocomplete/Finitely/SymmetricMonoidal.agda
@@ -4,11 +4,11 @@ open import Categories.Category.Core using (Category)
module Category.Cocomplete.Finitely.SymmetricMonoidal {o ℓ e} {𝒞 : Category o ℓ e} where
-open import Categories.Category.Cocomplete.Finitely using (FinitelyCocomplete)
+open import Categories.Category.Cocomplete.Finitely 𝒞 using (FinitelyCocomplete)
open import Categories.Category.Cocartesian 𝒞 using (module CocartesianMonoidal; module CocartesianSymmetricMonoidal)
-module FinitelyCocompleteSymmetricMonoidal (finCo : FinitelyCocomplete 𝒞) where
+module FinitelyCocompleteSymmetricMonoidal (finCo : FinitelyCocomplete) where
open FinitelyCocomplete finCo using (cocartesian)
open CocartesianMonoidal cocartesian using (+-monoidal) public
diff --git a/Category/Construction/CMonoids.agda b/Category/Construction/CMonoids.agda
new file mode 100644
index 0000000..c2793cf
--- /dev/null
+++ b/Category/Construction/CMonoids.agda
@@ -0,0 +1,57 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Categories.Category.Core using (Category)
+open import Categories.Category.Monoidal.Core using (Monoidal)
+open import Categories.Category.Monoidal.Symmetric using (Symmetric)
+open import Level using (Level; _⊔_)
+
+-- The category of commutative monoids internal to a symmetric monoidal category
+
+module Category.Construction.CMonoids
+ {o ℓ e : Level}
+ {𝒞 : Category o ℓ e}
+ {M : Monoidal 𝒞}
+ (symmetric : Symmetric M)
+ where
+
+open import Categories.Functor using (Functor)
+open import Categories.Morphism.Reasoning 𝒞
+open import Object.Monoid.Commutative symmetric
+
+open Category 𝒞
+open Monoidal M
+open HomReasoning
+open CommutativeMonoid⇒
+
+CMonoids : Category (o ⊔ ℓ ⊔ e) (ℓ ⊔ e) e
+CMonoids = record
+ { Obj = CommutativeMonoid
+ ; _⇒_ = CommutativeMonoid⇒
+ ; _≈_ = λ f g → arr f ≈ arr g
+ ; id = record
+ { monoid⇒ = record
+ { arr = id
+ ; preserves-μ = identityˡ ○ introʳ ⊗.identity
+ ; preserves-η = identityˡ
+ }
+ }
+ ; _∘_ = λ f g → record
+ { monoid⇒ = record
+ { arr = arr f ∘ arr g
+ ; preserves-μ = glue (preserves-μ f) (preserves-μ g) ○ ∘-resp-≈ʳ (⟺ ⊗.homomorphism)
+ ; preserves-η = glueTrianglesˡ (preserves-η f) (preserves-η g)
+ }
+ }
+ ; assoc = assoc
+ ; sym-assoc = sym-assoc
+ ; identityˡ = identityˡ
+ ; identityʳ = identityʳ
+ ; identity² = identity²
+ ; equiv = record
+ { refl = refl
+ ; sym = sym
+ ; trans = trans
+ }
+ ; ∘-resp-≈ = ∘-resp-≈
+ }
+ where open Equiv
diff --git a/Category/Construction/CMonoids/Properties.agda b/Category/Construction/CMonoids/Properties.agda
new file mode 100644
index 0000000..fab8b0b
--- /dev/null
+++ b/Category/Construction/CMonoids/Properties.agda
@@ -0,0 +1,74 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Categories.Category.Core using (Category)
+open import Categories.Category.Monoidal.Core using (Monoidal)
+open import Categories.Category.Monoidal.Symmetric using (Symmetric)
+open import Level using (Level; _⊔_)
+
+module Category.Construction.CMonoids.Properties
+ {o ℓ e : Level}
+ {𝒞 : Category o ℓ e}
+ {monoidal : Monoidal 𝒞}
+ (symmetric : Symmetric monoidal)
+ where
+
+import Categories.Category.Monoidal.Reasoning monoidal as ⊗-Reasoning
+import Categories.Morphism.Reasoning 𝒞 as ⇒-Reasoning
+import Category.Construction.Monoids.Properties {o} {ℓ} {e} {𝒞} monoidal as Monoids
+
+open import Categories.Category using (_[_,_])
+open import Categories.Category.Monoidal.Symmetric.Properties symmetric using (module Shorthands)
+open import Categories.Morphism using (_≅_)
+open import Categories.Morphism.Notation using (_[_≅_])
+open import Categories.Object.Monoid monoidal using (Monoid)
+open import Category.Construction.CMonoids symmetric using (CMonoids)
+open import Data.Product using (Σ-syntax; _,_)
+open import Object.Monoid.Commutative symmetric using (CommutativeMonoid)
+
+module 𝒞 = Category 𝒞
+
+open CommutativeMonoid using (monoid) renaming (Carrier to ∣_∣)
+
+transport-by-iso
+ : {X : 𝒞.Obj}
+ → (M : CommutativeMonoid)
+ → 𝒞 [ ∣ M ∣ ≅ X ]
+ → Σ[ Xₘ ∈ CommutativeMonoid ] CMonoids [ M ≅ Xₘ ]
+transport-by-iso {X} M ∣M∣≅X
+ using (Xₘ′ , M≅Xₘ′) ← Monoids.transport-by-iso {X} (monoid M) ∣M∣≅X = Xₘ , M≅Xₘ
+ where
+ module M≅Xₘ′ = _≅_ M≅Xₘ′
+ open _≅_ ∣M∣≅X
+ module Xₘ′ = Monoid Xₘ′
+ open CommutativeMonoid M
+ open 𝒞 using (_≈_; _∘_)
+ open Shorthands
+ open ⊗-Reasoning
+ open ⇒-Reasoning
+ open Symmetric symmetric using (_⊗₁_; module braiding)
+ comm : from ∘ μ ∘ to ⊗₁ to ≈ (from ∘ μ ∘ to ⊗₁ to) ∘ σ⇒
+ comm = begin
+ from ∘ μ ∘ to ⊗₁ to ≈⟨ push-center (commutative) ⟩
+ from ∘ μ ∘ σ⇒ ∘ to ⊗₁ to ≈⟨ pushʳ (pushʳ (braiding.⇒.commute (to , to))) ⟩
+ (from ∘ μ ∘ to ⊗₁ to) ∘ σ⇒ ∎
+ Xₘ : CommutativeMonoid
+ Xₘ = record
+ { Carrier = X
+ ; isCommutativeMonoid = record
+ { isMonoid = Xₘ′.isMonoid
+ ; commutative = comm
+ }
+ }
+ M⇒Xₘ : CMonoids [ M , Xₘ ]
+ M⇒Xₘ = record { monoid⇒ = M≅Xₘ′.from }
+ Xₘ⇒M : CMonoids [ Xₘ , M ]
+ Xₘ⇒M = record { monoid⇒ = M≅Xₘ′.to }
+ M≅Xₘ : CMonoids [ M ≅ Xₘ ]
+ M≅Xₘ = record
+ { from = M⇒Xₘ
+ ; to = Xₘ⇒M
+ ; iso = record
+ { isoˡ = isoˡ
+ ; isoʳ = isoʳ
+ }
+ }
diff --git a/Category/Construction/Monoids/Properties.agda b/Category/Construction/Monoids/Properties.agda
new file mode 100644
index 0000000..df48063
--- /dev/null
+++ b/Category/Construction/Monoids/Properties.agda
@@ -0,0 +1,108 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Categories.Category.Core using (Category)
+open import Categories.Category.Monoidal.Core using (Monoidal)
+open import Level using (Level; _⊔_)
+
+module Category.Construction.Monoids.Properties
+ {o ℓ e : Level}
+ {𝒞 : Category o ℓ e}
+ (monoidal : Monoidal 𝒞)
+ where
+
+import Categories.Category.Monoidal.Reasoning monoidal as ⊗-Reasoning
+import Categories.Morphism.Reasoning 𝒞 as ⇒-Reasoning
+
+open import Categories.Category using (_[_,_])
+open import Categories.Category.Construction.Monoids monoidal using (Monoids)
+open import Categories.Category.Monoidal.Utilities monoidal using (module Shorthands; _⊗ᵢ_)
+open import Categories.Morphism using (_≅_)
+open import Categories.Morphism.Notation using (_[_≅_])
+open import Categories.Object.Monoid monoidal using (Monoid)
+open import Data.Product using (Σ-syntax; _,_)
+
+module 𝒞 = Category 𝒞
+
+open Monoid using () renaming (Carrier to ∣_∣)
+
+transport-by-iso
+ : {X : 𝒞.Obj}
+ → (M : Monoid)
+ → 𝒞 [ ∣ M ∣ ≅ X ]
+ → Σ[ Xₘ ∈ Monoid ] Monoids [ M ≅ Xₘ ]
+transport-by-iso {X} M ∣M∣≅X = Xₘ , M≅Xₘ
+ where
+ open _≅_ ∣M∣≅X
+ open Monoid M
+ open 𝒞 using (_∘_; id; _≈_; module Equiv)
+ open Monoidal monoidal
+ using (_⊗₀_; _⊗₁_; assoc-commute-from; unitorˡ-commute-from; unitorʳ-commute-from)
+ open Shorthands
+ open ⊗-Reasoning
+ open ⇒-Reasoning
+ as
+ : (from ∘ μ ∘ to ⊗₁ to)
+ ∘ (from ∘ μ ∘ to ⊗₁ to) ⊗₁ id
+ ≈ (from ∘ μ ∘ to ⊗₁ to)
+ ∘ id ⊗₁ (from ∘ μ ∘ to ⊗₁ to)
+ ∘ α⇒
+ as = extendˡ (begin
+ (μ ∘ to ⊗₁ to) ∘ (from ∘ μ ∘ to ⊗₁ to) ⊗₁ id ≈⟨ pullʳ merge₁ʳ ⟩
+ μ ∘ (to ∘ from ∘ μ ∘ to ⊗₁ to) ⊗₁ to ≈⟨ refl⟩∘⟨ cancelˡ isoˡ ⟩⊗⟨refl ⟩
+ μ ∘ (μ ∘ to ⊗₁ to) ⊗₁ to ≈⟨ refl⟩∘⟨ split₁ˡ ⟩
+ μ ∘ μ ⊗₁ id ∘ (to ⊗₁ to) ⊗₁ to ≈⟨ extendʳ assoc ⟩
+ μ ∘ (id ⊗₁ μ ∘ α⇒) ∘ (to ⊗₁ to) ⊗₁ to ≈⟨ pushʳ (pullʳ assoc-commute-from) ⟩
+ (μ ∘ id ⊗₁ μ) ∘ to ⊗₁ (to ⊗₁ to) ∘ α⇒ ≈⟨ extendˡ (pullˡ merge₂ˡ) ⟩
+ (μ ∘ to ⊗₁ (μ ∘ to ⊗₁ to)) ∘ α⇒ ≈⟨ (refl⟩∘⟨ refl⟩⊗⟨ insertˡ isoˡ) ⟩∘⟨refl ⟩
+ (μ ∘ to ⊗₁ (to ∘ from ∘ μ ∘ to ⊗₁ to)) ∘ α⇒ ≈⟨ pushˡ (pushʳ split₂ʳ) ⟩
+ (μ ∘ to ⊗₁ to) ∘ id ⊗₁ (from ∘ μ ∘ to ⊗₁ to) ∘ α⇒ ∎)
+ idˡ : λ⇒ ≈ (from ∘ μ ∘ to ⊗₁ to) ∘ (from ∘ η) ⊗₁ id
+ idˡ = begin
+ λ⇒ ≈⟨ insertˡ isoʳ ⟩
+ from ∘ to ∘ λ⇒ ≈⟨ refl⟩∘⟨ unitorˡ-commute-from ⟨
+ from ∘ λ⇒ ∘ id ⊗₁ to ≈⟨ refl⟩∘⟨ pushˡ identityˡ ⟩
+ from ∘ μ ∘ η ⊗₁ id ∘ id ⊗₁ to ≈⟨ refl⟩∘⟨ refl⟩∘⟨ serialize₁₂ ⟨
+ from ∘ μ ∘ η ⊗₁ to ≈⟨ refl⟩∘⟨ refl⟩∘⟨ insertˡ isoˡ ⟩⊗⟨refl ⟩
+ from ∘ μ ∘ (to ∘ from ∘ η) ⊗₁ to ≈⟨ pushʳ (pushʳ split₁ʳ) ⟩
+ (from ∘ μ ∘ to ⊗₁ to) ∘ (from ∘ η) ⊗₁ id ∎
+ idʳ : ρ⇒ ≈ (from ∘ μ ∘ to ⊗₁ to) ∘ id ⊗₁ (from ∘ η)
+ idʳ = begin
+ ρ⇒ ≈⟨ insertˡ isoʳ ⟩
+ from ∘ to ∘ ρ⇒ ≈⟨ refl⟩∘⟨ unitorʳ-commute-from ⟨
+ from ∘ ρ⇒ ∘ to ⊗₁ id ≈⟨ refl⟩∘⟨ pushˡ identityʳ ⟩
+ from ∘ μ ∘ id ⊗₁ η ∘ to ⊗₁ id ≈⟨ refl⟩∘⟨ refl⟩∘⟨ serialize₂₁ ⟨
+ from ∘ μ ∘ to ⊗₁ η ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩⊗⟨ insertˡ isoˡ ⟩
+ from ∘ μ ∘ to ⊗₁ (to ∘ from ∘ η) ≈⟨ pushʳ (pushʳ split₂ʳ) ⟩
+ (from ∘ μ ∘ to ⊗₁ to) ∘ id ⊗₁ (from ∘ η) ∎
+ Xₘ : Monoid
+ Xₘ = record
+ { Carrier = X
+ ; isMonoid = record
+ { μ = from ∘ μ ∘ to ⊗₁ to
+ ; η = from ∘ η
+ ; assoc = as
+ ; identityˡ = idˡ
+ ; identityʳ = idʳ 
+ }
+ }
+ M⇒Xₘ : Monoids [ M , Xₘ ]
+ M⇒Xₘ = record
+ { arr = from
+ ; preserves-μ = pushʳ (insertʳ (_≅_.isoˡ (∣M∣≅X ⊗ᵢ ∣M∣≅X)))
+ ; preserves-η = Equiv.refl
+ }
+ Xₘ⇒M : Monoids [ Xₘ , M ]
+ Xₘ⇒M = record
+ { arr = to
+ ; preserves-μ = cancelˡ isoˡ
+ ; preserves-η = cancelˡ isoˡ
+ }
+ M≅Xₘ : Monoids [ M ≅ Xₘ ]
+ M≅Xₘ = record
+ { from = M⇒Xₘ
+ ; to = Xₘ⇒M
+ ; iso = record
+ { isoˡ = isoˡ
+ ; isoʳ = isoʳ
+ }
+ }
diff --git a/Category/Diagram/Cospan.agda b/Category/Diagram/Cospan.agda
new file mode 100644
index 0000000..b988651
--- /dev/null
+++ b/Category/Diagram/Cospan.agda
@@ -0,0 +1,117 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)
+open import Level using (Level; _⊔_)
+
+module Category.Diagram.Cospan {o ℓ e : Level} (𝒞 : FinitelyCocompleteCategory o ℓ e) where
+
+import Categories.Morphism as Morphism
+import Categories.Morphism.Reasoning as ⇒-Reasoning
+
+open import Relation.Binary using (IsEquivalence)
+
+module 𝒞 = FinitelyCocompleteCategory 𝒞
+
+open 𝒞 hiding (i₁; i₂; _≈_)
+open ⇒-Reasoning U using (switch-fromtoˡ; glueTrianglesˡ)
+open Morphism U using (_≅_; module ≅)
+
+record Cospan (A B : Obj) : Set (o ⊔ ℓ) where
+
+ constructor cospan
+
+ field
+ {N} : Obj
+ f₁ : A ⇒ N
+ f₂ : B ⇒ N
+
+private
+ variable
+ A B C D : Obj
+
+record _≈_ (C D : Cospan A B) : Set (ℓ ⊔ e) where
+
+ module C = Cospan C
+ module D = Cospan D
+
+ field
+ ≅N : C.N ≅ D.N
+
+ open _≅_ ≅N public
+ module ≅N = _≅_ ≅N
+
+ field
+ from∘f₁≈f₁ : from ∘ C.f₁ 𝒞.≈ D.f₁
+ from∘f₂≈f₂ : from ∘ C.f₂ 𝒞.≈ D.f₂
+
+infix 4 _≈_
+
+private
+ variable
+ f g h : Cospan A B
+
+≈-refl : f ≈ f
+≈-refl {f = cospan f₁ f₂} = record
+ { ≅N = ≅.refl
+ ; from∘f₁≈f₁ = from∘f₁≈f₁
+ ; from∘f₂≈f₂ = from∘f₂≈f₂
+ }
+ where abstract
+ from∘f₁≈f₁ : id ∘ f₁ 𝒞.≈ f₁
+ from∘f₁≈f₁ = identityˡ
+ from∘f₂≈f₂ : id ∘ f₂ 𝒞.≈ f₂
+ from∘f₂≈f₂ = identityˡ
+
+≈-sym : f ≈ g → g ≈ f
+≈-sym f≈g = record
+ { ≅N = ≅.sym ≅N
+ ; from∘f₁≈f₁ = a
+ ; from∘f₂≈f₂ = b
+ }
+ where abstract
+ open _≈_ f≈g
+ a : ≅N.to ∘ D.f₁ 𝒞.≈ C.f₁
+ a = Equiv.sym (switch-fromtoˡ ≅N from∘f₁≈f₁)
+ b : ≅N.to ∘ D.f₂ 𝒞.≈ C.f₂
+ b = Equiv.sym (switch-fromtoˡ ≅N from∘f₂≈f₂)
+
+≈-trans : f ≈ g → g ≈ h → f ≈ h
+≈-trans f≈g g≈h = record
+ { ≅N = ≅.trans f≈g.≅N g≈h.≅N
+ ; from∘f₁≈f₁ = a
+ ; from∘f₂≈f₂ = b
+ }
+ where abstract
+ module f≈g = _≈_ f≈g
+ module g≈h = _≈_ g≈h
+ a : (g≈h.≅N.from ∘ f≈g.≅N.from) ∘ f≈g.C.f₁ 𝒞.≈ g≈h.D.f₁
+ a = glueTrianglesˡ g≈h.from∘f₁≈f₁ f≈g.from∘f₁≈f₁
+ b : (g≈h.≅N.from ∘ f≈g.≅N.from) ∘ f≈g.C.f₂ 𝒞.≈ g≈h.D.f₂
+ b = glueTrianglesˡ g≈h.from∘f₂≈f₂ f≈g.from∘f₂≈f₂
+
+≈-equiv : {A B : 𝒞.Obj} → IsEquivalence (_≈_ {A} {B})
+≈-equiv = record
+ { refl = ≈-refl
+ ; sym = ≈-sym
+ ; trans = ≈-trans
+ }
+
+compose : Cospan A B → Cospan B C → Cospan A C
+compose (cospan f g) (cospan h i) = cospan (i₁ ∘ f) (i₂ ∘ i)
+ where
+ open pushout g h
+
+identity : Cospan A A
+identity = cospan id id
+
+compose-3 : Cospan A B → Cospan B C → Cospan C D → Cospan A D
+compose-3 (cospan f₁ f₂) (cospan g₁ g₂) (cospan h₁ h₂) = cospan (P₃.i₁ ∘ P₁.i₁ ∘ f₁) (P₃.i₂ ∘ P₂.i₂ ∘ h₂)
+ where
+ module P₁ = pushout f₂ g₁
+ module P₂ = pushout g₂ h₁
+ module P₃ = pushout P₁.i₂ P₂.i₁
+
+_⊗_ : Cospan A B → Cospan C D → Cospan (A + C) (B + D)
+_⊗_ (cospan f₁ f₂) (cospan g₁ g₂) = cospan (f₁ +₁ g₁) (f₂ +₁ g₂)
+
+infixr 10 _⊗_
diff --git a/Category/Instance/Cospans.agda b/Category/Instance/Cospans.agda
index d54499d..d17a58d 100644
--- a/Category/Instance/Cospans.agda
+++ b/Category/Instance/Cospans.agda
@@ -7,7 +7,9 @@ open import Level using (_⊔_)
module Category.Instance.Cospans {o ℓ e} (𝒞 : FinitelyCocompleteCategory o ℓ e) where
-open FinitelyCocompleteCategory 𝒞
+module 𝒞 = FinitelyCocompleteCategory 𝒞
+open 𝒞 using (U; pushout)
+open Category U hiding (_≈_)
open import Categories.Diagram.Pushout U using (Pushout)
open import Categories.Diagram.Pushout.Properties U using (pushout-resp-≈; up-to-iso)
@@ -15,8 +17,8 @@ open import Categories.Morphism U using (_≅_; module ≅)
open import Categories.Morphism.Reasoning U
using
( switch-fromtoˡ
- ; glueTrianglesˡ
; pullˡ ; pullʳ
+ ; cancelˡ
)
open import Category.Diagram.Pushout U 
@@ -26,254 +28,213 @@ open import Category.Diagram.Pushout U 
; extend-i₁-iso ; extend-i₂-iso
)
-private
+open import Category.Diagram.Cospan 𝒞 using (Cospan; compose; compose-3; identity; _≈_; cospan; ≈-trans; ≈-sym; ≈-equiv)
+private
variable
- A B C D X Y Z : Obj
- f g h : A ⇒ B
-
-record Cospan (A B : Obj) : Set (o ⊔ ℓ) where
-
- field
- {N} : Obj
- f₁ : A ⇒ N
- f₂ : B ⇒ N
-
-compose : Cospan A B → Cospan B C → Cospan A C
-compose c₁ c₂ = record { f₁ = p.i₁ ∘ C₁.f₁ ; f₂ = p.i₂ ∘ C₂.f₂ }
- where
- module C₁ = Cospan c₁
- module C₂ = Cospan c₂
- module p = pushout C₁.f₂ C₂.f₁
-
-id-Cospan : Cospan A A
-id-Cospan = record { f₁ = id ; f₂ = id }
-
-compose-3 : Cospan A B → Cospan B C → Cospan C D → Cospan A D
-compose-3 c₁ c₂ c₃ = record { f₁ = P₃.i₁ ∘ P₁.i₁ ∘ C₁.f₁ ; f₂ = P₃.i₂ ∘ P₂.i₂ ∘ C₃.f₂ }
- where
- module C₁ = Cospan c₁
- module C₂ = Cospan c₂
- module C₃ = Cospan c₃
- module P₁ = pushout C₁.f₂ C₂.f₁
- module P₂ = pushout C₂.f₂ C₃.f₁
- module P₃ = pushout P₁.i₂ P₂.i₁
+ A B C D : Obj
-record Same (C C′ : Cospan A B) : Set (ℓ ⊔ e) where
-
- module C = Cospan C
- module C′ = Cospan C′
-
- field
- ≅N : C.N ≅ C′.N
-
- open _≅_ ≅N public
- module ≅N = _≅_ ≅N
-
- field
- from∘f₁≈f₁′ : from ∘ C.f₁ ≈ C′.f₁
- from∘f₂≈f₂′ : from ∘ C.f₂ ≈ C′.f₂
-
-same-refl : {C : Cospan A B} → Same C C
-same-refl = record
- { ≅N = ≅.refl
- ; from∘f₁≈f₁′ = identityˡ
- ; from∘f₂≈f₂′ = identityˡ
- }
-
-same-sym : {C C′ : Cospan A B} → Same C C′ → Same C′ C
-same-sym C≅C′ = record
- { ≅N = ≅.sym ≅N
- ; from∘f₁≈f₁′ = Equiv.sym (switch-fromtoˡ ≅N from∘f₁≈f₁′)
- ; from∘f₂≈f₂′ = Equiv.sym (switch-fromtoˡ ≅N from∘f₂≈f₂′)
- }
- where
- open Same C≅C′
-
-same-trans : {C C′ C″ : Cospan A B} → Same C C′ → Same C′ C″ → Same C C″
-same-trans C≈C′ C′≈C″ = record
- { ≅N = ≅.trans C≈C′.≅N C′≈C″.≅N
- ; from∘f₁≈f₁′ = glueTrianglesˡ C′≈C″.from∘f₁≈f₁′ C≈C′.from∘f₁≈f₁′
- ; from∘f₂≈f₂′ = glueTrianglesˡ C′≈C″.from∘f₂≈f₂′ C≈C′.from∘f₂≈f₂′
- }
- where
- module C≈C′ = Same C≈C′
- module C′≈C″ = Same C′≈C″
+private
+ variable
+ f g h : Cospan A B
-compose-idˡ : {C : Cospan A B} → Same (compose C id-Cospan) C
-compose-idˡ {_} {_} {C} = record
+compose-idˡ : compose f identity ≈ f
+compose-idˡ {f = cospan {N} f₁ f₂} = record
{ ≅N = ≅P
- ; from∘f₁≈f₁′ = begin
- ≅P.from ∘ P.i₁ ∘ C.f₁ ≈⟨ assoc ⟨
- (≅P.from ∘ P.i₁) ∘ C.f₁ ≈⟨ P.universal∘i₁≈h₁ ⟩∘⟨refl ⟩
- id ∘ C.f₁ ≈⟨ identityˡ ⟩
- C.f₁ ∎
- ; from∘f₂≈f₂′ = begin
- ≅P.from ∘ P.i₂ ∘ id ≈⟨ refl⟩∘⟨ identityʳ ⟩
- ≅P.from ∘ P.i₂ ≈⟨ P.universal∘i₂≈h₂ ⟩
- C.f₂ ∎
+ ; from∘f₁≈f₁ = from∘f₁≈f₁
+ ; from∘f₂≈f₂ = from∘f₂≈f₂
}
where
open HomReasoning
- module C = Cospan C
- P = pushout C.f₂ id
+ P P′ : Pushout f₂ id
+ P = pushout f₂ id
+ P′ = pushout-f-id {f = f₂}
module P = Pushout P
- P′ = pushout-f-id {f = C.f₂}
+ ≅P : P.Q ≅ N
≅P = up-to-iso P P′
module ≅P = _≅_ ≅P
-
-compose-idʳ : {C : Cospan A B} → Same (compose id-Cospan C) C
-compose-idʳ {_} {_} {C} = record
+ abstract
+ from∘f₁≈f₁ : ≅P.from ∘ P.i₁ ∘ f₁ 𝒞.≈ f₁
+ from∘f₁≈f₁ = begin
+ ≅P.from ∘ P.i₁ ∘ f₁ ≈⟨ cancelˡ P.universal∘i₁≈h₁ ⟩
+ f₁ ∎
+ from∘f₂≈f₂ : ≅P.from ∘ P.i₂ ∘ id 𝒞.≈ f₂
+ from∘f₂≈f₂ = begin
+ ≅P.from ∘ P.i₂ ∘ id ≈⟨ refl⟩∘⟨ identityʳ ⟩
+ ≅P.from ∘ P.i₂ ≈⟨ P.universal∘i₂≈h₂ ⟩
+ f₂ ∎
+
+compose-idʳ : compose identity f ≈ f
+compose-idʳ {f = cospan {N} f₁ f₂} = record
{ ≅N = ≅P
- ; from∘f₁≈f₁′ = begin
- ≅P.from ∘ P.i₁ ∘ id ≈⟨ refl⟩∘⟨ identityʳ ⟩
- ≅P.from ∘ P.i₁ ≈⟨ P.universal∘i₁≈h₁ ⟩
- C.f₁ ∎
- ; from∘f₂≈f₂′ = begin
- ≅P.from ∘ P.i₂ ∘ C.f₂ ≈⟨ assoc ⟨
- (≅P.from ∘ P.i₂) ∘ C.f₂ ≈⟨ P.universal∘i₂≈h₂ ⟩∘⟨refl ⟩
- id ∘ C.f₂ ≈⟨ identityˡ ⟩
- C.f₂ ∎
+ ; from∘f₁≈f₁ = from∘f₁≈f₁
+ ; from∘f₂≈f₂ = from∘f₂≈f₂
}
where
open HomReasoning
- module C = Cospan C
- P = pushout id C.f₁
+ P P′ : Pushout id f₁
+ P = pushout id f₁
module P = Pushout P
- P′ = pushout-id-g {g = C.f₁}
+ P′ = pushout-id-g {g = f₁}
+ ≅P : P.Q ≅ N
≅P = up-to-iso P P′
module ≅P = _≅_ ≅P
-
-compose-id² : Same {A} (compose id-Cospan id-Cospan) id-Cospan
+ abstract
+ from∘f₁≈f₁ : ≅P.from ∘ P.i₁ ∘ id 𝒞.≈ f₁
+ from∘f₁≈f₁ = begin
+ ≅P.from ∘ P.i₁ ∘ id ≈⟨ refl⟩∘⟨ identityʳ ⟩
+ ≅P.from ∘ P.i₁ ≈⟨ P.universal∘i₁≈h₁ ⟩
+ f₁ ∎
+ from∘f₂≈f₂ : ≅P.from ∘ P.i₂ ∘ f₂ 𝒞.≈ f₂
+ from∘f₂≈f₂ = begin
+ ≅P.from ∘ P.i₂ ∘ f₂ ≈⟨ cancelˡ P.universal∘i₂≈h₂ ⟩
+ f₂ ∎
+
+compose-id² : compose identity identity ≈ identity {A}
compose-id² = compose-idˡ
-compose-3-right
- : {c₁ : Cospan A B}
- {c₂ : Cospan B C}
- {c₃ : Cospan C D}
- → Same (compose c₁ (compose c₂ c₃)) (compose-3 c₁ c₂ c₃)
-compose-3-right {_} {_} {_} {_} {c₁} {c₂} {c₃} = record
- { ≅N = up-to-iso P₄′ P₄
- ; from∘f₁≈f₁′ = sym-assoc ○ P₄′.universal∘i₁≈h₁ ⟩∘⟨refl ○ assoc
- ; from∘f₂≈f₂′ = sym-assoc ○ P₄′.universal∘i₂≈h₂ ⟩∘⟨refl
+compose-3-right : compose f (compose g h) ≈ compose-3 f g h
+compose-3-right {f = f} {g = g} {h = h} = record
+ { ≅N = ≅N
+ ; from∘f₁≈f₁ = from∘f₁≈f₁
+ ; from∘f₂≈f₂ = from∘f₂≈f₂
}
where
open HomReasoning
- module C₁ = Cospan c₁
- module C₂ = Cospan c₂
- module C₃ = Cospan c₃
+ module C₁ = Cospan f
+ module C₂ = Cospan g
+ module C₃ = Cospan h
+ P₁ : Pushout C₁.f₂ C₂.f₁
P₁ = pushout C₁.f₂ C₂.f₁
+ P₂ : Pushout C₂.f₂ C₃.f₁
P₂ = pushout C₂.f₂ C₃.f₁
module P₁ = Pushout P₁
module P₂ = Pushout P₂
+ P₃ : Pushout P₁.i₂ P₂.i₁
P₃ = pushout P₁.i₂ P₂.i₁
module P₃ = Pushout P₃
+ P₄ P₄′ : Pushout C₁.f₂ (P₂.i₁ ∘ C₂.f₁)
P₄ = glue-i₂ P₁ P₃
- module P₄ = Pushout P₄
P₄′ = pushout C₁.f₂ (P₂.i₁ ∘ C₂.f₁)
+ module P₄ = Pushout P₄
module P₄′ = Pushout P₄′
-
-compose-3-left
- : {c₁ : Cospan A B}
- {c₂ : Cospan B C}
- {c₃ : Cospan C D}
- → Same (compose (compose c₁ c₂) c₃) (compose-3 c₁ c₂ c₃)
-compose-3-left {_} {_} {_} {_} {c₁} {c₂} {c₃} = record
+ ≅N : P₄′.Q ≅ P₄.Q
+ ≅N = up-to-iso P₄′ P₄
+ module ≅N = _≅_ ≅N
+ abstract
+ from∘f₁≈f₁ : ≅N.from ∘ P₄′.i₁ ∘ C₁.f₁ 𝒞.≈ P₃.i₁ ∘ P₁.i₁ ∘ C₁.f₁
+ from∘f₁≈f₁ = sym-assoc ○ P₄′.universal∘i₁≈h₁ ⟩∘⟨refl ○ assoc
+ from∘f₂≈f₂ : ≅N.from ∘ P₄′.i₂ ∘ P₂.i₂ ∘ C₃.f₂ 𝒞.≈ P₄.i₂ ∘ P₂.i₂ ∘ C₃.f₂
+ from∘f₂≈f₂ = sym-assoc ○ P₄′.universal∘i₂≈h₂ ⟩∘⟨refl
+
+compose-3-left : compose (compose f g) h ≈ compose-3 f g h
+compose-3-left {f = f} {g = g} {h = h} = record
{ ≅N = up-to-iso P₄′ P₄
- ; from∘f₁≈f₁′ = sym-assoc ○ P₄′.universal∘i₁≈h₁ ⟩∘⟨refl
- ; from∘f₂≈f₂′ = sym-assoc ○ P₄′.universal∘i₂≈h₂ ⟩∘⟨refl ○ assoc
+ ; from∘f₁≈f₁ = from∘f₁≈f₁
+ ; from∘f₂≈f₂ = from∘f₂≈f₂
}
where
open HomReasoning
- module C₁ = Cospan c₁
- module C₂ = Cospan c₂
- module C₃ = Cospan c₃
+ module C₁ = Cospan f
+ module C₂ = Cospan g
+ module C₃ = Cospan h
+ P₁ : Pushout C₁.f₂ C₂.f₁
P₁ = pushout C₁.f₂ C₂.f₁
+ P₂ : Pushout C₂.f₂ C₃.f₁
P₂ = pushout C₂.f₂ C₃.f₁
module P₁ = Pushout P₁
module P₂ = Pushout P₂
+ P₃ : Pushout P₁.i₂ P₂.i₁
P₃ = pushout P₁.i₂ P₂.i₁
module P₃ = Pushout P₃
+ P₄ P₄′ : Pushout (P₁.i₂ ∘ C₂.f₂) C₃.f₁
P₄ = glue-i₁ P₂ P₃
- module P₄ = Pushout P₄
P₄′ = pushout (P₁.i₂ ∘ C₂.f₂) C₃.f₁
+ module P₄ = Pushout P₄
module P₄′ = Pushout P₄′
+ ≅N : P₄′.Q ≅ P₄.Q
+ ≅N = up-to-iso P₄′ P₄
+ module ≅N = _≅_ ≅N
+ abstract
+ from∘f₁≈f₁ : ≅N.from ∘ P₄′.i₁ ∘ P₁.i₁ ∘ C₁.f₁ 𝒞.≈ P₄.i₁ ∘ P₁.i₁ ∘ C₁.f₁
+ from∘f₁≈f₁ = sym-assoc ○ P₄′.universal∘i₁≈h₁ ⟩∘⟨refl
+ from∘f₂≈f₂ : ≅N.from ∘ P₄′.i₂ ∘ C₃.f₂ 𝒞.≈ P₃.i₂ ∘ P₂.i₂ ∘ C₃.f₂
+ from∘f₂≈f₂ = sym-assoc ○ P₄′.universal∘i₂≈h₂ ⟩∘⟨refl ○ assoc
compose-assoc
: {c₁ : Cospan A B}
{c₂ : Cospan B C}
{c₃ : Cospan C D}
- → Same (compose c₁ (compose c₂ c₃)) (compose (compose c₁ c₂) c₃)
-compose-assoc = same-trans compose-3-right (same-sym compose-3-left)
+ → compose c₁ (compose c₂ c₃) ≈ (compose (compose c₁ c₂) c₃)
+compose-assoc = ≈-trans compose-3-right (≈-sym compose-3-left)
compose-sym-assoc
: {c₁ : Cospan A B}
{c₂ : Cospan B C}
{c₃ : Cospan C D}
- → Same (compose (compose c₁ c₂) c₃) (compose c₁ (compose c₂ c₃))
-compose-sym-assoc = same-trans compose-3-left (same-sym compose-3-right)
+ → compose (compose c₁ c₂) c₃ ≈ compose c₁ (compose c₂ c₃)
+compose-sym-assoc = ≈-trans compose-3-left (≈-sym compose-3-right)
compose-equiv
: {c₂ c₂′ : Cospan B C}
{c₁ c₁′ : Cospan A B}
- → Same c₂ c₂′
- → Same c₁ c₁′
- → Same (compose c₁ c₂) (compose c₁′ c₂′)
+ → c₂ ≈ c₂′
+ → c₁ ≈ c₁′
+ → compose c₁ c₂ ≈ compose c₁′ c₂′
compose-equiv {_} {_} {_} {c₂} {c₂′} {c₁} {c₁′} ≈C₂ ≈C₁ = record
- { ≅N = up-to-iso P P″
- ; from∘f₁≈f₁′ = begin
- ≅P.from ∘ P.i₁ ∘ C₁.f₁ ≈⟨ assoc ⟨
- (≅P.from ∘ P.i₁) ∘ C₁.f₁ ≈⟨ P.universal∘i₁≈h₁ ⟩∘⟨refl ⟩
- (P′.i₁ ∘ ≈C₁.from) ∘ C₁.f₁ ≈⟨ assoc ⟩
- P′.i₁ ∘ ≈C₁.from ∘ C₁.f₁ ≈⟨ refl⟩∘⟨ ≈C₁.from∘f₁≈f₁′ ⟩
- P′.i₁ ∘ C₁′.f₁ ∎
- ; from∘f₂≈f₂′ = begin
- ≅P.from ∘ P.i₂ ∘ C₂.f₂ ≈⟨ assoc ⟨
- (≅P.from ∘ P.i₂) ∘ C₂.f₂ ≈⟨ P.universal∘i₂≈h₂ ⟩∘⟨refl ⟩
- (P′.i₂ ∘ ≈C₂.from) ∘ C₂.f₂ ≈⟨ assoc ⟩
- P′.i₂ ∘ ≈C₂.from ∘ C₂.f₂ ≈⟨ refl⟩∘⟨ ≈C₂.from∘f₂≈f₂′ ⟩
- P′.i₂ ∘ C₂′.f₂ ∎
+ { ≅N = ≅P
+ ; from∘f₁≈f₁ = from∘f₁≈f₁
+ ; from∘f₂≈f₂ = from∘f₂≈f₂
}
where
module C₁ = Cospan c₁
module C₁′ = Cospan c₁′
module C₂ = Cospan c₂
module C₂′ = Cospan c₂′
+ P : Pushout C₁.f₂ C₂.f₁
P = pushout C₁.f₂ C₂.f₁
+ P′ : Pushout C₁′.f₂ C₂′.f₁
P′ = pushout C₁′.f₂ C₂′.f₁
- module ≈C₁ = Same ≈C₁
- module ≈C₂ = Same ≈C₂
+ module ≈C₁ = _≈_ ≈C₁
+ module ≈C₂ = _≈_ ≈C₂
P′′ : Pushout (≈C₁.to ∘ C₁′.f₂) (≈C₂.to ∘ C₂′.f₁)
P′′ = extend-i₂-iso (extend-i₁-iso P′ (≅.sym ≈C₁.≅N)) (≅.sym ≈C₂.≅N)
P″ : Pushout C₁.f₂ C₂.f₁
P″ =
pushout-resp-≈
P′′
- (Equiv.sym (switch-fromtoˡ ≈C₁.≅N ≈C₁.from∘f₂≈f₂′))
- (Equiv.sym (switch-fromtoˡ ≈C₂.≅N ≈C₂.from∘f₁≈f₁′))
+ (Equiv.sym (switch-fromtoˡ ≈C₁.≅N ≈C₁.from∘f₂≈f₂))
+ (Equiv.sym (switch-fromtoˡ ≈C₂.≅N ≈C₂.from∘f₁≈f₁))
module P = Pushout P
module P′ = Pushout P′
≅P : P.Q ≅ P′.Q
≅P = up-to-iso P P″
module ≅P = _≅_ ≅P
open HomReasoning
+ abstract
+ from∘f₁≈f₁ : ≅P.from ∘ P.i₁ ∘ C₁.f₁ 𝒞.≈ P′.i₁ ∘ C₁′.f₁
+ from∘f₁≈f₁ = begin
+ ≅P.from ∘ P.i₁ ∘ C₁.f₁ ≈⟨ pullˡ P.universal∘i₁≈h₁ ⟩
+ (P′.i₁ ∘ ≈C₁.from) ∘ C₁.f₁ ≈⟨ pullʳ ≈C₁.from∘f₁≈f₁ ⟩
+ P′.i₁ ∘ C₁′.f₁ ∎
+ from∘f₂≈f₂ : ≅P.from ∘ P.i₂ ∘ C₂.f₂ 𝒞.≈ P′.i₂ ∘ C₂′.f₂
+ from∘f₂≈f₂ = begin
+ ≅P.from ∘ P.i₂ ∘ C₂.f₂ ≈⟨ pullˡ P.universal∘i₂≈h₂ ⟩
+ (P′.i₂ ∘ ≈C₂.from) ∘ C₂.f₂ ≈⟨ pullʳ ≈C₂.from∘f₂≈f₂ ⟩
+ P′.i₂ ∘ C₂′.f₂ ∎
Cospans : Category o (o ⊔ ℓ) (ℓ ⊔ e)
Cospans = record
{ Obj = Obj
; _⇒_ = Cospan
- ; _≈_ = Same
- ; id = id-Cospan
+ ; _≈_ = _≈_
+ ; id = identity
; _∘_ = flip compose
; assoc = compose-assoc
; sym-assoc = compose-sym-assoc
; identityˡ = compose-idˡ
; identityʳ = compose-idʳ
; identity² = compose-id²
- ; equiv = record
- { refl = same-refl
- ; sym = same-sym
- ; trans = same-trans
- }
+ ; equiv = ≈-equiv
; ∘-resp-≈ = compose-equiv
}
diff --git a/Category/Instance/DecoratedCospans.agda b/Category/Instance/DecoratedCospans.agda
index c0c62c7..b527265 100644
--- a/Category/Instance/DecoratedCospans.agda
+++ b/Category/Instance/DecoratedCospans.agda
@@ -18,15 +18,18 @@ module Category.Instance.DecoratedCospans
module 𝒞 = FinitelyCocompleteCategory 𝒞
module 𝒟 = SymmetricMonoidalCategory 𝒟
+import Categories.Category.Monoidal.Utilities as ⊗-Util
import Category.Instance.Cospans 𝒞 as Cospans
+import Category.Diagram.Cospan 𝒞 as Cospan
open import Categories.Category using (Category; _[_∘_])
open import Categories.Category.Cocartesian using (module CocartesianMonoidal)
open import Categories.Diagram.Pushout using (Pushout)
open import Categories.Diagram.Pushout.Properties 𝒞.U using (up-to-iso)
-open import Categories.Functor.Properties using ([_]-resp-≅)
+open import Categories.Functor.Properties using ([_]-resp-≅; [_]-resp-square)
open import Categories.Morphism.Reasoning using (switch-fromtoˡ; glueTrianglesˡ)
open import Cospan.Decorated 𝒞 F using (DecoratedCospan)
+open import Relation.Binary using (IsEquivalence)
open import Data.Product using (_,_)
open import Function using (flip)
open import Level using (_⊔_)
@@ -50,7 +53,7 @@ private
compose : DecoratedCospan A B → DecoratedCospan B C → DecoratedCospan A C
compose c₁ c₂ = record
- { cospan = Cospans.compose C₁.cospan C₂.cospan
+ { cospan = Cospan.compose C₁.cospan C₂.cospan
; decoration = F₁ [ i₁ , i₂ ] ∘ φ ∘ s⊗t
}
where
@@ -67,64 +70,80 @@ compose c₁ c₂ = record
identity : DecoratedCospan A A
identity = record
- { cospan = Cospans.id-Cospan
+ { cospan = Cospan.identity
; decoration = 𝒟.U [ F₁ 𝒞.initial.! ∘ ε ]
}
-record Same (C₁ C₂ : DecoratedCospan A B) : Set (ℓ ⊔ e ⊔ e′) where
+record _≈_ (C₁ C₂ : DecoratedCospan A B) : Set (ℓ ⊔ e ⊔ e′) where
- module C₁ = DecoratedCospan C₁
- module C₂ = DecoratedCospan C₂
+ private
+ module C₁ = DecoratedCospan C₁
+ module C₂ = DecoratedCospan C₂
field
- cospans-≈ : Cospans.Same C₁.cospan C₂.cospan
+ cospans-≈ : C₁.cospan Cospan.≈ C₂.cospan
- open Cospans.Same cospans-≈ public
- open 𝒟
- open Morphism U using (_≅_)
+ open Cospan._≈_ cospans-≈ public
+ open Morphism 𝒟.U using (_≅_)
field
- same-deco : F₁ ≅N.from ∘ C₁.decoration ≈ C₂.decoration
+ same-deco : F₁ ≅N.from 𝒟.∘ C₁.decoration 𝒟.≈ C₂.decoration
≅F[N] : F₀ C₁.N ≅ F₀ C₂.N
≅F[N] = [ F′ ]-resp-≅ ≅N
-same-refl : {C : DecoratedCospan A B} → Same C C
-same-refl = record
- { cospans-≈ = Cospans.same-refl
- ; same-deco = F-identity ⟩∘⟨refl ○ identityˡ
- }
- where
- open 𝒟
- open HomReasoning
+infix 4 _≈_
-same-sym : {C C′ : DecoratedCospan A B} → Same C C′ → Same C′ C
-same-sym C≅C′ = record
- { cospans-≈ = Cospans.same-sym cospans-≈
- ; same-deco = sym (switch-fromtoˡ 𝒟.U ≅F[N] same-deco)
- }
- where
- open Same C≅C′
- open 𝒟.Equiv
-
-same-trans : {C C′ C″ : DecoratedCospan A B} → Same C C′ → Same C′ C″ → Same C C″
-same-trans C≈C′ C′≈C″ = record
- { cospans-≈ = Cospans.same-trans C≈C′.cospans-≈ C′≈C″.cospans-≈
- ; same-deco =
- homomorphism ⟩∘⟨refl ○
- glueTrianglesˡ 𝒟.U C′≈C″.same-deco C≈C′.same-deco
- }
- where
- module C≈C′ = Same C≈C′
- module C′≈C″ = Same C′≈C″
- open 𝒟.HomReasoning
+module _ where
+
+ open 𝒟.HomReasoning
+ open 𝒟.Equiv
+ open 𝒟 using (identityˡ)
+
+ private
+ variable
+ f g h : DecoratedCospan A B
+
+ abstract
+
+ ≈-refl : f ≈ f
+ ≈-refl = record
+ { cospans-≈ = Cospan.≈-refl
+ ; same-deco = F-identity ⟩∘⟨refl ○ identityˡ
+ }
+
+ ≈-sym : f ≈ g → g ≈ f
+ ≈-sym f≈g = record
+ { cospans-≈ = Cospan.≈-sym cospans-≈
+ ; same-deco = sym (switch-fromtoˡ 𝒟.U ≅F[N] same-deco)
+ }
+ where
+ open _≈_ f≈g
+
+ ≈-trans : f ≈ g → g ≈ h → f ≈ h
+ ≈-trans f≈g g≈h = record
+ { cospans-≈ = Cospan.≈-trans f≈g.cospans-≈ g≈h.cospans-≈
+ ; same-deco =
+ homomorphism ⟩∘⟨refl ○
+ glueTrianglesˡ 𝒟.U g≈h.same-deco f≈g.same-deco
+ }
+ where
+ module f≈g = _≈_ f≈g
+ module g≈h = _≈_ g≈h
+
+ ≈-equiv : {A B : 𝒞.Obj} → IsEquivalence (_≈_ {A} {B})
+ ≈-equiv = record
+ { refl = ≈-refl
+ ; sym = ≈-sym
+ ; trans = ≈-trans
+ }
compose-assoc
: {c₁ : DecoratedCospan A B}
{c₂ : DecoratedCospan B C}
{c₃ : DecoratedCospan C D}
- → Same (compose c₁ (compose c₂ c₃)) (compose (compose c₁ c₂) c₃)
-compose-assoc {_} {_} {_} {_} {c₁} {c₂} {c₃} = record
+ → compose c₁ (compose c₂ c₃) ≈ compose (compose c₁ c₂) c₃
+compose-assoc {A} {B} {C} {D} {c₁} {c₂} {c₃} = record
{ cospans-≈ = Cospans.compose-assoc
; same-deco = deco-assoc
}
@@ -133,14 +152,19 @@ compose-assoc {_} {_} {_} {_} {c₁} {c₂} {c₃} = record
module C₂ = DecoratedCospan c₂
module C₃ = DecoratedCospan c₃
open 𝒞 using (+-assoc; pushout; [_,_]; _+₁_; _+_) renaming (_∘_ to _∘′_; id to id′)
+ p₁ : Pushout 𝒞.U C₁.f₂ C₂.f₁
p₁ = pushout C₁.f₂ C₂.f₁
+ p₂ : Pushout 𝒞.U C₂.f₂ C₃.f₁
p₂ = pushout C₂.f₂ C₃.f₁
module P₁ = Pushout p₁
module P₂ = Pushout p₂
+ p₃ : Pushout 𝒞.U P₁.i₂ P₂.i₁
p₃ = pushout P₁.i₂ P₂.i₁
+ p₁₃ p₄ : Pushout 𝒞.U C₁.f₂ (P₂.i₁ ∘′ C₂.f₁)
p₁₃ = glue-i₂ p₁ p₃
- p₂₃ = glue-i₁ p₂ p₃
p₄ = pushout C₁.f₂ (P₂.i₁ ∘′ C₂.f₁)
+ p₂₃ p₅ : Pushout 𝒞.U (P₁.i₂ ∘′ C₂.f₂) C₃.f₁
+ p₂₃ = glue-i₁ p₂ p₃
p₅ = pushout (P₁.i₂ ∘′ C₂.f₂) C₃.f₁
module P₃ = Pushout p₃
module P₄ = Pushout p₄
@@ -151,36 +175,50 @@ compose-assoc {_} {_} {_} {_} {c₁} {c₂} {c₃} = record
module P₄≅P₁₃ = _≅_ (up-to-iso p₄ p₁₃)
module P₅≅P₂₃ = _≅_ (up-to-iso p₅ p₂₃)
+ N M P Q R : 𝒞.Obj
N = C₁.N
M = C₂.N
P = C₃.N
Q = P₁.Q
R = P₂.Q
- φ = ⊗-homo.η
- φ-commute = ⊗-homo.commute
-
- a = C₁.f₂
- b = C₂.f₁
- c = C₂.f₂
- d = C₂.f₁
+ f : N 𝒞.⇒ Q
f = P₁.i₁
+
+ g : M 𝒞.⇒ Q
g = P₁.i₂
+
+ h : M 𝒞.⇒ R
h = P₂.i₁
+
+ i : P 𝒞.⇒ R
i = P₂.i₂
+ j : Q 𝒞.⇒ P₃.Q
j = P₃.i₁
+
+ k : R 𝒞.⇒ P₃.Q
k = P₃.i₂
+ w : N 𝒞.⇒ P₄.Q
w = P₄.i₁
+
+ x : R 𝒞.⇒ P₄.Q
x = P₄.i₂
+
+ y : Q 𝒞.⇒ P₅.Q
y = P₅.i₁
+
+ z : P 𝒞.⇒ P₅.Q
z = P₅.i₂
+ l : P₂₃.Q 𝒞.⇒ P₅.Q
l = P₅≅P₂₃.to
+
+ m : P₄.Q 𝒞.⇒ P₁₃.Q
m = P₄≅P₁₃.from
- module +-assoc = _≅_ +-assoc
+ module +-assoc {m} {n} {o} = _≅_ (+-assoc {m} {n} {o})
module _ where
@@ -194,23 +232,19 @@ compose-assoc {_} {_} {_} {_} {c₁} {c₂} {c₃} = record
open 𝒞.HomReasoning
open 𝒞.Equiv
- copairings : ((l ∘ m) ∘ [ w , x ]) ∘ (id +₁ [ h , i ]) ≈ [ y , z ] ∘ ([ f , g ] +₁ id) ∘ +-assoc.from
+ copairings : ((l ∘ m) ∘ [ w , x ]) ∘ (id +₁ [ h , i ]) 𝒞.≈ [ y , z ] ∘ ([ f , g ] +₁ id) ∘ +-assoc.from
copairings = begin
- ((l ∘ m) ∘ [ w , x ]) ∘ (id +₁ [ h , i ]) ≈⟨ pushˡ assoc ⟩
- l ∘ (m ∘ [ w , x ]) ∘ (id +₁ [ h , i ]) ≈⟨ refl⟩∘⟨ ∘[] ⟩∘⟨refl ⟩
- l ∘ [ m ∘ w , m ∘ x ] ∘ (id +₁ [ h , i ]) ≈⟨ refl⟩∘⟨ []-cong₂ (P₄.universal∘i₁≈h₁) (P₄.universal∘i₂≈h₂) ⟩∘⟨refl ⟩
- l ∘ [ j ∘ f , k ] ∘ (id +₁ [ h , i ]) ≈⟨ pullˡ ∘[] ⟩
- [ l ∘ j ∘ f , l ∘ k ] ∘ (id +₁ [ h , i ]) ≈⟨ []-congʳ (pullˡ P₂₃.universal∘i₁≈h₁) ⟩∘⟨refl ⟩
- [ y ∘ f , l ∘ k ] ∘ (id +₁ [ h , i ]) ≈⟨ []∘+₁ ⟩
- [ (y ∘ f) ∘ id , (l ∘ k) ∘ [ h , i ] ] ≈⟨ []-cong₂ identityʳ (pullʳ ∘[]) ⟩
- [ y ∘ f , l ∘ [ k ∘ h , k ∘ i ] ] ≈⟨ []-congˡ (refl⟩∘⟨ []-congʳ P₃.commute) ⟨
- [ y ∘ f , l ∘ [ j ∘ g , k ∘ i ] ] ≈⟨ []-congˡ ∘[] ⟩
- [ y ∘ f , [ l ∘ j ∘ g , l ∘ k ∘ i ] ] ≈⟨ []-congˡ ([]-congˡ P₂₃.universal∘i₂≈h₂) ⟩
- [ y ∘ f , [ l ∘ j ∘ g , z ] ] ≈⟨ []-congˡ ([]-congʳ (pullˡ P₂₃.universal∘i₁≈h₁)) ⟩
- [ y ∘ f , [ y ∘ g , z ] ] ≈⟨ []∘assocˡ ⟨
- [ [ y ∘ f , y ∘ g ] , z ] ∘ +-assoc.from ≈⟨ []-cong₂ ∘[] identityʳ ⟩∘⟨refl ⟨
- [ y ∘ [ f , g ] , z ∘ id ] ∘ +-assoc.from ≈⟨ pullˡ []∘+₁ ⟨
- [ y , z ] ∘ ([ f , g ] +₁ id) ∘ +-assoc.from ∎
+ ((l ∘ m) ∘ [ w , x ]) ∘ (id +₁ [ h , i ]) ≈⟨ ∘[] ⟩∘⟨refl ⟩
+ [(l ∘ m) ∘ w , (l ∘ m) ∘ x ] ∘ (id +₁ [ h , i ]) ≈⟨ []-cong₂ (pullʳ P₄.universal∘i₁≈h₁) (pullʳ P₄.universal∘i₂≈h₂) ⟩∘⟨refl ⟩
+ [ l ∘ j ∘ f , l ∘ k ] ∘ (id +₁ [ h , i ]) ≈⟨ []-congʳ (pullˡ P₂₃.universal∘i₁≈h₁) ⟩∘⟨refl ⟩
+ [ y ∘ f , l ∘ k ] ∘ (id +₁ [ h , i ]) ≈⟨ []∘+₁ ⟩
+ [ (y ∘ f) ∘ id , (l ∘ k) ∘ [ h , i ] ] ≈⟨ []-cong₂ identityʳ ∘[] ⟩
+ [ y ∘ f , [ (l ∘ k) ∘ h , (l ∘ k) ∘ i ] ] ≈⟨ []-congˡ ([]-cong₂ (pullʳ (sym P₃.commute)) (assoc ○ P₂₃.universal∘i₂≈h₂)) ⟩
+ [ y ∘ f , [ l ∘ j ∘ g , z ] ] ≈⟨ []-congˡ ([]-congʳ (pullˡ P₂₃.universal∘i₁≈h₁)) ⟩
+ [ y ∘ f , [ y ∘ g , z ] ] ≈⟨ []∘assocˡ ⟨
+ [ [ y ∘ f , y ∘ g ] , z ] ∘ +-assoc.from ≈⟨ []-cong₂ ∘[] identityʳ ⟩∘⟨refl ⟨
+ [ y ∘ [ f , g ] , z ∘ id ] ∘ +-assoc.from ≈⟨ pullˡ []∘+₁ ⟨
+ [ y , z ] ∘ ([ f , g ] +₁ id) ∘ +-assoc.from ∎
module _ where
@@ -219,153 +253,160 @@ compose-assoc {_} {_} {_} {_} {c₁} {c₂} {c₃} = record
open 𝒟 using (_⊗₀_; _⊗₁_; id; _∘_; _≈_; assoc; sym-assoc; identityʳ; ⊗; identityˡ; triangle; assoc-commute-to; assoc-commute-from)
open 𝒟 using (_⇒_; unit)
- α⇒ = 𝒟.associator.from
- α⇐ = 𝒟.associator.to
-
- λ⇒ = 𝒟.unitorˡ.from
- λ⇐ = 𝒟.unitorˡ.to
-
- ρ⇒ = 𝒟.unitorʳ.from
- ρ⇐ = 𝒟.unitorʳ.to
-
- module α≅ = 𝒟.associator
- module λ≅ = 𝒟.unitorˡ
- module ρ≅ = 𝒟.unitorʳ
+ open ⊗-Util 𝒟.monoidal using (module Shorthands)
+ open Shorthands using (α⇒; α⇐; λ⇒; λ⇐; ρ⇒; ρ⇐)
open Coherence 𝒟.monoidal using (λ₁≅ρ₁⇐)
open 𝒟.Equiv
+ +-α⇒ : {m n o : 𝒞.Obj} → m + (n + o) 𝒞.⇒ (m + n) + o
+-α⇒ = +-assoc.from
+ +-α⇐ : {m n o : 𝒞.Obj} → (m + n) + o 𝒞.⇒ m + (n + o)
+-α⇐ = +-assoc.to
- s : unit ⇒ F₀ C₁.N
+ s : unit ⇒ F₀ N
s = C₁.decoration
- t : unit ⇒ F₀ C₂.N
+ t : unit ⇒ F₀ M
t = C₂.decoration
- u : unit ⇒ F₀ C₃.N
+ u : unit ⇒ F₀ P
u = C₃.decoration
- F-copairings : F₁ (l ∘′ m) ∘ F₁ [ w , x ] ∘ F₁ (id′ +₁ [ h , i ]) ≈ F₁ [ y , z ] ∘ F₁ ([ f , g ] +₁ id′) ∘ F₁ (+-assoc.from)
- F-copairings = begin
- F₁ (l ∘′ m) ∘ F₁ [ w , x ] ∘ F₁ (id′ +₁ [ h , i ]) ≈⟨ pushˡ homomorphism ⟨
- F₁ ((l ∘′ m) ∘′ [ w , x ]) ∘ F₁ (id′ +₁ [ h , i ]) ≈⟨ homomorphism ⟨
- F₁ (((l ∘′ m) ∘′ [ w , x ]) ∘′ (id′ +₁ [ h , i ])) ≈⟨ F-resp-≈ copairings ⟩
- F₁ ([ y , z ] ∘′ ([ f , g ] +₁ id′) ∘′ +-assoc.from) ≈⟨ homomorphism ⟩
- F₁ [ y , z ] ∘ F₁ (([ f , g ] +₁ id′) ∘′ +-assoc.from) ≈⟨ refl⟩∘⟨ homomorphism ⟩
- F₁ [ y , z ] ∘ F₁ ([ f , g ] +₁ id′) ∘ F₁ +-assoc.from ∎
-
- coherences : φ (N , M + P) ∘ id ⊗₁ φ (M , P) ≈ F₁ +-assoc.to ∘ φ (N + M , P) ∘ φ (N , M) ⊗₁ id ∘ α⇐
- coherences = begin
- φ (N , M + P) ∘ id ⊗₁ φ (M , P) ≈⟨ insertʳ α≅.isoʳ ⟩
- ((φ (N , M + P) ∘ id ⊗₁ φ (M , P)) ∘ α⇒) ∘ α⇐ ≈⟨ assoc ⟩∘⟨refl ⟩
- (φ (N , M + P) ∘ id ⊗₁ φ (M , P) ∘ α⇒) ∘ α⇐ ≈⟨ assoc ⟩
- φ (N , M + P) ∘ (id ⊗₁ φ (M , P) ∘ α⇒) ∘ α⇐ ≈⟨ extendʳ associativity ⟨
- F₁ +-assoc.to ∘ (φ (N + M , P) ∘ φ (N , M) ⊗₁ id) ∘ α⇐ ≈⟨ refl⟩∘⟨ assoc ⟩
- F₁ +-assoc.to ∘ φ (N + M , P) ∘ φ (N , M) ⊗₁ id ∘ α⇐ ∎
-
- triangle-to : α⇒ ∘ ρ⇐ ⊗₁ id ≈ id ⊗₁ λ⇐
- triangle-to = begin
- α⇒ ∘ ρ⇐ ⊗₁ id ≈⟨ pullˡ identityˡ ⟨
- id ∘ α⇒ ∘ ρ⇐ ⊗₁ id ≈⟨ ⊗.identity ⟩∘⟨refl ⟨
- id ⊗₁ id ∘ α⇒ ∘ ρ⇐ ⊗₁ id ≈⟨ refl⟩⊗⟨ λ≅.isoˡ ⟩∘⟨refl ⟨
- id ⊗₁ (λ⇐ ∘ λ⇒) ∘ α⇒ ∘ ρ⇐ ⊗₁ id ≈⟨ identityʳ ⟩⊗⟨refl ⟩∘⟨refl ⟨
- (id ∘ id) ⊗₁ (λ⇐ ∘ λ⇒) ∘ α⇒ ∘ ρ⇐ ⊗₁ id ≈⟨ pushˡ ⊗-distrib-over-∘ ⟩
- id ⊗₁ λ⇐ ∘ id ⊗₁ λ⇒ ∘ α⇒ ∘ ρ⇐ ⊗₁ id ≈⟨ refl⟩∘⟨ pullˡ triangle ⟩
- id ⊗₁ λ⇐ ∘ ρ⇒ ⊗₁ id ∘ ρ⇐ ⊗₁ id ≈⟨ refl⟩∘⟨ ⊗-distrib-over-∘ ⟨
- id ⊗₁ λ⇐ ∘ (ρ⇒ ∘ ρ⇐) ⊗₁ (id ∘ id) ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ identityˡ ⟩
- id ⊗₁ λ⇐ ∘ (ρ⇒ ∘ ρ⇐) ⊗₁ id ≈⟨ refl⟩∘⟨ ρ≅.isoʳ ⟩⊗⟨refl ⟩
- id ⊗₁ λ⇐ ∘ id ⊗₁ id ≈⟨ refl⟩∘⟨ ⊗.identity ⟩
- id ⊗₁ λ⇐ ∘ id ≈⟨ identityʳ ⟩
- id ⊗₁ λ⇐ ∎
-
- unitors : s ⊗₁ (t ⊗₁ u ∘ ρ⇐) ∘ ρ⇐ ≈ α⇒ ∘ (s ⊗₁ t ∘ ρ⇐) ⊗₁ u ∘ ρ⇐
- unitors = begin
- s ⊗₁ (t ⊗₁ u ∘ ρ⇐) ∘ ρ⇐ ≈⟨ pushˡ split₂ʳ ⟩
- s ⊗₁ t ⊗₁ u ∘ id ⊗₁ ρ⇐ ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ λ₁≅ρ₁⇐ ⟩∘⟨refl ⟨
- s ⊗₁ t ⊗₁ u ∘ id ⊗₁ λ⇐ ∘ ρ⇐ ≈⟨ refl⟩∘⟨ pullˡ triangle-to ⟨
- s ⊗₁ t ⊗₁ u ∘ α⇒ ∘ ρ⇐ ⊗₁ id ∘ ρ⇐ ≈⟨ extendʳ assoc-commute-from ⟨
- α⇒ ∘ (s ⊗₁ t) ⊗₁ u ∘ ρ⇐ ⊗₁ id ∘ ρ⇐ ≈⟨ refl⟩∘⟨ pushˡ split₁ʳ ⟨
- α⇒ ∘ (s ⊗₁ t ∘ ρ⇐) ⊗₁ u ∘ ρ⇐ ∎
-
- F-l∘m = F₁ (l ∘′ m)
+ F[l∘m] : F₀ P₄.Q ⇒ F₀ P₅.Q
+ F[l∘m] = F₁ (l ∘′ m)
+
+ F[w,x] : F₀ (N + R) ⇒ F₀ P₄.Q
F[w,x] = F₁ [ w , x ]
+
+ F[h,i] : F₀ (M + P) ⇒ F₀ R
F[h,i] = F₁ [ h , i ]
+
+ F[y,z] : F₀ (Q + P) ⇒ F₀ P₅.Q
F[y,z] = F₁ [ y , z ]
+
+ F[f,g] : F₀ (N + M) ⇒ F₀ Q
F[f,g] = F₁ [ f , g ]
- F-[f,g]+id = F₁ ([ f , g ] +₁ id′)
- F-id+[h,i] = F₁ (id′ +₁ [ h , i ])
- φ-N,R = φ (N , R)
- φ-M,P = φ (M , P)
- φ-N+M,P = φ (N + M , P)
- φ-N+M = φ (N , M)
- φ-N,M+P = φ (N , M + P)
- φ-N,M = φ (N , M)
- φ-Q,P = φ (Q , P)
+
+ F[[f,g]+id] : F₀ ((N + M) + P) ⇒ F₀ (Q + P)
+ F[[f,g]+id] = F₁ ([ f , g ] +₁ id′)
+
+ F[id+[h,i]] : F₀ (N + (M + P)) ⇒ F₀ (N + R)
+ F[id+[h,i]] = F₁ (id′ +₁ [ h , i ])
+
+ φ[N,R] : F₀ N ⊗₀ F₀ R 𝒟.⇒ F₀ (N + R)
+ φ[N,R] = ⊗-homo.η (N , R)
+
+ φ[M,P] : F₀ M ⊗₀ F₀ P 𝒟.⇒ F₀ (M + P)
+ φ[M,P] = ⊗-homo.η (M , P)
+
+ φ[N+M,P] : F₀ (N + M) ⊗₀ F₀ P 𝒟.⇒ F₀ ((N + M) + P)
+ φ[N+M,P] = ⊗-homo.η (N + M , P)
+
+ φ[N,M] : F₀ N ⊗₀ F₀ M 𝒟.⇒ F₀ (N + M)
+ φ[N,M] = ⊗-homo.η (N , M)
+
+ φ[N,M+P] : F₀ N ⊗₀ F₀ (M + P) 𝒟.⇒ F₀ (N + (M + P))
+ φ[N,M+P] = ⊗-homo.η (N , M + P)
+
+ φ[Q,P] : F₀ Q ⊗₀ F₀ P 𝒟.⇒ F₀ (Q + P)
+ φ[Q,P] = ⊗-homo.η (Q , P)
+
+ s⊗[t⊗u] : unit 𝒟.⇒ F₀ N ⊗₀ (F₀ M ⊗₀ F₀ P)
s⊗[t⊗u] = s ⊗₁ (t ⊗₁ u ∘ ρ⇐) ∘ ρ⇐
+
+ [s⊗t]⊗u : unit 𝒟.⇒ (F₀ N ⊗₀ F₀ M) ⊗₀ F₀ P
[s⊗t]⊗u = (s ⊗₁ t ∘ ρ⇐) ⊗₁ u ∘ ρ⇐
- deco-assoc
- : F-l∘m ∘ F[w,x] ∘ φ-N,R ∘ s ⊗₁ (F[h,i] ∘ φ-M,P ∘ t ⊗₁ u ∘ ρ⇐) ∘ ρ⇐
- ≈ F[y,z] ∘ φ-Q,P ∘ (F[f,g] ∘ φ-N,M ∘ s ⊗₁ t ∘ ρ⇐) ⊗₁ u ∘ ρ⇐
- deco-assoc = begin
- F-l∘m ∘ F[w,x] ∘ φ-N,R ∘ s ⊗₁ (F[h,i] ∘ φ-M,P ∘ t ⊗₁ u ∘ ρ⇐) ∘ ρ⇐ ≈⟨ pullˡ refl ⟩
- (F-l∘m ∘ F[w,x]) ∘ φ-N,R ∘ s ⊗₁ (F[h,i] ∘ φ-M,P ∘ t ⊗₁ u ∘ ρ⇐) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ split₂ˡ ⟩∘⟨refl ⟩
- (F-l∘m ∘ F[w,x]) ∘ φ-N,R ∘ (id ⊗₁ F[h,i] ∘ s ⊗₁ (φ-M,P ∘ t ⊗₁ u ∘ ρ⇐)) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ (refl⟩∘⟨ split₂ˡ) ⟩∘⟨refl ⟩
- (F-l∘m ∘ F[w,x]) ∘ φ-N,R ∘ (id ⊗₁ F[h,i] ∘ id ⊗₁ φ-M,P ∘ s ⊗₁ (t ⊗₁ u ∘ ρ⇐)) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ assoc    ⟩
- (F-l∘m ∘ F[w,x]) ∘ φ-N,R ∘ id ⊗₁ F[h,i] ∘ (id ⊗₁ φ-M,P ∘ s ⊗₁ (t ⊗₁ u ∘ ρ⇐)) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ F-identity ⟩⊗⟨refl ⟩∘⟨ refl ⟨
- (F-l∘m ∘ F[w,x]) ∘ φ-N,R ∘ F₁ id′ ⊗₁ F[h,i] ∘ (id ⊗₁ φ-M,P ∘ s ⊗₁ (t ⊗₁ u ∘ ρ⇐)) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ (φ-commute (id′ , [ h , i ])) ⟩
- (F-l∘m ∘ F[w,x]) ∘ F-id+[h,i] ∘ φ-N,M+P ∘ (id ⊗₁ φ-M,P ∘ s ⊗₁ (t ⊗₁ u ∘ ρ⇐)) ∘ ρ⇐ ≈⟨ pullˡ assoc ⟩
- (F-l∘m ∘ F[w,x] ∘ F-id+[h,i]) ∘ φ-N,M+P ∘ (id ⊗₁ φ-M,P ∘ s ⊗₁ (t ⊗₁ u ∘ ρ⇐)) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ assoc ⟩
- (F-l∘m ∘ F[w,x] ∘ F-id+[h,i]) ∘ φ-N,M+P ∘ id ⊗₁ φ-M,P ∘ s⊗[t⊗u] ≈⟨ refl⟩∘⟨ sym-assoc ⟩
- (F-l∘m ∘ F[w,x] ∘ F-id+[h,i]) ∘ (φ-N,M+P ∘ id ⊗₁ φ-M,P) ∘ s⊗[t⊗u] ≈⟨ F-copairings ⟩∘⟨ coherences ⟩∘⟨ unitors ⟩
- (F[y,z] ∘ F-[f,g]+id ∘ F₁ +-α⇒) ∘ (F₁ +-α⇐ ∘ φ-N+M,P ∘ φ-N,M ⊗₁ id ∘ α⇐) ∘ α⇒ ∘ [s⊗t]⊗u ≈⟨ sym-assoc ⟩∘⟨ assoc ⟩
- ((F[y,z] ∘ F-[f,g]+id) ∘ F₁ +-α⇒) ∘ F₁ +-α⇐ ∘ (φ-N+M,P ∘ φ-N,M ⊗₁ id ∘ α⇐) ∘ α⇒ ∘ [s⊗t]⊗u ≈⟨ assoc ⟩
- (F[y,z] ∘ F-[f,g]+id) ∘ F₁ +-α⇒ ∘ F₁ +-α⇐ ∘ (φ-N+M,P ∘ φ-N,M ⊗₁ id ∘ α⇐) ∘ α⇒ ∘ [s⊗t]⊗u ≈⟨ refl⟩∘⟨ pushˡ homomorphism ⟨
- (F[y,z] ∘ F-[f,g]+id) ∘ F₁ (+-α⇒ ∘′ +-α⇐) ∘ (φ-N+M,P ∘ φ-N,M ⊗₁ id ∘ α⇐) ∘ α⇒ ∘ [s⊗t]⊗u ≈⟨ refl⟩∘⟨ F-resp-≈ +-assoc.isoʳ ⟩∘⟨refl ⟩
- (F[y,z] ∘ F-[f,g]+id) ∘ F₁ id′ ∘ (φ-N+M,P ∘ φ-N,M ⊗₁ id ∘ α⇐) ∘ α⇒ ∘ [s⊗t]⊗u ≈⟨ refl⟩∘⟨ F-identity ⟩∘⟨refl ⟩
- (F[y,z] ∘ F-[f,g]+id) ∘ id ∘ (φ-N+M,P ∘ φ-N,M ⊗₁ id ∘ α⇐) ∘ α⇒ ∘ [s⊗t]⊗u ≈⟨ refl⟩∘⟨ identityˡ ⟩
- (F[y,z] ∘ F-[f,g]+id) ∘ (φ-N+M,P ∘ φ-N,M ⊗₁ id ∘ α⇐) ∘ α⇒ ∘ [s⊗t]⊗u ≈⟨ refl⟩∘⟨ sym-assoc ⟩∘⟨refl ⟩
- (F[y,z] ∘ F-[f,g]+id) ∘ ((φ-N+M,P ∘ φ-N,M ⊗₁ id) ∘ α⇐) ∘ α⇒ ∘ [s⊗t]⊗u ≈⟨ refl⟩∘⟨ cancelInner α≅.isoˡ ⟩
- (F[y,z] ∘ F-[f,g]+id) ∘ (φ-N+M,P ∘ φ-N,M ⊗₁ id) ∘ [s⊗t]⊗u ≈⟨ refl⟩∘⟨ assoc ⟩
- (F[y,z] ∘ F-[f,g]+id) ∘ φ-N+M,P ∘ φ-N,M ⊗₁ id ∘ [s⊗t]⊗u ≈⟨ assoc ⟩
- F[y,z] ∘ F-[f,g]+id ∘ φ-N+M,P ∘ φ-N,M ⊗₁ id ∘ [s⊗t]⊗u ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ split₁ˡ ⟨
- F[y,z] ∘ F-[f,g]+id ∘ φ-N+M,P ∘ (φ-N,M ∘ s ⊗₁ t ∘ ρ⇐) ⊗₁ u ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ (φ-commute ([ f , g ] , id′)) ⟨
- F[y,z] ∘ φ-Q,P ∘ F[f,g] ⊗₁ F₁ id′ ∘ (φ-N,M ∘ s ⊗₁ t ∘ ρ⇐) ⊗₁ u ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩⊗⟨ F-identity ⟩∘⟨ refl ⟩
- F[y,z] ∘ φ-Q,P ∘ F[f,g] ⊗₁ id ∘ (φ-N,M ∘ s ⊗₁ t ∘ ρ⇐) ⊗₁ u ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ split₁ˡ ⟨
- F[y,z] ∘ φ-Q,P ∘ (F[f,g] ∘ φ-N,M ∘ s ⊗₁ t ∘ ρ⇐) ⊗₁ u ∘ ρ⇐ ∎
-
-compose-idʳ : {C : DecoratedCospan A B} → Same (compose identity C) C
+ abstract
+ F-copairings : F[l∘m] ∘ F[w,x] ∘ F[id+[h,i]] 𝒟.≈ F[y,z] ∘ F[[f,g]+id] ∘ F₁ +-assoc.from
+ F-copairings = begin
+ F[l∘m] ∘ F[w,x] ∘ F[id+[h,i]] ≈⟨ pushˡ homomorphism ⟨
+ F₁ ((l ∘′ m) ∘′ [ w , x ]) ∘ F[id+[h,i]] ≈⟨ [ F′ ]-resp-square copairings ⟩
+ F[y,z] ∘ F₁ (([ f , g ] +₁ id′) ∘′ +-assoc.from) ≈⟨ refl⟩∘⟨ homomorphism ⟩
+ F[y,z] ∘ F[[f,g]+id] ∘ F₁ +-assoc.from ∎
+
+ coherences : φ[N,M+P] ∘ id ⊗₁ φ[M,P] 𝒟.≈ F₁ +-assoc.to ∘ φ[N+M,P] ∘ φ[N,M] ⊗₁ id ∘ α⇐
+ coherences = begin
+ φ[N,M+P] ∘ id ⊗₁ φ[M,P] ≈⟨ refl⟩∘⟨ insertʳ 𝒟.associator.isoʳ ⟩
+ φ[N,M+P] ∘ (id ⊗₁ φ[M,P] ∘ α⇒) ∘ α⇐ ≈⟨ extendʳ associativity ⟨
+ F₁ +-assoc.to ∘ (φ[N+M,P] ∘ φ[N,M] ⊗₁ id) ∘ α⇐ ≈⟨ refl⟩∘⟨ assoc ⟩
+ F₁ +-assoc.to ∘ φ[N+M,P] ∘ φ[N,M] ⊗₁ id ∘ α⇐ ∎
+
+ triangle-to : α⇒ {𝒟.unit} {𝒟.unit} {𝒟.unit} ∘ ρ⇐ ⊗₁ id 𝒟.≈ id ⊗₁ λ⇐
+ triangle-to = begin
+ α⇒ ∘ ρ⇐ ⊗₁ id ≈⟨ pullˡ identityˡ ⟨
+ id ∘ α⇒ ∘ ρ⇐ ⊗₁ id ≈⟨ ⊗.identity ⟩∘⟨refl ⟨
+ id ⊗₁ id ∘ α⇒ ∘ ρ⇐ ⊗₁ id ≈⟨ refl⟩⊗⟨ 𝒟.unitorˡ.isoˡ ⟩∘⟨refl ⟨
+ id ⊗₁ (λ⇐ ∘ λ⇒) ∘ α⇒ ∘ ρ⇐ ⊗₁ id ≈⟨ identityʳ ⟩⊗⟨refl ⟩∘⟨refl ⟨
+ (id ∘ id) ⊗₁ (λ⇐ ∘ λ⇒) ∘ α⇒ ∘ ρ⇐ ⊗₁ id ≈⟨ pushˡ ⊗-distrib-over-∘ ⟩
+ id ⊗₁ λ⇐ ∘ id ⊗₁ λ⇒ ∘ α⇒ ∘ ρ⇐ ⊗₁ id ≈⟨ refl⟩∘⟨ pullˡ triangle ⟩
+ id ⊗₁ λ⇐ ∘ ρ⇒ ⊗₁ id ∘ ρ⇐ ⊗₁ id ≈⟨ refl⟩∘⟨ ⊗-distrib-over-∘ ⟨
+ id ⊗₁ λ⇐ ∘ (ρ⇒ ∘ ρ⇐) ⊗₁ (id ∘ id) ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ identityˡ ⟩
+ id ⊗₁ λ⇐ ∘ (ρ⇒ ∘ ρ⇐) ⊗₁ id ≈⟨ refl⟩∘⟨ 𝒟.unitorʳ.isoʳ ⟩⊗⟨refl ⟩
+ id ⊗₁ λ⇐ ∘ id ⊗₁ id ≈⟨ refl⟩∘⟨ ⊗.identity ⟩
+ id ⊗₁ λ⇐ ∘ id ≈⟨ identityʳ ⟩
+ id ⊗₁ λ⇐ ∎
+
+ unitors : s ⊗₁ (t ⊗₁ u ∘ ρ⇐) ∘ ρ⇐ 𝒟.≈ α⇒ ∘ (s ⊗₁ t ∘ ρ⇐) ⊗₁ u ∘ ρ⇐
+ unitors = begin
+ s ⊗₁ (t ⊗₁ u ∘ ρ⇐) ∘ ρ⇐ ≈⟨ pushˡ split₂ʳ ⟩
+ s ⊗₁ t ⊗₁ u ∘ id ⊗₁ ρ⇐ ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ λ₁≅ρ₁⇐ ⟩∘⟨refl ⟨
+ s ⊗₁ t ⊗₁ u ∘ id ⊗₁ λ⇐ ∘ ρ⇐ ≈⟨ refl⟩∘⟨ pullˡ triangle-to ⟨
+ s ⊗₁ t ⊗₁ u ∘ α⇒ ∘ ρ⇐ ⊗₁ id ∘ ρ⇐ ≈⟨ extendʳ assoc-commute-from ⟨
+ α⇒ ∘ (s ⊗₁ t) ⊗₁ u ∘ ρ⇐ ⊗₁ id ∘ ρ⇐ ≈⟨ refl⟩∘⟨ pushˡ split₁ʳ ⟨
+ α⇒ ∘ (s ⊗₁ t ∘ ρ⇐) ⊗₁ u ∘ ρ⇐ ∎
+
+ deco-assoc
+ : F[l∘m] ∘ (F[w,x] ∘ φ[N,R] ∘ s ⊗₁ (F[h,i] ∘ φ[M,P] ∘ t ⊗₁ u ∘ ρ⇐) ∘ ρ⇐)
+ 𝒟.≈ F[y,z] ∘ φ[Q,P] ∘ (F[f,g] ∘ φ[N,M] ∘ s ⊗₁ t ∘ ρ⇐) ⊗₁ u ∘ ρ⇐
+ deco-assoc = begin
+ F[l∘m] ∘ F[w,x] ∘ φ[N,R] ∘ s ⊗₁ (F[h,i] ∘ φ[M,P] ∘ t ⊗₁ u ∘ ρ⇐) ∘ ρ⇐ ≈⟨ pullˡ refl ⟩
+ (F[l∘m] ∘ F[w,x]) ∘ φ[N,R] ∘ s ⊗₁ (F[h,i] ∘ φ[M,P] ∘ t ⊗₁ u ∘ ρ⇐) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ split₂ˡ ⟩∘⟨refl ⟩
+ (F[l∘m] ∘ F[w,x]) ∘ φ[N,R] ∘ (id ⊗₁ F[h,i] ∘ s ⊗₁ (φ[M,P] ∘ t ⊗₁ u ∘ ρ⇐)) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ (refl⟩∘⟨ split₂ˡ) ⟩∘⟨refl ⟩
+ (F[l∘m] ∘ F[w,x]) ∘ φ[N,R] ∘ (id ⊗₁ F[h,i] ∘ id ⊗₁ φ[M,P] ∘ s ⊗₁ (t ⊗₁ u ∘ ρ⇐)) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ assoc ⟩
+ (F[l∘m] ∘ F[w,x]) ∘ φ[N,R] ∘ id ⊗₁ F[h,i] ∘ (id ⊗₁ φ[M,P] ∘ s ⊗₁ (t ⊗₁ u ∘ ρ⇐)) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ F-identity ⟩⊗⟨refl ⟩∘⟨refl ⟨
+ (F[l∘m] ∘ F[w,x]) ∘ φ[N,R] ∘ F₁ id′ ⊗₁ F[h,i] ∘ (id ⊗₁ φ[M,P] ∘ s ⊗₁ (t ⊗₁ u ∘ ρ⇐)) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ (⊗-homo.commute (id′ , [ h , i ])) ⟩
+ (F[l∘m] ∘ F[w,x]) ∘ F[id+[h,i]] ∘ φ[N,M+P] ∘ (id ⊗₁ φ[M,P] ∘ s ⊗₁ (t ⊗₁ u ∘ ρ⇐)) ∘ ρ⇐ ≈⟨ pullˡ assoc ⟩
+ (F[l∘m] ∘ F[w,x] ∘ F[id+[h,i]]) ∘ φ[N,M+P] ∘ (id ⊗₁ φ[M,P] ∘ s ⊗₁ (t ⊗₁ u ∘ ρ⇐)) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ assoc ⟩
+ (F[l∘m] ∘ F[w,x] ∘ F[id+[h,i]]) ∘ φ[N,M+P] ∘ id ⊗₁ φ[M,P] ∘ s⊗[t⊗u] ≈⟨ refl⟩∘⟨ sym-assoc ⟩
+ (F[l∘m] ∘ F[w,x] ∘ F[id+[h,i]]) ∘ (φ[N,M+P] ∘ id ⊗₁ φ[M,P]) ∘ s⊗[t⊗u] ≈⟨ F-copairings ⟩∘⟨ coherences ⟩∘⟨ unitors ⟩
+ (F[y,z] ∘ F[[f,g]+id] ∘ F₁ +-α⇒) ∘ (F₁ +-α⇐ ∘ φ[N+M,P] ∘ φ[N,M] ⊗₁ id ∘ α⇐) ∘ α⇒ ∘ [s⊗t]⊗u ≈⟨ sym-assoc ⟩∘⟨ assoc ⟩
+ ((F[y,z] ∘ F[[f,g]+id]) ∘ F₁ +-α⇒) ∘ F₁ +-α⇐ ∘ (φ[N+M,P] ∘ φ[N,M] ⊗₁ id ∘ α⇐) ∘ α⇒ ∘ [s⊗t]⊗u ≈⟨ assoc ⟩
+ (F[y,z] ∘ F[[f,g]+id]) ∘ F₁ +-α⇒ ∘ F₁ +-α⇐ ∘ (φ[N+M,P] ∘ φ[N,M] ⊗₁ id ∘ α⇐) ∘ α⇒ ∘ [s⊗t]⊗u ≈⟨ refl⟩∘⟨ pushˡ homomorphism ⟨
+ (F[y,z] ∘ F[[f,g]+id]) ∘ F₁ (+-α⇒ ∘′ +-α⇐) ∘ (φ[N+M,P] ∘ φ[N,M] ⊗₁ id ∘ α⇐) ∘ α⇒ ∘ [s⊗t]⊗u ≈⟨ refl⟩∘⟨ F-resp-≈ +-assoc.isoʳ ⟩∘⟨refl ⟩
+ (F[y,z] ∘ F[[f,g]+id]) ∘ F₁ id′ ∘ (φ[N+M,P] ∘ φ[N,M] ⊗₁ id ∘ α⇐) ∘ α⇒ ∘ [s⊗t]⊗u ≈⟨ refl⟩∘⟨ F-identity ⟩∘⟨refl ⟩
+ (F[y,z] ∘ F[[f,g]+id]) ∘ id ∘ (φ[N+M,P] ∘ φ[N,M] ⊗₁ id ∘ α⇐) ∘ α⇒ ∘ [s⊗t]⊗u ≈⟨ refl⟩∘⟨ identityˡ ⟩
+ (F[y,z] ∘ F[[f,g]+id]) ∘ (φ[N+M,P] ∘ φ[N,M] ⊗₁ id ∘ α⇐) ∘ α⇒ ∘ [s⊗t]⊗u ≈⟨ refl⟩∘⟨ sym-assoc ⟩∘⟨refl ⟩
+ (F[y,z] ∘ F[[f,g]+id]) ∘ ((φ[N+M,P] ∘ φ[N,M] ⊗₁ id) ∘ α⇐) ∘ α⇒ ∘ [s⊗t]⊗u ≈⟨ refl⟩∘⟨ cancelInner 𝒟.associator.isoˡ ⟩
+ (F[y,z] ∘ F[[f,g]+id]) ∘ (φ[N+M,P] ∘ φ[N,M] ⊗₁ id) ∘ [s⊗t]⊗u ≈⟨ refl⟩∘⟨ assoc ⟩
+ (F[y,z] ∘ F[[f,g]+id]) ∘ φ[N+M,P] ∘ φ[N,M] ⊗₁ id ∘ [s⊗t]⊗u ≈⟨ assoc ⟩
+ F[y,z] ∘ F[[f,g]+id] ∘ φ[N+M,P] ∘ φ[N,M] ⊗₁ id ∘ [s⊗t]⊗u ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ split₁ˡ ⟨
+ F[y,z] ∘ F[[f,g]+id] ∘ φ[N+M,P] ∘ (φ[N,M] ∘ s ⊗₁ t ∘ ρ⇐) ⊗₁ u ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ (⊗-homo.commute ([ f , g ] , id′)) ⟨
+ F[y,z] ∘ φ[Q,P] ∘ F[f,g] ⊗₁ F₁ id′ ∘ (φ[N,M] ∘ s ⊗₁ t ∘ ρ⇐) ⊗₁ u ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩⊗⟨ F-identity ⟩∘⟨refl ⟩
+ F[y,z] ∘ φ[Q,P] ∘ F[f,g] ⊗₁ id ∘ (φ[N,M] ∘ s ⊗₁ t ∘ ρ⇐) ⊗₁ u ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ split₁ˡ ⟨
+ F[y,z] ∘ φ[Q,P] ∘ (F[f,g] ∘ φ[N,M] ∘ s ⊗₁ t ∘ ρ⇐) ⊗₁ u ∘ ρ⇐ ∎
+
+compose-idʳ : {C : DecoratedCospan A B} → compose identity C ≈ C
compose-idʳ {A} {_} {C} = record
{ cospans-≈ = Cospans.compose-idʳ
; same-deco = deco-id
}
where
-
open DecoratedCospan C
-
- open 𝒞 using (pushout; [_,_]; ⊥; _+₁_; ¡)
-
+ open 𝒞 using (pushout; [_,_]; ⊥; _+₁_; ¡; _+_)
P = pushout 𝒞.id f₁
P′ = pushout-id-g {g = f₁}
≅P = up-to-iso P P′
-
open Morphism 𝒞.U using (_≅_)
module ≅P = _≅_ ≅P
-
open Pushout P
-
open 𝒞
using (cocartesian)
renaming (id to id′; _∘_ to _∘′_)
-
open CocartesianMonoidal 𝒞.U cocartesian using (⊥+A≅A)
-
module ⊥+A≅A {a} = _≅_ (⊥+A≅A {a})
-
module _ where
-
open 𝒞
using
( _⇒_ ; _∘_ ; _≈_ ; id ; U
@@ -374,17 +415,13 @@ compose-idʳ {A} {_} {C} = record
; ∘[] ; []∘+₁ ; inject₂ ; assoc
; module HomReasoning ; module Dual ; module Equiv
)
-
open Equiv
-
open Dual.op-binaryProducts cocartesian
using ()
renaming (⟨⟩-cong₂ to []-cong₂)
-
open ⇒-Reasoning U
open HomReasoning
-
- copairing-id : ((≅P.from ∘ [ i₁ , i₂ ]) ∘ (¡ +₁ id)) ∘ ⊥+A≅A.to ≈ id
+ copairing-id : ((≅P.from ∘ [ i₁ , i₂ ]) ∘ (¡ +₁ id)) ∘ ⊥+A≅A.to 𝒞.≈ id
copairing-id = begin
((≅P.from ∘ [ i₁ , i₂ ]) ∘ (¡ +₁ id)) ∘ ⊥+A≅A.to ≈⟨ assoc ⟩
(≅P.from ∘ [ i₁ , i₂ ]) ∘ (¡ +₁ id) ∘ ⊥+A≅A.to ≈⟨ assoc ⟩
@@ -394,62 +431,54 @@ compose-idʳ {A} {_} {C} = record
[ f₁ ∘ ¡ , id ∘ id ] ∘ ⊥+A≅A.to ≈⟨ []-cong₂ (sym (¡-unique (f₁ ∘ ¡))) identity² ⟩∘⟨refl ⟩
[ ¡ , id ] ∘ ⊥+A≅A.to ≈⟨ inject₂ ⟩
id ∎
-
module _ where
-
open 𝒟
using
( id ; _∘_ ; _≈_ ; _⇒_ ; U
; assoc ; sym-assoc; identityˡ
- ; monoidal ; _⊗₁_ ; unit ; unitorˡ ; unitorʳ
+ ; monoidal ; _⊗₀_; _⊗₁_ ; unit ; unitorˡ ; unitorʳ
)
-
open ⊗-Reasoning monoidal
open ⇒-Reasoning U
-
- φ = ⊗-homo.η
- φ-commute = ⊗-homo.commute
-
- module λ≅ = unitorˡ
- λ⇒ = λ≅.from
- λ⇐ = unitorˡ.to
- ρ⇐ = unitorʳ.to
-
- open Coherence monoidal using (λ₁≅ρ₁⇐)
+ open ⊗-Util 𝒟.monoidal using (module Shorthands)
+ open Shorthands using (λ⇒; λ⇐; ρ⇐)
+ open Coherence 𝒟.monoidal using (λ₁≅ρ₁⇐)
open 𝒟.Equiv
-
s : unit ⇒ F₀ N
s = decoration
-
- cohere-s : φ (⊥ , N) ∘ (ε ⊗₁ s) ∘ ρ⇐ ≈ F₁ ⊥+A≅A.to ∘ s
- cohere-s = begin
- φ (⊥ , N) ∘ (ε ⊗₁ s) ∘ ρ⇐ ≈⟨ identityˡ ⟨
- id ∘ φ (⊥ , N) ∘ (ε ⊗₁ s) ∘ ρ⇐ ≈⟨ F-identity ⟩∘⟨refl ⟨
- F₁ id′ ∘ φ (⊥ , N) ∘ (ε ⊗₁ s) ∘ ρ⇐ ≈⟨ F-resp-≈ ⊥+A≅A.isoˡ ⟩∘⟨refl ⟨
- F₁ (⊥+A≅A.to ∘′ ⊥+A≅A.from) ∘ φ (⊥ , N) ∘ (ε ⊗₁ s) ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟩
- F₁ ⊥+A≅A.to ∘ F₁ ⊥+A≅A.from ∘ φ (⊥ , N) ∘ (ε ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ serialize₁₂ ⟩
- F₁ ⊥+A≅A.to ∘ F₁ ⊥+A≅A.from ∘ φ (⊥ , N) ∘ (ε ⊗₁ id) ∘ (id ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ sym-assoc ⟩
- F₁ ⊥+A≅A.to ∘ F₁ ⊥+A≅A.from ∘ (φ (⊥ , N) ∘ (ε ⊗₁ id)) ∘ (id ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ pullˡ unitaryˡ ⟩
- F₁ ⊥+A≅A.to ∘ λ⇒ ∘ (id ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ λ₁≅ρ₁⇐ ⟨
- F₁ ⊥+A≅A.to ∘ λ⇒ ∘ (id ⊗₁ s) ∘ λ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ 𝒟.unitorˡ-commute-to ⟨
- F₁ ⊥+A≅A.to ∘ λ⇒ ∘ λ⇐ ∘ s ≈⟨ refl⟩∘⟨ cancelˡ λ≅.isoʳ ⟩
- F₁ ⊥+A≅A.to ∘ s ∎
-
- deco-id : F₁ ≅P.from ∘ F₁ [ i₁ , i₂ ] ∘ φ (A , N) ∘ (F₁ ¡ ∘ ε) ⊗₁ s ∘ ρ⇐ ≈ s
- deco-id = begin
- F₁ ≅P.from ∘ F₁ [ i₁ , i₂ ] ∘ φ (A , N) ∘ (F₁ ¡ ∘ ε) ⊗₁ s ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟨
- F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ (A , N) ∘ (F₁ ¡ ∘ ε) ⊗₁ s ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ split₁ˡ ⟩
- F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ (A , N) ∘ (F₁ ¡ ⊗₁ id) ∘ (ε ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩⊗⟨ F-identity ⟩∘⟨refl ⟨
- F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ (A , N) ∘ (F₁ ¡ ⊗₁ F₁ id′) ∘ (ε ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ (φ-commute (¡ , id′)) ⟩
- F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ F₁ (¡ +₁ id′) ∘ φ (⊥ , N) ∘ (ε ⊗₁ s) ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟨
- F₁ ((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (¡ +₁ id′)) ∘ φ (⊥ , N) ∘ (ε ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ cohere-s ⟩
- F₁ ((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (¡ +₁ id′)) ∘ F₁ ⊥+A≅A.to ∘ s ≈⟨ pushˡ homomorphism ⟨
- F₁ (((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (¡ +₁ id′)) ∘′ ⊥+A≅A.to) ∘ s ≈⟨ F-resp-≈ copairing-id ⟩∘⟨refl ⟩
- F₁ id′ ∘ s ≈⟨ F-identity ⟩∘⟨refl ⟩
- id ∘ s ≈⟨ identityˡ ⟩
- s ∎
-
-compose-idˡ : {C : DecoratedCospan A B} → Same (compose C identity) C
+ φ[⊥,N] : F₀ ⊥ ⊗₀ F₀ N ⇒ F₀ (⊥ + N)
+ φ[⊥,N] = ⊗-homo.η (⊥ , N)
+ φ[A,N] : F₀ A ⊗₀ F₀ N ⇒ F₀ (A + N)
+ φ[A,N] = ⊗-homo.η (A , N)
+ abstract
+ cohere-s : φ[⊥,N] ∘ ε ⊗₁ s ∘ ρ⇐ 𝒟.≈ F₁ ⊥+A≅A.to ∘ s
+ cohere-s = begin
+ φ[⊥,N] ∘ ε ⊗₁ s ∘ ρ⇐ ≈⟨ identityˡ ⟨
+ id ∘ φ[⊥,N] ∘ ε ⊗₁ s ∘ ρ⇐ ≈⟨ F-identity ⟩∘⟨refl ⟨
+ F₁ id′ ∘ φ[⊥,N] ∘ ε ⊗₁ s ∘ ρ⇐ ≈⟨ F-resp-≈ ⊥+A≅A.isoˡ ⟩∘⟨refl ⟨
+ F₁ (⊥+A≅A.to ∘′ ⊥+A≅A.from) ∘ φ[⊥,N] ∘ ε ⊗₁ s ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟩
+ F₁ ⊥+A≅A.to ∘ F₁ ⊥+A≅A.from ∘ φ[⊥,N] ∘ ε ⊗₁ s ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ serialize₁₂ ⟩
+ F₁ ⊥+A≅A.to ∘ F₁ ⊥+A≅A.from ∘ φ[⊥,N] ∘ ε ⊗₁ id ∘ id ⊗₁ s ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ sym-assoc ⟩
+ F₁ ⊥+A≅A.to ∘ F₁ ⊥+A≅A.from ∘ (φ[⊥,N] ∘ ε ⊗₁ id) ∘ id ⊗₁ s ∘ ρ⇐ ≈⟨ refl⟩∘⟨ pullˡ unitaryˡ ⟩
+ F₁ ⊥+A≅A.to ∘ λ⇒ ∘ id ⊗₁ s ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ λ₁≅ρ₁⇐ ⟨
+ F₁ ⊥+A≅A.to ∘ λ⇒ ∘ id ⊗₁ s ∘ λ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ 𝒟.unitorˡ-commute-to ⟨
+ F₁ ⊥+A≅A.to ∘ λ⇒ ∘ λ⇐ ∘ s ≈⟨ refl⟩∘⟨ cancelˡ 𝒟.unitorˡ.isoʳ ⟩
+ F₁ ⊥+A≅A.to ∘ s ∎
+ deco-id : F₁ ≅P.from ∘ F₁ [ i₁ , i₂ ] ∘ φ[A,N] ∘ (F₁ ¡ ∘ ε) ⊗₁ s ∘ ρ⇐ 𝒟.≈ s
+ deco-id = begin
+ F₁ ≅P.from ∘ F₁ [ i₁ , i₂ ] ∘ φ[A,N] ∘ (F₁ ¡ ∘ ε) ⊗₁ s ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟨
+ F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ[A,N] ∘ (F₁ ¡ ∘ ε) ⊗₁ s ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ split₁ˡ ⟩
+ F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ[A,N] ∘ (F₁ ¡ ⊗₁ id) ∘ (ε ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩⊗⟨ F-identity ⟩∘⟨refl ⟨
+ F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ[A,N] ∘ (F₁ ¡ ⊗₁ F₁ id′) ∘ (ε ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ (⊗-homo.commute (¡ , id′)) ⟩
+ F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ F₁ (¡ +₁ id′) ∘ φ[⊥,N] ∘ (ε ⊗₁ s) ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟨
+ F₁ ((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (¡ +₁ id′)) ∘ φ[⊥,N] ∘ (ε ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ cohere-s ⟩
+ F₁ ((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (¡ +₁ id′)) ∘ F₁ ⊥+A≅A.to ∘ s ≈⟨ pushˡ homomorphism ⟨
+ F₁ (((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (¡ +₁ id′)) ∘′ ⊥+A≅A.to) ∘ s ≈⟨ F-resp-≈ copairing-id ⟩∘⟨refl ⟩
+ F₁ id′ ∘ s ≈⟨ F-identity ⟩∘⟨refl ⟩
+ id ∘ s ≈⟨ identityˡ ⟩
+ s ∎
+
+compose-idˡ : {C : DecoratedCospan A B} → compose C identity ≈ C
compose-idˡ {_} {B} {C} = record
{ cospans-≈ = Cospans.compose-idˡ
; same-deco = deco-id
@@ -497,7 +526,7 @@ compose-idˡ {_} {B} {C} = record
open ⇒-Reasoning U
open HomReasoning
- copairing-id : ((≅P.from ∘ [ i₁ , i₂ ]) ∘ (id +₁ ¡)) ∘ A+⊥≅A.to ≈ id
+ copairing-id : ((≅P.from ∘ [ i₁ , i₂ ]) ∘ (id +₁ ¡)) ∘ A+⊥≅A.to 𝒞.≈ id
copairing-id = begin
((≅P.from ∘ [ i₁ , i₂ ]) ∘ (id +₁ ¡)) ∘ A+⊥≅A.to ≈⟨ assoc ⟩
(≅P.from ∘ [ i₁ , i₂ ]) ∘ (id +₁ ¡) ∘ A+⊥≅A.to ≈⟨ assoc ⟩
@@ -510,11 +539,12 @@ compose-idˡ {_} {B} {C} = record
module _ where
+ open 𝒞 using (_+_)
open 𝒟
using
( id ; _∘_ ; _≈_ ; _⇒_ ; U
; assoc ; sym-assoc; identityˡ
- ; monoidal ; _⊗₁_ ; unit ; unitorˡ ; unitorʳ
+ ; monoidal ; _⊗₀_; _⊗₁_ ; unit ; unitorˡ ; unitorʳ
; unitorʳ-commute-to
; module Equiv
)
@@ -523,129 +553,146 @@ compose-idˡ {_} {B} {C} = record
open ⊗-Reasoning monoidal
open ⇒-Reasoning U
- φ = ⊗-homo.η
- φ-commute = ⊗-homo.commute
+ φ[N,⊥] : F₀ N ⊗₀ F₀ ⊥ 𝒟.⇒ F₀ (N + ⊥)
+ φ[N,⊥] = ⊗-homo.η (N , ⊥)
- module ρ≅ = unitorʳ
- ρ⇒ = ρ≅.from
- ρ⇐ = ρ≅.to
+ φ[N,B] : F₀ N ⊗₀ F₀ B 𝒟.⇒ F₀ (N + B)
+ φ[N,B] = ⊗-homo.η (N , B)
s : unit ⇒ F₀ N
s = decoration
- cohere-s : φ (N , ⊥) ∘ (s ⊗₁ ε) ∘ ρ⇐ ≈ F₁ A+⊥≅A.to ∘ s
- cohere-s = begin
- φ (N , ⊥) ∘ (s ⊗₁ ε) ∘ ρ⇐ ≈⟨ identityˡ ⟨
- id ∘ φ (N , ⊥) ∘ (s ⊗₁ ε) ∘ ρ⇐ ≈⟨ F-identity ⟩∘⟨refl ⟨
- F₁ id′ ∘ φ (N , ⊥) ∘ (s ⊗₁ ε) ∘ ρ⇐ ≈⟨ F-resp-≈ A+⊥≅A.isoˡ ⟩∘⟨refl ⟨
- F₁ (A+⊥≅A.to ∘′ A+⊥≅A.from) ∘ φ (N , ⊥) ∘ (s ⊗₁ ε) ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟩
- F₁ A+⊥≅A.to ∘ F₁ A+⊥≅A.from ∘ φ (N , ⊥) ∘ (s ⊗₁ ε) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ serialize₂₁ ⟩
- F₁ A+⊥≅A.to ∘ F₁ A+⊥≅A.from ∘ φ (N , ⊥) ∘ (id ⊗₁ ε) ∘ (s ⊗₁ id) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ sym-assoc ⟩
- F₁ A+⊥≅A.to ∘ F₁ A+⊥≅A.from ∘ (φ (N , ⊥) ∘ (id ⊗₁ ε)) ∘ (s ⊗₁ id) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ pullˡ unitaryʳ ⟩
- F₁ A+⊥≅A.to ∘ ρ⇒ ∘ (s ⊗₁ id) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ unitorʳ-commute-to ⟨
- F₁ A+⊥≅A.to ∘ ρ⇒ ∘ ρ⇐ ∘ s ≈⟨ refl⟩∘⟨ cancelˡ ρ≅.isoʳ ⟩
- F₁ A+⊥≅A.to ∘ s ∎
-
- deco-id : F₁ ≅P.from ∘ F₁ [ i₁ , i₂ ] ∘ φ (N , B) ∘ s ⊗₁ (F₁ ¡ ∘ ε) ∘ ρ⇐ ≈ s
- deco-id = begin
- F₁ ≅P.from ∘ F₁ [ i₁ , i₂ ] ∘ φ (N , B) ∘ s ⊗₁ (F₁ ¡ ∘ ε) ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟨
- F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ (N , B) ∘ s ⊗₁ (F₁ ¡ ∘ ε) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ split₂ˡ ⟩
- F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ (N , B) ∘ (id ⊗₁ F₁ ¡) ∘ (s ⊗₁ ε) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ F-identity ⟩⊗⟨refl ⟩∘⟨refl ⟨
- F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ (N , B) ∘ (F₁ id′ ⊗₁ F₁ ¡) ∘ (s ⊗₁ ε) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ (φ-commute (id′ , ¡)) ⟩
- F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ F₁ (id′ +₁ ¡) ∘ φ (N , ⊥) ∘ (s ⊗₁ ε) ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟨
- F₁ ((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (id′ +₁ ¡)) ∘ φ (N , ⊥) ∘ (s ⊗₁ ε) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ cohere-s ⟩
- F₁ ((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (id′ +₁ ¡)) ∘ F₁ A+⊥≅A.to ∘ s ≈⟨ pushˡ homomorphism ⟨
- F₁ (((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (id′ +₁ ¡)) ∘′ A+⊥≅A.to) ∘ s ≈⟨ F-resp-≈ copairing-id ⟩∘⟨refl ⟩
- F₁ id′ ∘ s ≈⟨ F-identity ⟩∘⟨refl ⟩
- id ∘ s ≈⟨ identityˡ ⟩
- s ∎
-
-compose-id² : Same {A} (compose identity identity) identity
+ open ⊗-Util 𝒟.monoidal using (module Shorthands)
+ open Shorthands using (α⇒; α⇐; λ⇒; λ⇐; ρ⇒; ρ⇐)
+
+ abstract
+ cohere-s : φ[N,⊥] ∘ s ⊗₁ ε ∘ ρ⇐ 𝒟.≈ F₁ A+⊥≅A.to ∘ s
+ cohere-s = begin
+ φ[N,⊥] ∘ s ⊗₁ ε ∘ ρ⇐ ≈⟨ identityˡ ⟨
+ id ∘ φ[N,⊥] ∘ s ⊗₁ ε ∘ ρ⇐ ≈⟨ F-identity ⟩∘⟨refl ⟨
+ F₁ id′ ∘ φ[N,⊥] ∘ (s ⊗₁ ε) ∘ ρ⇐ ≈⟨ F-resp-≈ A+⊥≅A.isoˡ ⟩∘⟨refl ⟨
+ F₁ (A+⊥≅A.to ∘′ A+⊥≅A.from) ∘ φ[N,⊥] ∘ s ⊗₁ ε ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟩
+ F₁ A+⊥≅A.to ∘ F₁ A+⊥≅A.from ∘ φ[N,⊥] ∘ s ⊗₁ ε ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ serialize₂₁ ⟩
+ F₁ A+⊥≅A.to ∘ F₁ A+⊥≅A.from ∘ φ[N,⊥] ∘ id ⊗₁ ε ∘ s ⊗₁ id ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ sym-assoc ⟩
+ F₁ A+⊥≅A.to ∘ F₁ A+⊥≅A.from ∘ (φ[N,⊥] ∘ id ⊗₁ ε) ∘ s ⊗₁ id ∘ ρ⇐ ≈⟨ refl⟩∘⟨ pullˡ unitaryʳ ⟩
+ F₁ A+⊥≅A.to ∘ ρ⇒ ∘ s ⊗₁ id ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ unitorʳ-commute-to ⟨
+ F₁ A+⊥≅A.to ∘ ρ⇒ ∘ ρ⇐ ∘ s ≈⟨ refl⟩∘⟨ cancelˡ unitorʳ.isoʳ ⟩
+ F₁ A+⊥≅A.to ∘ s ∎
+
+ deco-id : F₁ ≅P.from ∘ F₁ [ i₁ , i₂ ] ∘ φ[N,B] ∘ s ⊗₁ (F₁ ¡ ∘ ε) ∘ ρ⇐ 𝒟.≈ s
+ deco-id = begin
+ F₁ ≅P.from ∘ F₁ [ i₁ , i₂ ] ∘ φ[N,B] ∘ s ⊗₁ (F₁ ¡ ∘ ε) ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟨
+ F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ[N,B] ∘ s ⊗₁ (F₁ ¡ ∘ ε) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ split₂ˡ ⟩
+ F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ[N,B] ∘ id ⊗₁ F₁ ¡ ∘ s ⊗₁ ε ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ F-identity ⟩⊗⟨refl ⟩∘⟨refl ⟨
+ F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ[N,B] ∘ F₁ id′ ⊗₁ F₁ ¡ ∘ s ⊗₁ ε ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ (⊗-homo.commute (id′ , ¡)) ⟩
+ F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ F₁ (id′ +₁ ¡) ∘ φ[N,⊥] ∘ s ⊗₁ ε ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟨
+ F₁ ((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (id′ +₁ ¡)) ∘ φ[N,⊥] ∘ s ⊗₁ ε ∘ ρ⇐ ≈⟨ refl⟩∘⟨ cohere-s ⟩
+ F₁ ((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (id′ +₁ ¡)) ∘ F₁ A+⊥≅A.to ∘ s ≈⟨ pushˡ homomorphism ⟨
+ F₁ (((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (id′ +₁ ¡)) ∘′ A+⊥≅A.to) ∘ s ≈⟨ F-resp-≈ copairing-id ⟩∘⟨refl ⟩
+ F₁ id′ ∘ s ≈⟨ F-identity ⟩∘⟨refl ⟩
+ id ∘ s ≈⟨ identityˡ ⟩
+ s ∎
+
+compose-id² : compose identity identity ≈ identity {A}
compose-id² = compose-idˡ
compose-equiv
: {c₂ c₂′ : DecoratedCospan B C}
{c₁ c₁′ : DecoratedCospan A B}
- → Same c₂ c₂′
- → Same c₁ c₁′
- → Same (compose c₁ c₂) (compose c₁′ c₂′)
+ → c₂ ≈ c₂′
+ → c₁ ≈ c₁′
+ → compose c₁ c₂ ≈ (compose c₁′ c₂′)
compose-equiv {_} {_} {_} {c₂} {c₂′} {c₁} {c₁′} ≅C₂ ≅C₁ = record
{ cospans-≈ = ≅C₂∘C₁
; same-deco = F≅N∘C₂∘C₁≈C₂′∘C₁′
}
where
- module ≅C₁ = Same ≅C₁
- module ≅C₂ = Same ≅C₂
+ module ≅C₁ = _≈_ ≅C₁
+ module ≅C₂ = _≈_ ≅C₂
module C₁ = DecoratedCospan c₁
module C₁′ = DecoratedCospan c₁′
module C₂ = DecoratedCospan c₂
module C₂′ = DecoratedCospan c₂′
≅C₂∘C₁ = Cospans.compose-equiv ≅C₂.cospans-≈ ≅C₁.cospans-≈
- module ≅C₂∘C₁ = Cospans.Same ≅C₂∘C₁
+ module ≅C₂∘C₁ = Cospan._≈_ ≅C₂∘C₁
P = 𝒞.pushout C₁.f₂ C₂.f₁
P′ = 𝒞.pushout C₁′.f₂ C₂′.f₁
module P = Pushout P
module P′ = Pushout P′
- s = C₁.decoration
- t = C₂.decoration
- s′ = C₁′.decoration
- t′ = C₂′.decoration
+ N M N′ M′ : 𝒞.Obj
N = C₁.N
M = C₂.N
N′ = C₁′.N
M′ = C₂′.N
- φ = ⊗-homo.η
- φ-commute = ⊗-homo.commute
+ s : 𝒟.unit 𝒟.⇒ F₀ N
+ s = C₁.decoration
+ t : 𝒟.unit 𝒟.⇒ F₀ M
+ t = C₂.decoration
+
+ s′ : 𝒟.unit 𝒟.⇒ F₀ N′
+ s′ = C₁′.decoration
+
+ t′ : 𝒟.unit 𝒟.⇒ F₀ M′
+ t′ = C₂′.decoration
+
+ Q⇒ : ≅C₂∘C₁.C.N 𝒞.⇒ ≅C₂∘C₁.D.N
Q⇒ = ≅C₂∘C₁.≅N.from
+
+ N⇒ : ≅C₁.C.N 𝒞.⇒ ≅C₁.D.N
N⇒ = ≅C₁.≅N.from
+
+ M⇒ : ≅C₂.C.N 𝒞.⇒ ≅C₂.D.N
M⇒ = ≅C₂.≅N.from
module _ where
- ρ⇒ = 𝒟.unitorʳ.from
- ρ⇐ = 𝒟.unitorʳ.to
+ open ⊗-Util 𝒟.monoidal using (module Shorthands)
+ open Shorthands using (ρ⇒; ρ⇐)
- open 𝒞 using ([_,_]; ∘[]; _+₁_; []∘+₁) renaming (_∘_ to _∘′_)
+ open 𝒞 using ([_,_]; ∘[]; _+_; _+₁_; []∘+₁) renaming (_∘_ to _∘′_)
open 𝒞.Dual.op-binaryProducts 𝒞.cocartesian
using ()
renaming (⟨⟩-cong₂ to []-cong₂)
open 𝒟
+ φ[N,M] : F₀ N ⊗₀ F₀ M 𝒟.⇒ F₀ (N + M)
+ φ[N,M] = ⊗-homo.η (N , M)
+
+ φ[N′,M′] : F₀ N′ ⊗₀ F₀ M′ 𝒟.⇒ F₀ (N′ + M′)
+ φ[N′,M′] = ⊗-homo.η (N′ , M′)
+
open ⊗-Reasoning monoidal
open ⇒-Reasoning U
- F≅N∘C₂∘C₁≈C₂′∘C₁′ : F₁ Q⇒ ∘ F₁ [ P.i₁ , P.i₂ ] ∘ φ (N , M) ∘ s ⊗₁ t ∘ ρ⇐ ≈ F₁ [ P′.i₁ , P′.i₂ ] ∘ φ (N′ , M′) ∘ s′ ⊗₁ t′ ∘ ρ⇐
- F≅N∘C₂∘C₁≈C₂′∘C₁′ = begin
- F₁ Q⇒ ∘ F₁ [ P.i₁ , P.i₂ ] ∘ φ (N , M) ∘ s ⊗₁ t ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟨
- F₁ (Q⇒ ∘′ [ P.i₁ , P.i₂ ]) ∘ φ (N , M) ∘ s ⊗₁ t ∘ ρ⇐ ≈⟨ F-resp-≈ ∘[] ⟩∘⟨refl ⟩
- F₁ ([ Q⇒ ∘′ P.i₁ , Q⇒ ∘′ P.i₂ ]) ∘ φ (N , M) ∘ s ⊗₁ t ∘ ρ⇐ ≈⟨ F-resp-≈ ([]-cong₂ P.universal∘i₁≈h₁ P.universal∘i₂≈h₂) ⟩∘⟨refl ⟩
- F₁ ([ P′.i₁ ∘′ N⇒ , P′.i₂ ∘′ M⇒ ]) ∘ φ (N , M) ∘ s ⊗₁ t ∘ ρ⇐ ≈⟨ F-resp-≈ []∘+₁ ⟩∘⟨refl ⟨
- F₁ ([ P′.i₁ , P′.i₂ ] ∘′ (N⇒ +₁ M⇒)) ∘ φ (N , M) ∘ s ⊗₁ t ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟩
- F₁ [ P′.i₁ , P′.i₂ ] ∘ F₁ (N⇒ +₁ M⇒) ∘ φ (N , M) ∘ s ⊗₁ t ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ (φ-commute (N⇒ , M⇒)) ⟨
- F₁ [ P′.i₁ , P′.i₂ ] ∘ φ (N′ , M′) ∘ F₁ N⇒ ⊗₁ F₁ M⇒ ∘ s ⊗₁ t ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ ⊗-distrib-over-∘ ⟨
- F₁ [ P′.i₁ , P′.i₂ ] ∘ φ (N′ , M′) ∘ (F₁ N⇒ ∘ s) ⊗₁ (F₁ M⇒ ∘ t) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ ≅C₁.same-deco ⟩⊗⟨ ≅C₂.same-deco ⟩∘⟨refl ⟩
- F₁ [ P′.i₁ , P′.i₂ ] ∘ φ (N′ , M′) ∘ s′ ⊗₁ t′ ∘ ρ⇐ ∎
+ abstract
+ F≅N∘C₂∘C₁≈C₂′∘C₁′ : F₁ Q⇒ ∘ F₁ [ P.i₁ , P.i₂ ] ∘ φ[N,M] ∘ s ⊗₁ t ∘ ρ⇐ 𝒟.≈ F₁ [ P′.i₁ , P′.i₂ ] ∘ φ[N′,M′] ∘ s′ ⊗₁ t′ ∘ ρ⇐
+ F≅N∘C₂∘C₁≈C₂′∘C₁′ = begin
+ F₁ Q⇒ ∘ F₁ [ P.i₁ , P.i₂ ] ∘ φ[N,M] ∘ s ⊗₁ t ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟨
+ F₁ (Q⇒ ∘′ [ P.i₁ , P.i₂ ]) ∘ φ[N,M] ∘ s ⊗₁ t ∘ ρ⇐ ≈⟨ F-resp-≈ ∘[] ⟩∘⟨refl ⟩
+ F₁ ([ Q⇒ ∘′ P.i₁ , Q⇒ ∘′ P.i₂ ]) ∘ φ[N,M] ∘ s ⊗₁ t ∘ ρ⇐ ≈⟨ F-resp-≈ ([]-cong₂ P.universal∘i₁≈h₁ P.universal∘i₂≈h₂) ⟩∘⟨refl ⟩
+ F₁ ([ P′.i₁ ∘′ N⇒ , P′.i₂ ∘′ M⇒ ]) ∘ φ[N,M] ∘ s ⊗₁ t ∘ ρ⇐ ≈⟨ F-resp-≈ []∘+₁ ⟩∘⟨refl ⟨
+ F₁ ([ P′.i₁ , P′.i₂ ] ∘′ (N⇒ +₁ M⇒)) ∘ φ[N,M] ∘ s ⊗₁ t ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟩
+ F₁ [ P′.i₁ , P′.i₂ ] ∘ F₁ (N⇒ +₁ M⇒) ∘ φ[N,M] ∘ s ⊗₁ t ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ (⊗-homo.commute (N⇒ , M⇒)) ⟨
+ F₁ [ P′.i₁ , P′.i₂ ] ∘ φ[N′,M′] ∘ F₁ N⇒ ⊗₁ F₁ M⇒ ∘ s ⊗₁ t ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ ⊗-distrib-over-∘ ⟨
+ F₁ [ P′.i₁ , P′.i₂ ] ∘ φ[N′,M′] ∘ (F₁ N⇒ ∘ s) ⊗₁ (F₁ M⇒ ∘ t) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ ≅C₁.same-deco ⟩⊗⟨ ≅C₂.same-deco ⟩∘⟨refl ⟩
+ F₁ [ P′.i₁ , P′.i₂ ] ∘ φ[N′,M′] ∘ s′ ⊗₁ t′ ∘ ρ⇐ ∎
DecoratedCospans : Category o (o ⊔ ℓ ⊔ ℓ′) (ℓ ⊔ e ⊔ e′)
DecoratedCospans = record
{ Obj = 𝒞.Obj
; _⇒_ = DecoratedCospan
- ; _≈_ = Same
+ ; _≈_ = _≈_
; id = identity
; _∘_ = flip compose
; assoc = compose-assoc
- ; sym-assoc = same-sym (compose-assoc)
+ ; sym-assoc = ≈-sym compose-assoc
; identityˡ = compose-idˡ
; identityʳ = compose-idʳ
; identity² = compose-id²
- ; equiv = record
- { refl = same-refl
- ; sym = same-sym
- ; trans = same-trans
- }
+ ; equiv = ≈-equiv
; ∘-resp-≈ = compose-equiv
}
diff --git a/Category/Instance/FinitelyCocompletes.agda b/Category/Instance/FinitelyCocompletes.agda
index 0847165..9bee58e 100644
--- a/Category/Instance/FinitelyCocompletes.agda
+++ b/Category/Instance/FinitelyCocompletes.agda
@@ -1,29 +1,31 @@
{-# OPTIONS --without-K --safe #-}
-open import Level using (Level)
+
+open import Level using (Level; suc; _⊔_)
+
module Category.Instance.FinitelyCocompletes {o ℓ e : Level} where
+import Category.Instance.One.Properties as OneProps
+
open import Categories.Category using (_[_,_])
open import Categories.Category.BinaryProducts using (BinaryProducts)
open import Categories.Category.Cartesian using (Cartesian)
-open import Categories.Category.Helper using (categoryHelper)
-open import Categories.Category.Monoidal.Instance.Cats using () renaming (module Product to Products)
open import Categories.Category.Core using (Category)
+open import Categories.Category.Helper using (categoryHelper)
open import Categories.Category.Instance.Cats using (Cats)
open import Categories.Category.Instance.One using (One; One-⊤)
+open import Categories.Category.Monoidal.Instance.Cats using () renaming (module Product to Products)
open import Categories.Category.Product using (πˡ; πʳ; _※_; _⁂_) renaming (Product to ProductCat)
open import Categories.Diagram.Coequalizer using (IsCoequalizer)
open import Categories.Functor using (Functor) renaming (id to idF)
+open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_; associator; unitorˡ; unitorʳ; module ≃; _ⓘₕ_)
open import Categories.Object.Coproduct using (IsCoproduct)
open import Categories.Object.Initial using (IsInitial)
open import Categories.Object.Product.Core using (Product)
-open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_; associator; unitorˡ; unitorʳ; module ≃; _ⓘₕ_)
open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)
open import Category.Cocomplete.Finitely.Product using (FinitelyCocomplete-×)
-open import Category.Instance.One.Properties using (One-FinitelyCocomplete)
open import Data.Product.Base using (_,_; proj₁; proj₂; map; dmap; zip′)
-open import Functor.Exact using (∘-RightExactFunctor; RightExactFunctor; idREF; IsRightExact; rightexact)
open import Function.Base using (id; flip)
-open import Level using (Level; suc; _⊔_)
+open import Functor.Exact using (∘-RightExactFunctor; RightExactFunctor; idREF; IsRightExact; rightexact)
FinitelyCocompletes : Category (suc (o ⊔ ℓ ⊔ e)) (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e)
FinitelyCocompletes = categoryHelper record
@@ -48,7 +50,7 @@ FinitelyCocompletes = categoryHelper record
One-FCC : FinitelyCocompleteCategory o ℓ e
One-FCC = record
{ U = One
- ; finCo = One-FinitelyCocomplete
+ ; finCo = OneProps.finitelyCocomplete
}
_×_
diff --git a/Category/Instance/One/Properties.agda b/Category/Instance/One/Properties.agda
index 1452669..c6261bb 100644
--- a/Category/Instance/One/Properties.agda
+++ b/Category/Instance/One/Properties.agda
@@ -8,7 +8,7 @@ open import Categories.Category.Core using (Category)
open import Categories.Category.Instance.One using () renaming (One to One′)
One : Category o ℓ e
-One = One′
+One = One′ {o} {ℓ} {e}
open import Categories.Category.Cocartesian One using (Cocartesian)
open import Categories.Category.Cocomplete.Finitely One using (FinitelyCocomplete)
@@ -16,20 +16,20 @@ open import Categories.Object.Initial One using (Initial)
open import Categories.Category.Cocartesian One using (BinaryCoproducts)
-One-Initial : Initial
-One-Initial = _
+initial : Initial
+initial = _
-One-BinaryCoproducts : BinaryCoproducts
-One-BinaryCoproducts = _
+coproducts : BinaryCoproducts
+coproducts = _
-One-Cocartesian : Cocartesian
-One-Cocartesian = record
- { initial = One-Initial
- ; coproducts = One-BinaryCoproducts
+cocartesian : Cocartesian
+cocartesian = record
+ { initial = initial
+ ; coproducts = coproducts
}
-One-FinitelyCocomplete : FinitelyCocomplete
-One-FinitelyCocomplete = record
- { cocartesian = One-Cocartesian
+finitelyCocomplete : FinitelyCocomplete
+finitelyCocomplete = record
+ { cocartesian = cocartesian
; coequalizer = _
}
diff --git a/Category/Instance/Properties/SymMonCat.agda b/Category/Instance/Properties/SymMonCat.agda
new file mode 100644
index 0000000..fa15295
--- /dev/null
+++ b/Category/Instance/Properties/SymMonCat.agda
@@ -0,0 +1,166 @@
+{-# OPTIONS --without-K --safe #-}
+{-# OPTIONS --lossy-unification #-}
+
+open import Level using (Level; suc; _⊔_)
+module Category.Instance.Properties.SymMonCat {o ℓ e : Level} where
+
+import Categories.Category.Monoidal.Reasoning as ⊗-Reasoning
+import Categories.Morphism.Reasoning as ⇒-Reasoning
+import Categories.NaturalTransformation.NaturalIsomorphism.Monoidal.Symmetric as SMNI
+import Categories.Functor.Monoidal.Symmetric {o} {o} {ℓ} {ℓ} {e} {e} as SMF
+
+open import Category.Instance.SymMonCat {o} {ℓ} {e} using (SymMonCat)
+
+open import Categories.Category using (Category; _[_≈_]; _[_∘_])
+open import Categories.Object.Product.Core SymMonCat using (Product)
+open import Categories.Object.Terminal SymMonCat using (Terminal)
+open import Categories.Category.Instance.One using (One)
+open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory)
+open import Categories.Category.Cartesian SymMonCat using (Cartesian)
+open import Categories.Category.Cartesian.Bundle using (CartesianCategory)
+open import Categories.Functor.Monoidal.Properties using (idF-SymmetricMonoidal; ∘-SymmetricMonoidal)
+open import Categories.Category.BinaryProducts SymMonCat using (BinaryProducts)
+open import Categories.Functor.Monoidal.Construction.Product
+ using ()
+ renaming
+ ( πˡ-SymmetricMonoidalFunctor to πˡ-SMF
+ ; πʳ-SymmetricMonoidalFunctor to πʳ-SMF
+ ; ※-SymmetricMonoidalFunctor to ※-SMF
+ )
+open import Categories.Category.Monoidal.Construction.Product using (Product-SymmetricMonoidalCategory)
+open import Categories.Category.Product.Properties using () renaming (project₁ to p₁; project₂ to p₂; unique to u)
+open import Data.Product.Base using (_,_; proj₁; proj₂)
+
+open SMF.Lax using (SymmetricMonoidalFunctor)
+open SMNI.Lax using (SymmetricMonoidalNaturalIsomorphism; id; isEquivalence)
+
+module Cone
+ {A B X : SymmetricMonoidalCategory o ℓ e}
+ {F : SymmetricMonoidalFunctor X A}
+ {G : SymmetricMonoidalFunctor X B} where
+
+ module A = SymmetricMonoidalCategory A
+ module B = SymmetricMonoidalCategory B
+ module X = SymmetricMonoidalCategory X
+ module F = SymmetricMonoidalFunctor X A F
+ module G = SymmetricMonoidalFunctor X B G
+
+ A×B : SymmetricMonoidalCategory o ℓ e
+ A×B = (Product-SymmetricMonoidalCategory A B)
+
+ πˡ : SymmetricMonoidalFunctor A×B A
+ πˡ = πˡ-SMF {o} {ℓ} {e} {o} {ℓ} {e} {A} {B}
+
+ πʳ : SymmetricMonoidalFunctor A×B B
+ πʳ = πʳ-SMF {o} {ℓ} {e} {o} {ℓ} {e} {A} {B}
+
+ module _ where
+ open Category A.U
+ open Equiv
+ open ⇒-Reasoning A.U
+ open ⊗-Reasoning A.monoidal
+ project₁ : SymMonCat [ SymMonCat [ πˡ ∘ ※-SMF F G ] ≈ F ]
+ project₁ = record
+ { U = p₁ {o} {ℓ} {e} {o} {ℓ} {e} {o} {ℓ} {e} {A.U} {B.U} {X.U} {F.F} {G.F}
+ ; F⇒G-isMonoidal = record
+ { ε-compat = identityˡ ○ identityʳ
+ ; ⊗-homo-compat = λ { {C} {D} → identityˡ ○ refl⟩∘⟨ sym A.⊗.identity }
+ }
+ }
+ module _ (H : SymmetricMonoidalFunctor X A×B) (eq₁ : SymMonCat [ SymMonCat [ πˡ ∘ H ] ≈ F ]) where
+ private
+ module H = SymmetricMonoidalFunctor X A×B H
+ open SymmetricMonoidalNaturalIsomorphism eq₁
+ ε-compat₁ : ⇐.η X.unit A.∘ F.ε A.≈ H.ε .proj₁
+ ε-compat₁ = refl⟩∘⟨ sym ε-compat ○ cancelˡ (iso.isoˡ X.unit) ○ identityʳ
+ ⊗-homo-compat₁
+ : ∀ {C D}
+ → ⇐.η (X.⊗.₀ (C , D)) ∘ F.⊗-homo.η (C , D)
+ ≈ H.⊗-homo.η (C , D) .proj₁ ∘ A.⊗.₁ (⇐.η C , ⇐.η D)
+ ⊗-homo-compat₁ {C} {D} =
+ insertʳ
+ (sym ⊗-distrib-over-∘
+ ○ iso.isoʳ C ⟩⊗⟨ iso.isoʳ D
+ ○ A.⊗.identity)
+ ○ (pullʳ (sym ⊗-homo-compat)
+ ○ cancelˡ (iso.isoˡ (X.⊗.₀ (C , D)))
+ ○ identityʳ) ⟩∘⟨refl
+
+ module _ where
+ open Category B.U
+ open Equiv
+ open ⇒-Reasoning B.U
+ open ⊗-Reasoning B.monoidal
+ project₂ : SymMonCat [ SymMonCat [ πʳ ∘ ※-SMF F G ] ≈ G ]
+ project₂ = record
+ { U = p₂ {o} {ℓ} {e} {o} {ℓ} {e} {o} {ℓ} {e} {A.U} {B.U} {X.U} {F.F} {G.F}
+ ; F⇒G-isMonoidal = record
+ { ε-compat = identityˡ ○ identityʳ
+ ; ⊗-homo-compat = λ { {C} {D} → identityˡ ○ refl⟩∘⟨ sym B.⊗.identity }
+ }
+ }
+ module _ (H : SymmetricMonoidalFunctor X A×B) (eq₂ : SymMonCat [ SymMonCat [ πʳ ∘ H ] ≈ G ]) where
+ private
+ module H = SymmetricMonoidalFunctor X A×B H
+ open SymmetricMonoidalNaturalIsomorphism eq₂
+ ε-compat₂ : ⇐.η X.unit ∘ G.ε ≈ H.ε .proj₂
+ ε-compat₂ = refl⟩∘⟨ sym ε-compat ○ cancelˡ (iso.isoˡ X.unit) ○ identityʳ
+ ⊗-homo-compat₂
+ : ∀ {C D}
+ → ⇐.η (X.⊗.₀ (C , D)) ∘ G.⊗-homo.η (C , D)
+ ≈ H.⊗-homo.η (C , D) .proj₂ ∘ B.⊗.₁ (⇐.η C , ⇐.η D)
+ ⊗-homo-compat₂ {C} {D} =
+ insertʳ
+ (sym ⊗-distrib-over-∘
+ ○ iso.isoʳ C ⟩⊗⟨ iso.isoʳ D
+ ○ B.⊗.identity)
+ ○ (pullʳ (sym ⊗-homo-compat)
+ ○ cancelˡ (iso.isoˡ (X.⊗.₀ (C , D)))
+ ○ identityʳ) ⟩∘⟨refl
+
+ unique
+ : (H : SymmetricMonoidalFunctor X A×B)
+ → SymMonCat [ SymMonCat [ πˡ ∘ H ] ≈ F ]
+ → SymMonCat [ SymMonCat [ πʳ ∘ H ] ≈ G ]
+ → SymMonCat [ ※-SMF F G ≈ H ]
+ unique H eq₁ eq₂ = record
+ { U = u {o} {ℓ} {e} {o} {ℓ} {e} {o} {ℓ} {e} {A.U} {B.U} {X.U} {F.F} {G.F} {H.F} eq₁.U eq₂.U
+ ; F⇒G-isMonoidal = record
+ { ε-compat = ε-compat₁ H eq₁ , ε-compat₂ H eq₂
+ ; ⊗-homo-compat = ⊗-homo-compat₁ H eq₁ , ⊗-homo-compat₂ H eq₂
+ }
+ }
+ where
+ module H = SymmetricMonoidalFunctor X A×B H
+ module eq₁ = SymmetricMonoidalNaturalIsomorphism eq₁
+ module eq₂ = SymmetricMonoidalNaturalIsomorphism eq₂
+
+prod-SymMonCat : ∀ {A B} → Product A B
+prod-SymMonCat {A} {B} = record
+ { A×B = Product-SymmetricMonoidalCategory A B
+ ; π₁ = πˡ-SMF {o} {ℓ} {e} {o} {ℓ} {e} {A} {B}
+ ; π₂ = πʳ-SMF {o} {ℓ} {e} {o} {ℓ} {e} {A} {B}
+ ; ⟨_,_⟩ = ※-SMF
+ ; project₁ = λ { {X} {f} {g} → Cone.project₁ {A} {B} {X} {f} {g} }
+ ; project₂ = λ { {X} {f} {g} → Cone.project₂ {A} {B} {X} {f} {g} }
+ ; unique = λ { {X} {h} {f} {g} eq₁ eq₂ → Cone.unique {A} {B} {X} {f} {g} h eq₁ eq₂ }
+ }
+
+SymMonCat-BinaryProducts : BinaryProducts
+SymMonCat-BinaryProducts = record { product = prod-SymMonCat }
+
+SymMonCat-Terminal : Terminal
+SymMonCat-Terminal = record
+ { ⊤ = record
+ { U = One
+ ; monoidal = _
+ ; symmetric = _
+ }
+ ; ⊤-is-terminal = _
+ }
+
+SymMonCat-Cartesian : Cartesian
+SymMonCat-Cartesian = record
+ { terminal = SymMonCat-Terminal
+ ; products = SymMonCat-BinaryProducts
+ }
diff --git a/Category/Instance/Setoids/SymmetricMonoidal.agda b/Category/Instance/Setoids/SymmetricMonoidal.agda
index fa4d903..995ddf3 100644
--- a/Category/Instance/Setoids/SymmetricMonoidal.agda
+++ b/Category/Instance/Setoids/SymmetricMonoidal.agda
@@ -1,33 +1,47 @@
{-# OPTIONS --without-K --safe #-}
-module Category.Instance.Setoids.SymmetricMonoidal {ℓ} where
+open import Level using (Level; _⊔_; suc)
+module Category.Instance.Setoids.SymmetricMonoidal {c ℓ : Level} where
-open import Categories.Category.Cartesian.Monoidal using (module CartesianMonoidal)
open import Categories.Category.Instance.Setoids using (Setoids)
open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory)
open import Categories.Category.Monoidal.Instance.Setoids
using (Setoids-Cartesian; Setoids-Cocartesian)
renaming (Setoids-Monoidal to ×-monoidal)
-open import Categories.Category.Cartesian.SymmetricMonoidal (Setoids ℓ ℓ) Setoids-Cartesian
+open import Categories.Category.Cartesian.SymmetricMonoidal (Setoids c ℓ) Setoids-Cartesian
using ()
renaming (symmetric to ×-symmetric)
-open import Level using (suc)
-open import Categories.Category.Cocartesian (Setoids ℓ ℓ)
+open import Categories.Category.Cocartesian (Setoids c (c ⊔ ℓ))
using (module CocartesianMonoidal; module CocartesianSymmetricMonoidal)
-open CocartesianMonoidal (Setoids-Cocartesian {ℓ} {ℓ}) using (+-monoidal)
-open CocartesianSymmetricMonoidal (Setoids-Cocartesian {ℓ} {ℓ}) using (+-symmetric)
+open CocartesianMonoidal (Setoids-Cocartesian {c} {ℓ}) using (+-monoidal)
+open CocartesianSymmetricMonoidal (Setoids-Cocartesian {c} {ℓ}) using (+-symmetric)
-Setoids-× : SymmetricMonoidalCategory (suc ℓ) ℓ ℓ
+open import Categories.Category using (Category)
+open import Categories.Category.Monoidal using (Monoidal)
+open import Categories.Category.Monoidal.Symmetric using (Symmetric)
+
+opaque
+
+ ×-monoidal′ : Monoidal (Setoids c ℓ)
+ ×-monoidal′ = ×-monoidal {c} {ℓ}
+
+ ×-symmetric′ : Symmetric ×-monoidal′
+ ×-symmetric′ = ×-symmetric
+
+Setoids-× : SymmetricMonoidalCategory (suc (c ⊔ ℓ)) (c ⊔ ℓ) (c ⊔ ℓ)
Setoids-× = record
- { U = Setoids ℓ ℓ
- ; monoidal = ×-monoidal
- ; symmetric = ×-symmetric
+ { U = Setoids c ℓ
+ ; monoidal = ×-monoidal′
+ ; symmetric = ×-symmetric′
}
-Setoids-+ : SymmetricMonoidalCategory (suc ℓ) ℓ ℓ
+Setoids-+ : SymmetricMonoidalCategory (suc (c ⊔ ℓ)) (c ⊔ ℓ) (c ⊔ ℓ)
Setoids-+ = record
- { U = Setoids ℓ ℓ
+ { U = Setoids c (c ⊔ ℓ)
; monoidal = +-monoidal
; symmetric = +-symmetric
}
+
+module Setoids-× = SymmetricMonoidalCategory Setoids-×
+module Setoids-+ = SymmetricMonoidalCategory Setoids-+
diff --git a/Category/Instance/SymMonCat.agda b/Category/Instance/SymMonCat.agda
new file mode 100644
index 0000000..e4b136c
--- /dev/null
+++ b/Category/Instance/SymMonCat.agda
@@ -0,0 +1,74 @@
+{-# OPTIONS --without-K --safe #-}
+{-# OPTIONS --lossy-unification #-}
+
+open import Level using (Level; suc; _⊔_)
+module Category.Instance.SymMonCat {o ℓ e : Level} where
+
+import Categories.Category.Monoidal.Reasoning as ⊗-Reasoning
+import Categories.Functor.Monoidal.Symmetric as SMF
+import Categories.Morphism.Reasoning as ⇒-Reasoning
+import Categories.Morphism as Morphism
+import Categories.NaturalTransformation.NaturalIsomorphism.Monoidal.Symmetric as SMNI
+import Categories.Category.Monoidal.Utilities as MonoidalUtil
+import Categories.Category.Monoidal.Braided.Properties as BraidedProperties
+open import Relation.Binary.Core using (Rel)
+
+open import Categories.Category using (Category; _[_,_]; _[_∘_])
+open import Categories.Category.Helper using (categoryHelper)
+open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory)
+open import Categories.Functor.Monoidal.Properties using (idF-SymmetricMonoidal; ∘-SymmetricMonoidal)
+
+open SMF.Lax using (SymmetricMonoidalFunctor)
+open SMNI.Lax using (SymmetricMonoidalNaturalIsomorphism; id; isEquivalence)
+
+assoc
+ : {A B C D : SymmetricMonoidalCategory o ℓ e}
+ {F : SymmetricMonoidalFunctor A B}
+ {G : SymmetricMonoidalFunctor B C}
+ {H : SymmetricMonoidalFunctor C D}
+ → SymmetricMonoidalNaturalIsomorphism
+ (∘-SymmetricMonoidal (∘-SymmetricMonoidal H G) F)
+ (∘-SymmetricMonoidal H (∘-SymmetricMonoidal G F))
+assoc {A} {B} {C} {D} {F} {G} {H} = SMNI.Lax.associator {o} {ℓ} {e} {o} {ℓ} {e} {o} {ℓ} {e} {o} {ℓ} {e} {A} {B} {C} {D} {F} {G} {H}
+
+identityˡ
+ : {A B : SymmetricMonoidalCategory o ℓ e}
+ {F : SymmetricMonoidalFunctor A B}
+ → SymmetricMonoidalNaturalIsomorphism (∘-SymmetricMonoidal (idF-SymmetricMonoidal B) F) F
+identityˡ {A} {B} {F} = SMNI.Lax.unitorˡ {o} {ℓ} {e} {o} {ℓ} {e} {A} {B} {F}
+
+identityʳ
+ : {A B : SymmetricMonoidalCategory o ℓ e}
+ {F : SymmetricMonoidalFunctor A B}
+ → SymmetricMonoidalNaturalIsomorphism (∘-SymmetricMonoidal F (idF-SymmetricMonoidal A)) F
+identityʳ {A} {B} {F} = SMNI.Lax.unitorʳ {o} {ℓ} {e} {o} {ℓ} {e} {A} {B} {F}
+
+Compose
+ : {A B C : SymmetricMonoidalCategory o ℓ e}
+ → SymmetricMonoidalFunctor B C
+ → SymmetricMonoidalFunctor A B
+ → SymmetricMonoidalFunctor A C
+Compose {A} {B} {C} F G = ∘-SymmetricMonoidal {o} {ℓ} {e} {o} {ℓ} {e} {o} {ℓ} {e} {A} {B} {C} F G
+
+∘-resp-≈
+ : {A B C : SymmetricMonoidalCategory o ℓ e}
+ {f h : SymmetricMonoidalFunctor B C}
+ {g i : SymmetricMonoidalFunctor A B}
+ → SymmetricMonoidalNaturalIsomorphism f h
+ → SymmetricMonoidalNaturalIsomorphism g i
+ → SymmetricMonoidalNaturalIsomorphism (∘-SymmetricMonoidal f g) (∘-SymmetricMonoidal h i)
+∘-resp-≈ {A} {B} {C} {F} {F′} {G} {G′} F≃F′ G≃G′ = SMNI.Lax._ⓘₕ_ {o} {ℓ} {e} {o} {ℓ} {e} {o} {ℓ} {e} {A} {B} {C} {G} {G′} {F} {F′} F≃F′ G≃G′
+
+SymMonCat : Category (suc (o ⊔ ℓ ⊔ e)) (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e)
+SymMonCat = categoryHelper record
+ { Obj = SymmetricMonoidalCategory o ℓ e
+ ; _⇒_ = SymmetricMonoidalFunctor {o} {o} {ℓ} {ℓ} {e} {e}
+ ; _≈_ = λ { {A} {B} → SymmetricMonoidalNaturalIsomorphism {o} {ℓ} {e} {o} {ℓ} {e} {A} {B} }
+ ; id = λ { {X} → idF-SymmetricMonoidal X }
+ ; _∘_ = λ { {A} {B} {C} F G → Compose {A} {B} {C} F G }
+ ; assoc = λ { {A} {B} {C} {D} {F} {G} {H} → assoc {A} {B} {C} {D} {F} {G} {H} }
+ ; identityˡ = λ { {A} {B} {F} → identityˡ {A} {B} {F} }
+ ; identityʳ = λ { {A} {B} {F} → identityʳ {A} {B} {F} }
+ ; equiv = isEquivalence
+ ; ∘-resp-≈ = λ { {A} {B} {C} {f} {h} {g} {i} f≈h g≈i → ∘-resp-≈ {A} {B} {C} {f} {h} {g} {i} f≈h g≈i }
+ }
diff --git a/Category/Monoidal/Instance/Cospans.agda b/Category/Monoidal/Instance/Cospans.agda
index 228ddea..a1648db 100644
--- a/Category/Monoidal/Instance/Cospans.agda
+++ b/Category/Monoidal/Instance/Cospans.agda
@@ -18,8 +18,9 @@ open import Categories.Category.Monoidal.Core using (Monoidal)
open import Categories.Functor using (Functor)
open import Categories.Functor.Properties using ([_]-resp-≅)
open import Categories.NaturalTransformation.NaturalIsomorphism using (niHelper)
-open import Category.Instance.Cospans 𝒞 using (Cospans; Cospan)
-open import Category.Instance.Properties.FinitelyCocompletes {o} {ℓ} {e} using (FinitelyCocompletes-CC)
+open import Category.Instance.Cospans 𝒞 using (Cospans)
+open import Category.Diagram.Cospan using (Cospan; cospan)
+open import Category.Cartesian.Instance.FinitelyCocompletes {o} {ℓ} {e} using (FinitelyCocompletes-CC)
open import Category.Monoidal.Instance.Cospans.Lift {o} {ℓ} {e} using (module Square)
open import Data.Product.Base using (_,_)
open import Functor.Instance.Cospan.Stack 𝒞 using (⊗)
@@ -61,7 +62,6 @@ CospansMonoidal = record
; pentagon = pentagon
}
where
- module ⊗ = Functor ⊗
module Cospans = Category Cospans
module Unitorˡ = Square ⊥+--id
module Unitorʳ = Square -+⊥-id
@@ -83,16 +83,15 @@ CospansMonoidal = record
CospansBraided : Braided CospansMonoidal
CospansBraided = record
{ braiding = niHelper record
- { η = λ { (X , Y) → Braiding.FX≅GX′.from {X , Y} }
- ; η⁻¹ = λ { (Y , X) → Braiding.FX≅GX′.to {Y , X} }
- ; commute = λ { {X , Y} {X′ , Y′} (f , g) → Braiding.from (record { f₁ = f₁ f , f₁ g ; f₂ = f₂ f , f₂ g }) }
- ; iso = λ { (X , Y) → Braiding.FX≅GX′.iso {X , Y} }
+ { η = λ (X , Y) → Braiding.FX≅GX′.from {X , Y}
+ ; η⁻¹ = λ (Y , X) → Braiding.FX≅GX′.to {Y , X}
+ ; commute = λ (cospan f₁ f₂ , cospan g₁ g₂) → Braiding.from (cospan (f₁ , g₁) (f₂ , g₂))
+ ; iso = λ (X , Y) → Braiding.FX≅GX′.iso {X , Y}
}
; hexagon₁ = sym L-resp-⊗ ⟩∘⟨ refl ⟩∘⟨ sym L-resp-⊗ ○ refl⟩∘⟨ sym homomorphism ○ sym homomorphism ○ L-resp-≈ hex₁ ○ homomorphism ○ refl⟩∘⟨ homomorphism
; hexagon₂ = sym L-resp-⊗ ⟩∘⟨refl ⟩∘⟨ sym L-resp-⊗ ○ sym homomorphism ⟩∘⟨refl ○ sym homomorphism ○ L-resp-≈ hex₂ ○ homomorphism ○ homomorphism ⟩∘⟨refl
}
where
- open Cospan
module Cospans = Category Cospans
open Cospans.Equiv
open Cospans.HomReasoning
diff --git a/Category/Monoidal/Instance/Cospans/Lift.agda b/Category/Monoidal/Instance/Cospans/Lift.agda
index fa31fcb..c7e7516 100644
--- a/Category/Monoidal/Instance/Cospans/Lift.agda
+++ b/Category/Monoidal/Instance/Cospans/Lift.agda
@@ -4,7 +4,7 @@ open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategor
module Category.Monoidal.Instance.Cospans.Lift {o ℓ e} where
-open import Category.Instance.Cospans using (Cospans; Cospan; Same)
+open import Category.Instance.Cospans using (Cospans)
open import Categories.Category.Core using (Category)
@@ -16,6 +16,7 @@ import Category.Diagram.Pushout as PushoutDiagram′
import Functor.Instance.Cospan.Embed as CospanEmbed
open import Categories.Category using (_[_,_]; _[_≈_]; _[_∘_]; module Definitions)
+open import Category.Diagram.Cospan using (Cospan; cospan)
open import Categories.Functor.Core using (Functor)
open import Categories.Functor.Properties using ([_]-resp-≅)
open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; _≃_)
@@ -26,7 +27,7 @@ module _ {𝒞 : FinitelyCocompleteCategory o ℓ e} {𝒟 : FinitelyCocompleteC
module 𝒞 = FinitelyCocompleteCategory 𝒞
module 𝒟 = FinitelyCocompleteCategory 𝒟
- open CospanEmbed 𝒟 using (L; B₁; B∘L; R∘B; ≅-L-R)
+ open CospanEmbed 𝒟 using (L; B∘L; R∘B; ≅-L-R)
module Square {F G : Functor 𝒞.U 𝒟.U} (F≃G : F ≃ G) where
@@ -51,21 +52,21 @@ module _ {𝒞 : FinitelyCocompleteCategory o ℓ e} {𝒟 : FinitelyCocompleteC
open Cospan fg renaming (f₁ to f; f₂ to g)
open 𝒟 using (_∘_)
- squares⇒cospan : Cospans 𝒟 [ B₁ (G.₁ f ∘ FX≅GX.from) (G.₁ g ∘ FX≅GX.from) ≈ B₁ (F.₁ f) (F.₁ g) ]
+ squares⇒cospan : Cospans 𝒟 [ cospan (G.₁ f ∘ FX≅GX.from) (G.₁ g ∘ FX≅GX.from) ≈ cospan (F.₁ f) (F.₁ g) ]
squares⇒cospan = record
{ ≅N = ≅.sym 𝒟.U FX≅GX
- ; from∘f₁≈f₁′ = sym (switch-fromtoˡ FX≅GX (⇒.commute f))
- ; from∘f₂≈f₂′ = sym (switch-fromtoˡ FX≅GX (⇒.commute g))
+ ; from∘f₁≈f₁ = sym (switch-fromtoˡ FX≅GX (⇒.commute f))
+ ; from∘f₂≈f₂ = sym (switch-fromtoˡ FX≅GX (⇒.commute g))
}
where
open 𝒟.Equiv using (sym)
- from : Cospans 𝒟 [ Cospans 𝒟 [ L.₁ (⇒.η Y) ∘ B₁ (F.₁ f) (F.₁ g) ] ≈ Cospans 𝒟 [ B₁ (G.₁ f) (G.₁ g) ∘ L.₁ (⇒.η X) ] ]
+ from : Cospans 𝒟 [ Cospans 𝒟 [ L.₁ (⇒.η Y) ∘ cospan (F.₁ f) (F.₁ g) ] ≈ Cospans 𝒟 [ cospan (G.₁ f) (G.₁ g) ∘ L.₁ (⇒.η X) ] ]
from = sym (switch-tofromˡ FX≅GX′ (refl⟩∘⟨ B∘L ○ ≅-L-R FX≅GX ⟩∘⟨refl ○ R∘B ○ squares⇒cospan))
where
open Cospans.Equiv using (sym)
- to : Cospans 𝒟 [ Cospans 𝒟 [ L.₁ (⇐.η Y) ∘ B₁ (G.₁ f) (G.₁ g) ] ≈ Cospans 𝒟 [ B₁ (F.₁ f) (F.₁ g) ∘ L.₁ (⇐.η X) ] ]
+ to : Cospans 𝒟 [ Cospans 𝒟 [ L.₁ (⇐.η Y) ∘ cospan (G.₁ f) (G.₁ g) ] ≈ Cospans 𝒟 [ cospan (F.₁ f) (F.₁ g) ∘ L.₁ (⇐.η X) ] ]
to = switch-fromtoʳ FX≅GX′ (pullʳ B∘L ○ ≅-L-R FX≅GX ⟩∘⟨refl ○ R∘B ○ squares⇒cospan)
where
open ⇒-Reasoning (Cospans 𝒟) using (pullʳ)
diff --git a/Category/Monoidal/Instance/DecoratedCospans.agda b/Category/Monoidal/Instance/DecoratedCospans.agda
new file mode 100644
index 0000000..3df57ee
--- /dev/null
+++ b/Category/Monoidal/Instance/DecoratedCospans.agda
@@ -0,0 +1,410 @@
+{-# OPTIONS --without-K --safe #-}
+{-# OPTIONS --lossy-unification #-}
+
+open import Categories.Category.Monoidal.Bundle using (MonoidalCategory; SymmetricMonoidalCategory)
+open import Categories.Functor.Monoidal.Symmetric using (module Lax)
+open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)
+
+open Lax using (SymmetricMonoidalFunctor)
+open FinitelyCocompleteCategory
+ using ()
+ renaming (symmetricMonoidalCategory to smc)
+
+module Category.Monoidal.Instance.DecoratedCospans
+ {o o′ ℓ ℓ′ e e′}
+ (𝒞 : FinitelyCocompleteCategory o ℓ e)
+ {𝒟 : SymmetricMonoidalCategory o′ ℓ′ e′}
+ (F : SymmetricMonoidalFunctor (smc 𝒞) 𝒟) where
+
+open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)
+
+
+import Categories.Category.Monoidal.Reasoning as ⊗-Reasoning
+import Categories.Morphism as Morphism
+import Categories.Morphism.Reasoning as ⇒-Reasoning
+import Categories.Category.Monoidal.Properties as ⊗-Properties
+import Categories.Category.Monoidal.Braided.Properties as σ-Properties
+
+open import Categories.Category using (_[_,_]; _[_≈_]; _[_∘_]; Category)
+open import Categories.Category.BinaryProducts using (BinaryProducts)
+open import Categories.Category.Cartesian using (Cartesian)
+open import Categories.Category.Cartesian.Bundle using (CartesianCategory)
+open import Categories.Category.Cocartesian using (module CocartesianMonoidal; module CocartesianSymmetricMonoidal)
+open import Categories.Category.Monoidal.Braided using (Braided)
+open import Categories.Category.Monoidal.Core using (Monoidal)
+open import Categories.Category.Monoidal.Symmetric using (Symmetric)
+open import Categories.Category.Monoidal.Utilities using (module Shorthands)
+open import Categories.Functor using (Functor; _∘F_) renaming (id to idF)
+open import Categories.Functor.Hom using (Hom[_][_,-])
+open import Categories.Functor.Properties using ([_]-resp-≅)
+open import Categories.Functor.Monoidal.Construction.Product using (⁂-SymmetricMonoidalFunctor)
+open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; _ⓘˡ_; niHelper)
+open import Categories.NaturalTransformation.Core using (NaturalTransformation; _∘ᵥ_; ntHelper)
+open import Categories.NaturalTransformation.Equivalence using () renaming (_≃_ to _≋_)
+open import Category.Instance.DecoratedCospans 𝒞 F using (DecoratedCospans)
+open import Category.Cartesian.Instance.FinitelyCocompletes {o} {ℓ} {e} using (module x+y; module y+x; [x+y]+z; x+[y+z]; assoc-≃)
+open import Category.Monoidal.Instance.DecoratedCospans.Lift {o} {ℓ} {e} {o′} {ℓ′} {e′} using (module Square)
+open import Cospan.Decorated 𝒞 F using (DecoratedCospan)
+open import Data.Product.Base using (_,_)
+open import Function.Base using () renaming (id to idf)
+open import Functor.Instance.DecoratedCospan.Stack 𝒞 F using (⊗)
+open import Functor.Instance.DecoratedCospan.Embed 𝒞 F using (L; L-resp-⊗; B₁)
+
+open import Category.Monoidal.Instance.DecoratedCospans.Products 𝒞 F
+open CocartesianMonoidal 𝒞.U 𝒞.cocartesian using (⊥+--id; -+⊥-id; ⊥+A≅A; A+⊥≅A; +-monoidal)
+open import Categories.Category.Monoidal.Utilities +-monoidal using (associator-naturalIsomorphism)
+
+module LiftUnitorˡ where
+ module F = SymmetricMonoidalFunctor F
+ open 𝒞 using (⊥; _+-; i₂; _+_; _+₁_; ¡; +₁-cong₂; ¡-unique; -+-)
+ open Shorthands 𝒟.monoidal using (ρ⇒; ρ⇐; λ⇒)
+ ≃₁ : NaturalTransformation (Hom[ 𝒟.U ][ 𝒟.unit ,-] ∘F F.F) (Hom[ 𝒟.U ][ 𝒟.unit ,-] ∘F F.F ∘F (⊥ +-))
+ ≃₁ = ntHelper record
+ { η = λ { X → record
+ { to = λ { f → 𝒟.U [ F.⊗-homo.η (⊥ , X) ∘ 𝒟.U [ 𝒟.⊗.₁ (𝒟.U [ F.₁ 𝒞.initial.! ∘ F.ε ] , f) ∘ ρ⇐ ] ] }
+ ; cong = λ { x → refl⟩∘⟨ refl⟩⊗⟨ x ⟩∘⟨refl } }
+ }
+ ; commute = ned
+ }
+ where
+ open 𝒟.Equiv
+ open 𝒟 using (sym-assoc; _∘_; id; _⊗₁_; identityʳ)
+ open ⊗-Reasoning 𝒟.monoidal
+ open ⇒-Reasoning 𝒟.U
+ ned : {X Y : 𝒞.Obj} (f : X 𝒞.⇒ Y) {x : 𝒟.unit 𝒟.⇒ F.₀ X}
+ → F.⊗-homo.η (⊥ , Y) ∘ (F.₁ ¡ 𝒟.∘ F.ε) ⊗₁ (F.F₁ f ∘ x ∘ id) ∘ ρ⇐
+ 𝒟.≈ F.₁ (𝒞.id +₁ f) ∘ (F.⊗-homo.η (𝒞.⊥ , X) ∘ (F.₁ ¡ ∘ F.ε) ⊗₁ x ∘ ρ⇐) ∘ id
+ ned {X} {Y} f {x} = begin
+ F.⊗-homo.η (⊥ , Y) ∘ (F.₁ ¡ ∘ F.ε) ⊗₁ (F.₁ f ∘ x ∘ id) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ (refl⟩∘⟨ identityʳ) ⟩∘⟨refl ⟩
+ F.⊗-homo.η (⊥ , Y) ∘ (F.₁ ¡ ∘ F.ε) ⊗₁ (F.₁ f ∘ x) ∘ ρ⇐ ≈⟨ push-center split₂ˡ ⟩
+ F.⊗-homo.η (⊥ , Y) ∘ id ⊗₁ F.₁ f ∘ (F.₁ ¡ ∘ F.ε) ⊗₁ x ∘ ρ⇐ ≈⟨ refl⟩∘⟨ F.identity ⟩⊗⟨refl ⟩∘⟨refl ⟨
+ F.⊗-homo.η (⊥ , Y) ∘ F.₁ 𝒞.id ⊗₁ F.₁ f ∘ (F.₁ ¡ ∘ F.ε) ⊗₁ x ∘ ρ⇐ ≈⟨ extendʳ (F.⊗-homo.commute (𝒞.id , f)) ⟩
+ F.₁ (𝒞.id +₁ f) ∘ F.⊗-homo.η (⊥ , X) ∘ (F.₁ ¡ ∘ F.ε) ⊗₁ x ∘ ρ⇐ ≈⟨ refl⟩∘⟨ identityʳ ⟨
+ F.₁ (𝒞.id +₁ f) ∘ (F.⊗-homo.η (⊥ , X) ∘ (F.₁ ¡ ∘ F.ε) ⊗₁ x ∘ ρ⇐) ∘ id ∎
+ ≃₂ : NaturalTransformation (Hom[ 𝒟.U ][ 𝒟.unit ,-] ∘F F.F) (Hom[ 𝒟.U ][ 𝒟.unit ,-] ∘F F.F ∘F idF)
+ ≃₂ = ntHelper record
+ { η = λ { X → record { to = idf ; cong = idf } }
+ ; commute = λ { f → refl }
+ }
+ where
+ open 𝒟.Equiv
+ open NaturalIsomorphism using (F⇐G)
+ ≃₂≋≃₁ : (F⇐G (Hom[ 𝒟.U ][ 𝒟.unit ,-] ⓘˡ (F.F ⓘˡ ⊥+--id))) ∘ᵥ ≃₂ ≋ ≃₁
+ ≃₂≋≃₁ {X} {f} = begin
+ F.₁ λ⇐ ∘ f ∘ id ≈⟨ refl⟩∘⟨ refl⟩∘⟨ 𝒟.unitorʳ.isoʳ ⟨
+ F.₁ λ⇐ ∘ f ∘ ρ⇒ ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ coherence₃ ⟩∘⟨refl ⟨
+ F.₁ λ⇐ ∘ f ∘ λ⇒ ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ 𝒟.unitorˡ-commute-from ⟨
+ F.₁ λ⇐ ∘ λ⇒ ∘ id ⊗₁ f ∘ ρ⇐ ≈⟨ pushˡ (introˡ F.identity) ⟩
+ F.₁ 𝒞.id ∘ F.₁ λ⇐ ∘ λ⇒ ∘ id ⊗₁ f ∘ ρ⇐ ≈⟨ F.F-resp-≈ (-+-.identity) ⟩∘⟨refl ⟨
+ F.₁ (𝒞.id +₁ 𝒞.id) ∘ F.₁ λ⇐ ∘ λ⇒ ∘ id ⊗₁ f ∘ ρ⇐ ≈⟨ F.F-resp-≈ (+₁-cong₂ (¡-unique 𝒞.id) 𝒞.Equiv.refl) ⟩∘⟨refl ⟨
+ F.₁ (¡ +₁ 𝒞.id) ∘ F.₁ λ⇐ ∘ λ⇒ ∘ id ⊗₁ f ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ (switch-fromtoˡ ([ F.F ]-resp-≅ unitorˡ) F.unitaryˡ) ⟨
+ F.₁ (¡ +₁ 𝒞.id) ∘ F.⊗-homo.η (⊥ , X) ∘ F.ε ⊗₁ id ∘ id ⊗₁ f ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pullˡ (sym serialize₁₂) ⟩
+ F.₁ (¡ +₁ 𝒞.id) ∘ F.⊗-homo.η (⊥ , X) ∘ F.ε ⊗₁ f ∘ ρ⇐ ≈⟨ extendʳ (F.⊗-homo.commute (¡ , 𝒞.id)) ⟨
+ F.⊗-homo.η (⊥ , X) ∘ (F.₁ ¡ ⊗₁ F.₁ 𝒞.id) ∘ F.ε ⊗₁ f ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ F.identity ⟩∘⟨refl ⟩
+ F.⊗-homo.η (⊥ , X) ∘ (F.₁ ¡ ⊗₁ id) ∘ F.ε ⊗₁ f ∘ ρ⇐ ≈⟨ pull-center (sym split₁ˡ) ⟩
+ F.⊗-homo.η (⊥ , X) ∘ (F.₁ ¡ ∘ F.ε) ⊗₁ f ∘ ρ⇐ ∎
+ where
+ open Shorthands 𝒞.monoidal using (λ⇐)
+ open CocartesianMonoidal 𝒞.U 𝒞.cocartesian using (unitorˡ)
+ open 𝒟.Equiv
+ open 𝒟 using (sym-assoc; _∘_; id; _⊗₁_; identityʳ)
+ open ⊗-Reasoning 𝒟.monoidal
+ open ⊗-Properties 𝒟.monoidal using (coherence₃)
+ open ⇒-Reasoning 𝒟.U
+ module -+- = Functor -+-
+ module Unitorˡ = Square {𝒞} {𝒞} {𝒟} {𝒟} {F} {F} ⊥+--id ≃₁ ≃₂ ≃₂≋≃₁
+open LiftUnitorˡ using (module Unitorˡ)
+
+module LiftUnitorʳ where
+ module F = SymmetricMonoidalFunctor F
+ open 𝒞 using (⊥; -+_; i₁; _+_; _+₁_; ¡; +₁-cong₂; ¡-unique; -+-)
+ open Shorthands 𝒟.monoidal using (ρ⇒; ρ⇐)
+ ≃₁ : NaturalTransformation (Hom[ 𝒟.U ][ 𝒟.unit ,-] ∘F F.F) (Hom[ 𝒟.U ][ 𝒟.unit ,-] ∘F F.F ∘F (-+ ⊥))
+ ≃₁ = ntHelper record
+ { η = λ { X → record
+ { to = λ { f → 𝒟.U [ F.⊗-homo.η (X , ⊥) ∘ 𝒟.U [ 𝒟.⊗.₁ (f , 𝒟.U [ F.₁ 𝒞.initial.! ∘ F.ε ]) ∘ ρ⇐ ] ] }
+ ; cong = λ { x → refl⟩∘⟨ x ⟩⊗⟨refl ⟩∘⟨refl } }
+ }
+ ; commute = ned
+ }
+ where
+ open 𝒟.Equiv
+ open 𝒟 using (sym-assoc; _∘_; id; _⊗₁_; identityʳ)
+ open ⊗-Reasoning 𝒟.monoidal
+ open ⇒-Reasoning 𝒟.U
+ ned : {X Y : 𝒞.Obj} (f : X 𝒞.⇒ Y) {x : 𝒟.unit 𝒟.⇒ F.₀ X}
+ → F.⊗-homo.η (Y , ⊥) ∘ (F.F₁ f ∘ x ∘ id) ⊗₁ (F.₁ ¡ ∘ F.ε) ∘ ρ⇐
+ 𝒟.≈ F.₁ (f +₁ 𝒞.id) ∘ (F.⊗-homo.η (X , ⊥) ∘ x ⊗₁ (F.₁ ¡ ∘ F.ε) ∘ ρ⇐) ∘ id
+ ned {X} {Y} f {x} = begin
+ F.⊗-homo.η (Y , ⊥) ∘ (F.₁ f ∘ x ∘ id) ⊗₁ (F.₁ ¡ ∘ F.ε) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ (refl⟩∘⟨ identityʳ) ⟩⊗⟨refl ⟩∘⟨refl ⟩
+ F.⊗-homo.η (Y , ⊥) ∘ (F.₁ f ∘ x) ⊗₁ (F.₁ ¡ ∘ F.ε) ∘ ρ⇐ ≈⟨ push-center split₁ˡ ⟩
+ F.⊗-homo.η (Y , ⊥) ∘ F.₁ f ⊗₁ id ∘ x ⊗₁ (F.₁ ¡ ∘ F.ε) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ F.identity ⟩∘⟨refl ⟨
+ F.⊗-homo.η (Y , ⊥) ∘ F.₁ f ⊗₁ F.₁ 𝒞.id ∘ x ⊗₁ (F.₁ ¡ ∘ F.ε) ∘ ρ⇐ ≈⟨ extendʳ (F.⊗-homo.commute (f , 𝒞.id)) ⟩
+ F.₁ (f +₁ 𝒞.id) ∘ F.⊗-homo.η (X , ⊥) ∘ x ⊗₁ (F.₁ ¡ ∘ F.ε) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ identityʳ ⟨
+ F.₁ (f +₁ 𝒞.id) ∘ (F.⊗-homo.η (X , ⊥) ∘ x ⊗₁ (F.₁ ¡ ∘ F.ε) ∘ ρ⇐) ∘ id ∎
+ ≃₂ : NaturalTransformation (Hom[ 𝒟.U ][ 𝒟.unit ,-] ∘F F.F) (Hom[ 𝒟.U ][ 𝒟.unit ,-] ∘F F.F ∘F idF)
+ ≃₂ = ntHelper record
+ { η = λ { X → record { to = idf ; cong = idf } }
+ ; commute = λ { f → refl }
+ }
+ where
+ open 𝒟.Equiv
+ open NaturalIsomorphism using (F⇐G)
+ ≃₂≋≃₁ : (F⇐G (Hom[ 𝒟.U ][ 𝒟.unit ,-] ⓘˡ (F.F ⓘˡ -+⊥-id))) ∘ᵥ ≃₂ ≋ ≃₁
+ ≃₂≋≃₁ {X} {f} = begin
+ F.₁ i₁ ∘ f ∘ id ≈⟨ refl⟩∘⟨ refl⟩∘⟨ 𝒟.unitorʳ.isoʳ ⟨
+ F.₁ ρ⇐′ ∘ f ∘ ρ⇒ ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ 𝒟.unitorʳ-commute-from ⟨
+ F.₁ ρ⇐′ ∘ ρ⇒ ∘ f ⊗₁ id ∘ ρ⇐ ≈⟨ pushˡ (introˡ F.identity) ⟩
+ F.₁ 𝒞.id ∘ F.₁ ρ⇐′ ∘ ρ⇒ ∘ f ⊗₁ id ∘ ρ⇐ ≈⟨ F.F-resp-≈ (-+-.identity) ⟩∘⟨refl ⟨
+ F.₁ (𝒞.id +₁ 𝒞.id) ∘ F.₁ ρ⇐′ ∘ ρ⇒ ∘ f ⊗₁ id ∘ ρ⇐ ≈⟨ F.F-resp-≈ (+₁-cong₂ 𝒞.Equiv.refl (¡-unique 𝒞.id)) ⟩∘⟨refl ⟨
+ F.₁ (𝒞.id +₁ ¡) ∘ F.₁ ρ⇐′ ∘ ρ⇒ ∘ f ⊗₁ id ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ (switch-fromtoˡ ([ F.F ]-resp-≅ unitorʳ) F.unitaryʳ) ⟨
+ F.₁ (𝒞.id +₁ ¡) ∘ F.⊗-homo.η (X , ⊥) ∘ id ⊗₁ F.ε ∘ f ⊗₁ id ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pullˡ (sym serialize₂₁) ⟩
+ F.₁ (𝒞.id +₁ ¡) ∘ F.⊗-homo.η (X , ⊥) ∘ f ⊗₁ F.ε ∘ ρ⇐ ≈⟨ extendʳ (F.⊗-homo.commute (𝒞.id , ¡)) ⟨
+ F.⊗-homo.η (X , ⊥) ∘ (F.₁ 𝒞.id ⊗₁ F.₁ ¡) ∘ f ⊗₁ F.ε ∘ ρ⇐ ≈⟨ refl⟩∘⟨ F.identity ⟩⊗⟨refl ⟩∘⟨refl ⟩
+ F.⊗-homo.η (X , ⊥) ∘ (id ⊗₁ F.₁ ¡) ∘ f ⊗₁ F.ε ∘ ρ⇐ ≈⟨ pull-center (sym split₂ˡ) ⟩
+ F.⊗-homo.η (X , ⊥) ∘ f ⊗₁ (F.₁ ¡ ∘ F.ε) ∘ ρ⇐ ∎
+ where
+ open Shorthands 𝒞.monoidal using () renaming (ρ⇐ to ρ⇐′)
+ open CocartesianMonoidal 𝒞.U 𝒞.cocartesian using (unitorʳ)
+ open 𝒟.Equiv
+ open 𝒟 using (sym-assoc; _∘_; id; _⊗₁_; identityʳ)
+ open ⊗-Reasoning 𝒟.monoidal
+ open ⇒-Reasoning 𝒟.U
+ module -+- = Functor -+-
+ module Unitorʳ = Square {𝒞} {𝒞} {𝒟} {𝒟} {F} {F} -+⊥-id ≃₁ ≃₂ ≃₂≋≃₁
+open LiftUnitorʳ using (module Unitorʳ)
+
+module LiftAssociator where
+ module F = SymmetricMonoidalFunctor F
+ open 𝒞 using (⊥; -+_; i₁; _+_; _+₁_; ¡; +₁-cong₂; ¡-unique; -+-)
+ open Shorthands 𝒟.monoidal using (ρ⇒; ρ⇐)
+ ≃₁ : NaturalTransformation (Hom[ [𝒟×𝒟]×𝒟.U ][ [𝒟×𝒟]×𝒟.unit ,-] ∘F [F×F]×F.F) (Hom[ 𝒟.U ][ 𝒟.unit ,-] ∘F F.F ∘F ([x+y]+z.F {𝒞}))
+ ≃₁ = ntHelper record
+ { η = λ { ((X , Y) , Z) → record
+ { to = λ { ((f , g) , h) → F.⊗-homo.η (X + Y , Z) ∘ ((F.⊗-homo.η (X , Y) ∘ f ⊗₁ g ∘ ρ⇐) ⊗₁ h) ∘ ρ⇐ }
+ ; cong = λ { {(f , g) , h} {(f′ , g′) , h′} ((x , y) , z) → refl⟩∘⟨ (refl⟩∘⟨ x ⟩⊗⟨ y ⟩∘⟨refl) ⟩⊗⟨ z ⟩∘⟨refl }
+ } }
+ ; commute = λ { {(X , Y) , Z} {(X′ , Y′) , Z′} ((x , y) , z) {(f , g) , h} → commute x y z f g h }
+ }
+ where
+ open 𝒟.Equiv
+ open 𝒟 using (sym-assoc; _∘_; id; _⊗₁_; identityʳ; _≈_)
+ open ⊗-Reasoning 𝒟.monoidal
+ open ⇒-Reasoning 𝒟.U
+ commute
+ : {X Y Z X′ Y′ Z′ : 𝒞.Obj}
+ (x : 𝒞.U [ X , X′ ])
+ (y : 𝒞.U [ Y , Y′ ])
+ (z : 𝒞.U [ Z , Z′ ])
+ (f : 𝒟.U [ 𝒟.unit , F.₀ X ])
+ (g : 𝒟.U [ 𝒟.unit , F.₀ Y ])
+ (h : 𝒟.U [ 𝒟.unit , F.₀ Z ])
+ → F.⊗-homo.η (X′ + Y′ , Z′) ∘ (F.⊗-homo.η (X′ , Y′) ∘ (F.₁ x ∘ f ∘ id) ⊗₁ (F.₁ y ∘ g ∘ id) ∘ ρ⇐) ⊗₁ (F.₁ z ∘ h ∘ id) ∘ ρ⇐
+ ≈ F.₁ ((x +₁ y) +₁ z) ∘ (F.⊗-homo.η (X + Y , Z) ∘ (F.⊗-homo.η (X , Y) ∘ f ⊗₁ g ∘ ρ⇐) ⊗₁ h ∘ ρ⇐) ∘ id
+ commute {X} {Y} {Z} {X′} {Y′} {Z′} x y z f g h = begin
+ F.⊗-homo.η (X′ + Y′ , Z′) ∘ (F.⊗-homo.η (X′ , Y′) ∘ (F.₁ x ∘ f ∘ id) ⊗₁ (F.₁ y ∘ g ∘ id) ∘ ρ⇐) ⊗₁ (F.₁ z ∘ h ∘ id) ∘ ρ⇐
+ ≈⟨ refl⟩∘⟨ (refl⟩∘⟨ (refl⟩∘⟨ identityʳ) ⟩⊗⟨ (refl⟩∘⟨ identityʳ) ⟩∘⟨refl) ⟩⊗⟨ (refl⟩∘⟨ identityʳ) ⟩∘⟨refl ⟩
+ F.⊗-homo.η (X′ + Y′ , Z′) ∘ (F.⊗-homo.η (X′ , Y′) ∘ (F.₁ x ∘ f) ⊗₁ (F.₁ y ∘ g) ∘ ρ⇐) ⊗₁ (F.₁ z ∘ h) ∘ ρ⇐
+ ≈⟨ refl⟩∘⟨ push-center ⊗-distrib-over-∘ ⟩⊗⟨refl ⟩∘⟨refl ⟩
+ F.⊗-homo.η (X′ + Y′ , Z′) ∘ (F.⊗-homo.η (X′ , Y′) ∘ F.₁ x ⊗₁ F.₁ y ∘ f ⊗₁ g ∘ ρ⇐) ⊗₁ (F.₁ z ∘ h) ∘ ρ⇐
+ ≈⟨ refl⟩∘⟨ extendʳ (F.⊗-homo.commute (x , y)) ⟩⊗⟨refl ⟩∘⟨refl ⟩
+ F.⊗-homo.η (X′ + Y′ , Z′) ∘ (F.₁ (x +₁ y) ∘ F.⊗-homo.η (X , Y) ∘ f ⊗₁ g ∘ ρ⇐) ⊗₁ (F.₁ z ∘ h) ∘ ρ⇐
+ ≈⟨ push-center ⊗-distrib-over-∘ ⟩
+ F.⊗-homo.η (X′ + Y′ , Z′) ∘ F.₁ (x +₁ y) ⊗₁ F.₁ z ∘ (F.⊗-homo.η (X , Y) ∘ f ⊗₁ g ∘ ρ⇐) ⊗₁ h ∘ ρ⇐
+ ≈⟨ extendʳ (F.⊗-homo.commute (x +₁ y , z)) ⟩
+ F.₁ ((x +₁ y) +₁ z) ∘ F.⊗-homo.η (X + Y , Z) ∘ (F.⊗-homo.η (X , Y) ∘ f ⊗₁ g ∘ ρ⇐) ⊗₁ h ∘ ρ⇐
+ ≈⟨ refl⟩∘⟨ identityʳ ⟨
+ F.₁ ((x +₁ y) +₁ z) ∘ (F.⊗-homo.η (X + Y , Z) ∘ (F.⊗-homo.η (X , Y) ∘ f ⊗₁ g ∘ ρ⇐) ⊗₁ h ∘ ρ⇐) ∘ id
+ ∎
+ ≃₂ : NaturalTransformation (Hom[ [𝒟×𝒟]×𝒟.U ][ [𝒟×𝒟]×𝒟.unit ,-] ∘F [F×F]×F.F) (Hom[ 𝒟.U ][ 𝒟.unit ,-] ∘F F.F ∘F (x+[y+z].F {𝒞}))
+ ≃₂ = ntHelper record
+ { η = λ { ((X , Y) , Z) → record
+ { to = λ { ((f , g) , h) → F.⊗-homo.η (X , Y + Z) ∘ (f ⊗₁ (F.⊗-homo.η (Y , Z) ∘ g ⊗₁ h ∘ ρ⇐)) ∘ ρ⇐ }
+ ; cong = λ { {(f , g) , h} {(f′ , g′) , h′} ((x , y) , z) → refl⟩∘⟨ x ⟩⊗⟨ (refl⟩∘⟨ y ⟩⊗⟨ z ⟩∘⟨refl) ⟩∘⟨refl }
+ } }
+ ; commute = λ { {(X , Y) , Z} {(X′ , Y′) , Z′} ((x , y) , z) {(f , g) , h} → commute x y z f g h }
+ }
+ where
+ open 𝒟.Equiv
+ open 𝒟 using (sym-assoc; _∘_; id; _⊗₁_; identityʳ; _≈_)
+ open ⊗-Reasoning 𝒟.monoidal
+ open ⇒-Reasoning 𝒟.U
+ commute
+ : {X Y Z X′ Y′ Z′ : 𝒞.Obj}
+ (x : 𝒞.U [ X , X′ ])
+ (y : 𝒞.U [ Y , Y′ ])
+ (z : 𝒞.U [ Z , Z′ ])
+ (f : 𝒟.U [ 𝒟.unit , F.₀ X ])
+ (g : 𝒟.U [ 𝒟.unit , F.₀ Y ])
+ (h : 𝒟.U [ 𝒟.unit , F.₀ Z ])
+ → F.⊗-homo.η (X′ , Y′ + Z′) ∘ (F.₁ x ∘ f ∘ id) ⊗₁ (F.⊗-homo.η (Y′ , Z′) ∘ (F.₁ y ∘ g ∘ id) ⊗₁ (F.₁ z ∘ h ∘ id) ∘ ρ⇐) ∘ ρ⇐
+ ≈ F.₁ (x +₁ (y +₁ z)) ∘ (F.⊗-homo.η (X , Y + Z) ∘ f ⊗₁ (F.⊗-homo.η (Y , Z) ∘ g ⊗₁ h ∘ ρ⇐) ∘ ρ⇐) ∘ id
+ commute {X} {Y} {Z} {X′} {Y′} {Z′} x y z f g h = begin
+ F.⊗-homo.η (X′ , Y′ + Z′) ∘ (F.₁ x ∘ f ∘ id) ⊗₁ (F.⊗-homo.η (Y′ , Z′) ∘ (F.₁ y ∘ g ∘ id) ⊗₁ (F.₁ z ∘ h ∘ id) ∘ ρ⇐) ∘ ρ⇐
+ ≈⟨ refl⟩∘⟨ (refl⟩∘⟨ identityʳ) ⟩⊗⟨ (refl⟩∘⟨ (refl⟩∘⟨ identityʳ) ⟩⊗⟨ (refl⟩∘⟨ identityʳ) ⟩∘⟨refl) ⟩∘⟨refl ⟩
+ F.⊗-homo.η (X′ , Y′ + Z′) ∘ (F.₁ x ∘ f) ⊗₁ (F.⊗-homo.η (Y′ , Z′) ∘ (F.₁ y ∘ g) ⊗₁ (F.₁ z ∘ h) ∘ ρ⇐) ∘ ρ⇐
+ ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ push-center ⊗-distrib-over-∘ ⟩∘⟨refl ⟩
+ F.⊗-homo.η (X′ , Y′ + Z′) ∘ (F.₁ x ∘ f) ⊗₁ (F.⊗-homo.η (Y′ , Z′) ∘ F.₁ y ⊗₁ F.₁ z ∘ g ⊗₁ h ∘ ρ⇐) ∘ ρ⇐
+ ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ extendʳ (F.⊗-homo.commute (y , z)) ⟩∘⟨refl ⟩
+ F.⊗-homo.η (X′ , Y′ + Z′) ∘ (F.₁ x ∘ f) ⊗₁ (F.₁ (y +₁ z) ∘ F.⊗-homo.η (Y , Z) ∘ g ⊗₁ h ∘ ρ⇐) ∘ ρ⇐
+ ≈⟨ push-center ⊗-distrib-over-∘ ⟩
+ F.⊗-homo.η (X′ , Y′ + Z′) ∘ F.₁ x ⊗₁ F.₁ (y +₁ z) ∘ f ⊗₁ (F.⊗-homo.η (Y , Z) ∘ g ⊗₁ h ∘ ρ⇐) ∘ ρ⇐
+ ≈⟨ extendʳ (F.⊗-homo.commute (x , y +₁ z)) ⟩
+ F.₁ (x +₁ (y +₁ z)) ∘ F.⊗-homo.η (X , Y + Z) ∘ f ⊗₁ (F.⊗-homo.η (Y , Z) ∘ g ⊗₁ h ∘ ρ⇐) ∘ ρ⇐
+ ≈⟨ refl⟩∘⟨ identityʳ ⟨
+ F.₁ (x +₁ (y +₁ z)) ∘ (F.⊗-homo.η (X , Y + Z) ∘ f ⊗₁ (F.⊗-homo.η (Y , Z) ∘ g ⊗₁ h ∘ ρ⇐) ∘ ρ⇐) ∘ id
+ ∎
+ open NaturalIsomorphism using (F⇐G)
+ ≃₂≋≃₁ : (F⇐G (Hom[ 𝒟.U ][ 𝒟.unit ,-] ⓘˡ (F.F ⓘˡ assoc-≃))) ∘ᵥ ≃₂ ≋ ≃₁
+ ≃₂≋≃₁ {(X , Y) , Z} {(f , g) , h} = begin
+ F.₁ α⇐′ ∘ (F.⊗-homo.η (X , Y + Z) ∘ (f ⊗₁ _) ∘ ρ⇐) ∘ id ≈⟨ refl⟩∘⟨ identityʳ ⟩
+ F.₁ α⇐′ ∘ F.⊗-homo.η (X , Y + Z) ∘ f ⊗₁ (F.⊗-homo.η (Y , Z) ∘ g ⊗₁ h ∘ ρ⇐) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩⊗⟨ sym-assoc ⟩∘⟨refl ⟩
+ F.₁ α⇐′ ∘ F.⊗-homo.η (X , Y + Z) ∘ f ⊗₁ ((F.⊗-homo.η (Y , Z) ∘ g ⊗₁ h) ∘ ρ⇐) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ split₂ʳ ⟩
+ F.₁ α⇐′ ∘ F.⊗-homo.η (X , Y + Z) ∘ f ⊗₁ (F.⊗-homo.η (Y , Z) ∘ g ⊗₁ h) ∘ id ⊗₁ ρ⇐ ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ coherence-inv₃ ⟨
+ F.₁ α⇐′ ∘ F.⊗-homo.η (X , Y + Z) ∘ f ⊗₁ (F.⊗-homo.η (Y , Z) ∘ g ⊗₁ h) ∘ id ⊗₁ ρ⇐ ∘ λ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ unitorˡ-commute-to ⟨
+ F.₁ α⇐′ ∘ F.⊗-homo.η (X , Y + Z) ∘ f ⊗₁ (F.⊗-homo.η (Y , Z) ∘ g ⊗₁ h) ∘ λ⇐ ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ (switch-tofromˡ α coherence-inv₁) ⟩
+ F.₁ α⇐′ ∘ F.⊗-homo.η (X , Y + Z) ∘ f ⊗₁ (F.⊗-homo.η (Y , Z) ∘ g ⊗₁ h) ∘ α⇒ ∘ λ⇐ ⊗₁ id ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ split₂ˡ ⟩
+ F.₁ α⇐′ ∘ F.⊗-homo.η (X , Y + Z) ∘ id ⊗₁ F.⊗-homo.η (Y , Z) ∘ f ⊗₁ (g ⊗₁ h) ∘ α⇒ ∘ λ⇐ ⊗₁ id ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ coherence-inv₃ ⟩⊗⟨refl ⟩∘⟨refl ⟩
+ F.₁ α⇐′ ∘ F.⊗-homo.η (X , Y + Z) ∘ id ⊗₁ F.⊗-homo.η (Y , Z) ∘ f ⊗₁ (g ⊗₁ h) ∘ α⇒ ∘ ρ⇐ ⊗₁ id ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ extendʳ assoc-commute-from ⟨
+ F.₁ α⇐′ ∘ F.⊗-homo.η (X , Y + Z) ∘ id ⊗₁ F.⊗-homo.η (Y , Z) ∘ α⇒ ∘ (f ⊗₁ g) ⊗₁ h ∘ ρ⇐ ⊗₁ id ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ pullˡ (sym split₁ʳ) ⟩
+ F.₁ α⇐′ ∘ F.⊗-homo.η (X , Y + Z) ∘ id ⊗₁ F.⊗-homo.η (Y , Z) ∘ α⇒ ∘ (f ⊗₁ g ∘ ρ⇐) ⊗₁ h ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ sym-assoc ⟩
+ F.₁ α⇐′ ∘ F.⊗-homo.η (X , Y + Z) ∘ (id ⊗₁ F.⊗-homo.η (Y , Z) ∘ α⇒) ∘ (f ⊗₁ g ∘ ρ⇐) ⊗₁ h ∘ ρ⇐ ≈⟨ refl⟩∘⟨ sym-assoc ⟩
+ F.₁ α⇐′ ∘ (F.⊗-homo.η (X , Y + Z) ∘ id ⊗₁ F.⊗-homo.η (Y , Z) ∘ α⇒) ∘ (f ⊗₁ g ∘ ρ⇐) ⊗₁ h ∘ ρ⇐ ≈⟨ extendʳ (switch-fromtoˡ ([ F.F ]-resp-≅ α′) F.associativity) ⟨
+ F.⊗-homo.η (X + Y , Z) ∘ F.⊗-homo.η (X , Y) ⊗₁ id ∘ (f ⊗₁ g ∘ ρ⇐) ⊗₁ h ∘ ρ⇐ ≈⟨ refl⟩∘⟨ pullˡ (sym split₁ˡ) ⟩
+ F.⊗-homo.η (X + Y , Z) ∘ (F.⊗-homo.η (X , Y) ∘ (f ⊗₁ g) ∘ ρ⇐) ⊗₁ h ∘ ρ⇐ ∎
+ where
+ open Shorthands 𝒞.monoidal using () renaming (α⇐ to α⇐′)
+ open Shorthands 𝒟.monoidal using (α⇒; λ⇐)
+ open 𝒟.Equiv
+ open 𝒟 using (sym-assoc; _∘_; id; _⊗₁_; identityʳ; assoc-commute-from; unitorˡ-commute-to) renaming (unitorˡ to ƛ; associator to α)
+ open ⊗-Reasoning 𝒟.monoidal
+ open ⇒-Reasoning 𝒟.U
+ open CocartesianMonoidal 𝒞.U 𝒞.cocartesian using () renaming (associator to α′)
+ open ⊗-Properties 𝒟.monoidal using (coherence-inv₁; coherence-inv₃)
+ module Associator = Square {[𝒞×𝒞]×𝒞} {𝒞} {[𝒟×𝒟]×𝒟} {𝒟} {[F×F]×F} {F} {[x+y]+z.F {𝒞}} {x+[y+z].F {𝒞}} (assoc-≃ {𝒞}) ≃₁ ≃₂ ≃₂≋≃₁
+open LiftAssociator using (module Associator)
+
+module LiftBraiding where
+ module F = SymmetricMonoidalFunctor F
+ open 𝒞 using (⊥; -+_; i₁; _+_; _+₁_; ¡; +₁-cong₂; ¡-unique; -+-)
+ open Shorthands 𝒟.monoidal using (ρ⇒; ρ⇐)
+ ≃₁ : NaturalTransformation (Hom[ 𝒟×𝒟.U ][ 𝒟×𝒟.unit ,-] ∘F F×F.F) (Hom[ 𝒟.U ][ 𝒟.unit ,-] ∘F F.F ∘F (x+y.F {𝒞}))
+ ≃₁ = ntHelper record
+ { η = λ { (X , Y) → record
+ { to = λ { (x , y) → F.⊗-homo.η (X , Y) ∘ x ⊗₁ y ∘ ρ⇐}
+ ; cong = λ { {x , y} {x′ , y′} (≈x , ≈y) → refl⟩∘⟨ ≈x ⟩⊗⟨ ≈y ⟩∘⟨refl }
+ } }
+ ; commute = λ { {X , Y} {X′ , Y′} (x , y) {f , g} →
+ (extendʳ
+ (refl⟩∘⟨ (refl⟩∘⟨ identityʳ) ⟩⊗⟨ (refl⟩∘⟨ identityʳ)
+ ○ refl⟩∘⟨ ⊗-distrib-over-∘
+ ○ extendʳ (F.⊗-homo.commute (x , y))))
+ ○ refl⟩∘⟨ extendˡ (sym identityʳ) }
+ }
+ where
+ open 𝒟.Equiv
+ open 𝒟 using (sym-assoc; _∘_; id; _⊗₁_; identityʳ; _≈_; assoc)
+ open ⊗-Reasoning 𝒟.monoidal
+ open ⇒-Reasoning 𝒟.U
+ ≃₂ : NaturalTransformation (Hom[ 𝒟×𝒟.U ][ 𝒟×𝒟.unit ,-] ∘F F×F.F) (Hom[ 𝒟.U ][ 𝒟.unit ,-] ∘F F.F ∘F (y+x.F {𝒞}))
+ ≃₂ = ntHelper record
+ { η = λ { (X , Y) → record
+ { to = λ { (x , y) → F.⊗-homo.η (Y , X) ∘ y ⊗₁ x ∘ ρ⇐}
+ ; cong = λ { {x , y} {x′ , y′} (≈x , ≈y) → refl⟩∘⟨ ≈y ⟩⊗⟨ ≈x ⟩∘⟨refl }
+ } }
+ ; commute = λ { {X , Y} {X′ , Y′} (x , y) {f , g} →
+ (extendʳ
+ (refl⟩∘⟨ (refl⟩∘⟨ identityʳ) ⟩⊗⟨ (refl⟩∘⟨ identityʳ)
+ ○ refl⟩∘⟨ ⊗-distrib-over-∘
+ ○ extendʳ (F.⊗-homo.commute (y , x))))
+ ○ refl⟩∘⟨ extendˡ (sym identityʳ) }
+ }
+ where
+ open 𝒟.Equiv
+ open 𝒟 using (sym-assoc; _∘_; id; _⊗₁_; identityʳ; _≈_; assoc)
+ open ⊗-Reasoning 𝒟.monoidal
+ open ⇒-Reasoning 𝒟.U
+ open NaturalIsomorphism using (F⇐G)
+ open Symmetric 𝒞.symmetric using (braiding)
+ ≃₂≋≃₁ : (F⇐G (Hom[ 𝒟.U ][ 𝒟.unit ,-] ⓘˡ F.F ⓘˡ braiding)) ∘ᵥ ≃₂ ≋ ≃₁
+ ≃₂≋≃₁ {X , Y} {f , g} =
+ refl⟩∘⟨ (identityʳ ○ sym-assoc)
+ ○ extendʳ
+ (extendʳ F.braiding-compat
+ ○ refl⟩∘⟨ (𝒟.braiding.⇒.commute (g , f)))
+ ○ refl⟩∘⟨ pullʳ (sym (switch-tofromˡ 𝒟.braiding.FX≅GX braiding-coherence-inv) ○ coherence-inv₃)
+ where
+ open σ-Properties 𝒟.braided using (braiding-coherence-inv)
+ open 𝒟.Equiv
+ open 𝒟 using (sym-assoc; identityʳ)
+ open ⊗-Reasoning 𝒟.monoidal
+ open ⊗-Properties 𝒟.monoidal using (coherence-inv₃)
+ open ⇒-Reasoning 𝒟.U
+ module Braiding = Square {𝒞×𝒞} {𝒞} {𝒟×𝒟} {𝒟} {F×F} {F} {x+y.F {𝒞}} {y+x.F {𝒞}} braiding ≃₁ ≃₂ ≃₂≋≃₁
+open LiftBraiding using (module Braiding)
+
+CospansMonoidal : Monoidal DecoratedCospans
+CospansMonoidal = record
+ { ⊗ = ⊗
+ ; unit = ⊥
+ ; unitorˡ = [ L ]-resp-≅ ⊥+A≅A
+ ; unitorʳ = [ L ]-resp-≅ A+⊥≅A
+ ; associator = [ L ]-resp-≅ (≅.sym +-assoc)
+ ; unitorˡ-commute-from = λ { {X} {Y} {f} → Unitorˡ.from f }
+ ; unitorˡ-commute-to = λ { {X} {Y} {f} → Unitorˡ.to f }
+ ; unitorʳ-commute-from = λ { {X} {Y} {f} → Unitorʳ.from f }
+ ; unitorʳ-commute-to = λ { {X} {Y} {f} → Unitorʳ.to f }
+ ; assoc-commute-from = λ { {X} {X′} {f} {Y} {Y′} {g} {Z} {Z′} {h} → Associator.from _ }
+ ; assoc-commute-to = λ { {X} {X′} {f} {Y} {Y′} {g} {Z} {Z′} {h} → Associator.to _ }
+ ; triangle = triangle
+ ; pentagon = pentagon
+ }
+ where
+ open Category DecoratedCospans using (id; module Equiv; module HomReasoning)
+ open Equiv
+ open HomReasoning
+ open 𝒞 using (⊥; Obj; U; +-assoc)
+ λ⇒ = Unitorˡ.FX≅GX′.from
+ ρ⇒ = Unitorʳ.FX≅GX′.from
+ α⇒ = Associator.FX≅GX′.from
+ open Morphism U using (module ≅)
+ open Monoidal +-monoidal using () renaming (triangle to tri; pentagon to pent)
+ triangle : {X Y : Obj} → DecoratedCospans [ DecoratedCospans [ ⊗.₁ (id {X} , λ⇒) ∘ α⇒ ] ≈ ⊗.₁ (ρ⇒ , id {Y}) ]
+ triangle = sym L-resp-⊗ ⟩∘⟨refl ○ sym L.homomorphism ○ L.F-resp-≈ tri ○ L-resp-⊗
+ pentagon
+ : {W X Y Z : Obj}
+ → DecoratedCospans
+ [ DecoratedCospans [ ⊗.₁ (id {W} , α⇒ {(X , Y) , Z}) ∘ DecoratedCospans [ α⇒ ∘ ⊗.₁ (α⇒ , id) ] ]
+ ≈ DecoratedCospans [ α⇒ ∘ α⇒ ] ]
+ pentagon = sym L-resp-⊗ ⟩∘⟨ refl ⟩∘⟨ sym L-resp-⊗ ○ refl⟩∘⟨ sym L.homomorphism ○ sym L.homomorphism ○ L.F-resp-≈ pent ○ L.homomorphism
+
+CospansBraided : Braided CospansMonoidal
+CospansBraided = record
+ { braiding = niHelper record
+ { η = λ { (X , Y) → Braiding.FX≅GX′.from {X , Y} }
+ ; η⁻¹ = λ { (Y , X) → Braiding.FX≅GX′.to {Y , X} }
+ ; commute = λ { {X , Y} {X′ , Y′} (f , g) → Braiding.from (record { cospan = record { f₁ = f₁ f , f₁ g ; f₂ = f₂ f , f₂ g } ; decoration = decoration f , decoration g}) }
+ ; iso = λ { (X , Y) → Braiding.FX≅GX′.iso {X , Y} }
+ }
+ ; hexagon₁ = sym L-resp-⊗ ⟩∘⟨ refl ⟩∘⟨ sym L-resp-⊗ ○ refl⟩∘⟨ sym L.homomorphism ○ sym L.homomorphism ○ L-resp-≈ hex₁ ○ L.homomorphism ○ refl⟩∘⟨ L.homomorphism
+ ; hexagon₂ = sym L-resp-⊗ ⟩∘⟨refl ⟩∘⟨ sym L-resp-⊗ ○ sym L.homomorphism ⟩∘⟨refl ○ sym L.homomorphism ○ L-resp-≈ hex₂ ○ L.homomorphism ○ L.homomorphism ⟩∘⟨refl
+ }
+ where
+ open Symmetric 𝒞.symmetric renaming (hexagon₁ to hex₁; hexagon₂ to hex₂)
+ open DecoratedCospan
+ module Cospans = Category DecoratedCospans
+ open Cospans.Equiv
+ open Cospans.HomReasoning
+ open Functor L renaming (F-resp-≈ to L-resp-≈)
+
+CospansSymmetric : Symmetric CospansMonoidal
+CospansSymmetric = record
+ { braided = CospansBraided
+ ; commutative = sym homomorphism ○ L-resp-≈ comm ○ identity
+ }
+ where
+ open Symmetric 𝒞.symmetric renaming (commutative to comm)
+ module Cospans = Category DecoratedCospans
+ open Cospans.Equiv
+ open Cospans.HomReasoning
+ open Functor L renaming (F-resp-≈ to L-resp-≈)
diff --git a/Category/Monoidal/Instance/DecoratedCospans/Lift.agda b/Category/Monoidal/Instance/DecoratedCospans/Lift.agda
new file mode 100644
index 0000000..c75f0db
--- /dev/null
+++ b/Category/Monoidal/Instance/DecoratedCospans/Lift.agda
@@ -0,0 +1,114 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Category.Monoidal.Instance.DecoratedCospans.Lift {o ℓ e o′ ℓ′ e′} where
+
+import Categories.Diagram.Pushout as PushoutDiagram
+import Categories.Diagram.Pushout.Properties as PushoutProperties
+import Categories.Morphism as Morphism
+import Categories.Morphism.Reasoning as ⇒-Reasoning
+import Category.Diagram.Pushout as PushoutDiagram′
+import Functor.Instance.DecoratedCospan.Embed as CospanEmbed
+
+open import Categories.Category using (Category; _[_,_]; _[_≈_]; _[_∘_]; module Definitions)
+open import Categories.Functor using (Functor; _∘F_)
+open import Categories.Functor.Hom using (Hom[_][_,-])
+open import Categories.Functor.Properties using ([_]-resp-≅)
+open import Categories.NaturalTransformation using (NaturalTransformation; _∘ᵥ_)
+open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; _≃_; _ⓘˡ_)
+open import Categories.NaturalTransformation.Equivalence using () renaming (_≃_ to _≋_)
+open import Function.Bundles using (_⟨$⟩_)
+open import Function.Construct.Composition using () renaming (function to _∘′_)
+open import Functor.Exact using (RightExactFunctor; IsPushout⇒Pushout)
+
+open import Categories.Category.Monoidal.Bundle using (MonoidalCategory; SymmetricMonoidalCategory)
+open import Categories.Functor.Monoidal.Symmetric using (module Lax)
+open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)
+open import Category.Instance.Cospans using (Cospans)
+open import Category.Instance.DecoratedCospans using (DecoratedCospans)
+open import Category.Monoidal.Instance.Cospans.Lift {o} {ℓ} {e} using () renaming (module Square to Square′)
+open import Cospan.Decorated using (DecoratedCospan)
+
+open Lax using (SymmetricMonoidalFunctor)
+open FinitelyCocompleteCategory
+ using ()
+ renaming (symmetricMonoidalCategory to smc)
+
+module _
+ {𝒞 : FinitelyCocompleteCategory o ℓ e}
+ {𝒟 : FinitelyCocompleteCategory o ℓ e}
+ {𝒥 : SymmetricMonoidalCategory o′ ℓ′ e′}
+ {𝒦 : SymmetricMonoidalCategory o′ ℓ′ e′}
+ {H : SymmetricMonoidalFunctor (smc 𝒞) 𝒥}
+ {I : SymmetricMonoidalFunctor (smc 𝒟) 𝒦} where
+
+ module 𝒞 = FinitelyCocompleteCategory 𝒞
+ module 𝒟 = FinitelyCocompleteCategory 𝒟
+ module 𝒥 = SymmetricMonoidalCategory 𝒥
+ module 𝒦 = SymmetricMonoidalCategory 𝒦
+ module H = SymmetricMonoidalFunctor H
+ module I = SymmetricMonoidalFunctor I
+
+ open CospanEmbed 𝒟 I using (L; B₁; B∘L; R∘B; ≅-L-R)
+ open NaturalIsomorphism using (F⇐G)
+
+ module Square
+ {F G : Functor 𝒞.U 𝒟.U}
+ (F≃G : F ≃ G)
+ (⇒H≃I∘F : NaturalTransformation (Hom[ 𝒥.U ][ 𝒥.unit ,-] ∘F H.F) (Hom[ 𝒦.U ][ 𝒦.unit ,-] ∘F I.F ∘F F))
+ (⇒H≃I∘G : NaturalTransformation (Hom[ 𝒥.U ][ 𝒥.unit ,-] ∘F H.F) (Hom[ 𝒦.U ][ 𝒦.unit ,-] ∘F I.F ∘F G))
+ (≋ : (F⇐G (Hom[ 𝒦.U ][ 𝒦.unit ,-] ⓘˡ (I.F ⓘˡ F≃G))) ∘ᵥ ⇒H≃I∘G ≋ ⇒H≃I∘F)
+ where
+
+ module F = Functor F
+ module G = Functor G
+ module ⇒H≃I∘F = NaturalTransformation ⇒H≃I∘F
+ module ⇒H≃I∘G = NaturalTransformation ⇒H≃I∘G
+
+ open NaturalIsomorphism F≃G
+
+ IF≃IG : I.F ∘F F ≃ I.F ∘F G
+ IF≃IG = I.F ⓘˡ F≃G
+
+ open Morphism using (module ≅) renaming (_≅_ to _[_≅_])
+ FX≅GX′ : ∀ {Z : 𝒞.Obj} → DecoratedCospans 𝒟 I [ F.₀ Z ≅ G.₀ Z ]
+ FX≅GX′ = [ L ]-resp-≅ FX≅GX
+ module FX≅GX {Z} = _[_≅_] (FX≅GX {Z})
+ module FX≅GX′ {Z} = _[_≅_] (FX≅GX′ {Z})
+
+ module _ {X Y : 𝒞.Obj} (fg : DecoratedCospans 𝒞 H [ X , Y ]) where
+
+ open DecoratedCospan fg renaming (f₁ to f; f₂ to g; decoration to s)
+ open 𝒟 using (_∘_)
+
+ squares⇒cospan
+ : DecoratedCospans 𝒟 I
+ [ B₁ (G.₁ f ∘ FX≅GX.from) (G.₁ g ∘ FX≅GX.from) (⇒H≃I∘G.η N ⟨$⟩ s)
+ ≈ B₁ (F.₁ f) (F.₁ g) (⇒H≃I∘F.η N ⟨$⟩ s)
+ ]
+ squares⇒cospan = record
+ { cospans-≈ = Square′.squares⇒cospan F≃G cospan
+ ; same-deco = refl⟩∘⟨ sym 𝒦.identityʳ ○ ≋
+ }
+ where
+ open 𝒦.HomReasoning
+ open 𝒦.Equiv
+
+ module Cospans = Category (DecoratedCospans 𝒟 I)
+
+ from : DecoratedCospans 𝒟 I
+ [ DecoratedCospans 𝒟 I [ L.₁ (⇒.η Y) ∘ B₁ (F.₁ f) (F.₁ g) (⇒H≃I∘F.η N ⟨$⟩ s) ]
+ ≈ DecoratedCospans 𝒟 I [ B₁ (G.₁ f) (G.₁ g) (⇒H≃I∘G.η N ⟨$⟩ s) ∘ L.₁ (⇒.η X) ]
+ ]
+ from = sym (switch-tofromˡ FX≅GX′ (refl⟩∘⟨ B∘L ○ ≅-L-R FX≅GX ⟩∘⟨refl ○ R∘B ○ squares⇒cospan))
+ where
+ open Cospans.Equiv using (sym)
+ open ⇒-Reasoning (DecoratedCospans 𝒟 I) using (switch-tofromˡ)
+ open Cospans.HomReasoning using (refl⟩∘⟨_; _○_; _⟩∘⟨refl)
+
+ to : DecoratedCospans 𝒟 I
+ [ DecoratedCospans 𝒟 I [ L.₁ (⇐.η Y) ∘ B₁ (G.₁ f) (G.₁ g) (⇒H≃I∘G.η N ⟨$⟩ s) ] ≈ DecoratedCospans 𝒟 I [ B₁ (F.₁ f) (F.₁ g) (⇒H≃I∘F.η N ⟨$⟩ s) ∘ L.₁ (⇐.η X) ]
+ ]
+ to = switch-fromtoʳ FX≅GX′ (pullʳ B∘L ○ ≅-L-R FX≅GX ⟩∘⟨refl ○ R∘B ○ squares⇒cospan)
+ where
+ open ⇒-Reasoning (DecoratedCospans 𝒟 I) using (pullʳ; switch-fromtoʳ)
+ open Cospans.HomReasoning using (refl⟩∘⟨_; _○_; _⟩∘⟨refl)
diff --git a/Category/Monoidal/Instance/DecoratedCospans/Products.agda b/Category/Monoidal/Instance/DecoratedCospans/Products.agda
new file mode 100644
index 0000000..f8ef542
--- /dev/null
+++ b/Category/Monoidal/Instance/DecoratedCospans/Products.agda
@@ -0,0 +1,104 @@
+{-# OPTIONS --without-K --safe #-}
+{-# OPTIONS --lossy-unification #-}
+
+open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory)
+open import Categories.Functor.Monoidal.Symmetric using (module Lax)
+open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)
+
+open Lax using (SymmetricMonoidalFunctor)
+open FinitelyCocompleteCategory
+ using ()
+ renaming (symmetricMonoidalCategory to smc)
+
+module Category.Monoidal.Instance.DecoratedCospans.Products
+ {o o′ ℓ ℓ′ e e′}
+ (𝒞 : FinitelyCocompleteCategory o ℓ e)
+ {𝒟 : SymmetricMonoidalCategory o′ ℓ′ e′}
+ (F : SymmetricMonoidalFunctor (smc 𝒞) 𝒟) where
+
+import Categories.Morphism as Morphism
+import Categories.Morphism.Reasoning as ⇒-Reasoning
+
+open import Categories.Category using (_[_,_]; _[_≈_]; _[_∘_]; Category)
+open import Categories.Category.Core using (Category)
+open import Categories.Category.BinaryProducts using (BinaryProducts)
+open import Categories.Category.Cartesian using (Cartesian)
+open import Categories.Category.Cartesian.Bundle using (CartesianCategory)
+open import Categories.Functor using (Functor; _∘F_) renaming (id to idF)
+open import Categories.Functor.Monoidal.Properties using (∘-SymmetricMonoidal)
+open import Categories.Functor.Monoidal.Construction.Product using (⁂-SymmetricMonoidalFunctor)
+open import Categories.NaturalTransformation.Core using (NaturalTransformation; _∘ᵥ_; ntHelper)
+open import Category.Instance.Properties.SymMonCat {o} {ℓ} {e} using (SymMonCat-Cartesian)
+open import Category.Instance.Properties.SymMonCat {o′} {ℓ′} {e′} using () renaming (SymMonCat-Cartesian to SymMonCat-Cartesian′)
+open import Category.Cartesian.Instance.FinitelyCocompletes {o} {ℓ} {e} using (FinitelyCocompletes-CC)
+open import Category.Cartesian.Instance.SymMonCat {o} {ℓ} {e} using (SymMonCat-CC)
+open import Data.Product.Base using (_,_)
+open import Categories.Functor.Cartesian using (CartesianF)
+open import Functor.Cartesian.Instance.Underlying.SymmetricMonoidal.FinitelyCocomplete {o} {ℓ} {e} using (Underlying)
+
+module SMC = CartesianF Underlying
+module SymMonCat-CC = CartesianCategory SymMonCat-CC
+
+module 𝒞 = FinitelyCocompleteCategory 𝒞
+module 𝒟 = SymmetricMonoidalCategory 𝒟
+
+module _ where
+
+ open CartesianCategory FinitelyCocompletes-CC using (products)
+ open BinaryProducts products using (_×_)
+
+ 𝒞×𝒞 : FinitelyCocompleteCategory o ℓ e
+ 𝒞×𝒞 = 𝒞 × 𝒞
+
+ [𝒞×𝒞]×𝒞 : FinitelyCocompleteCategory o ℓ e
+ [𝒞×𝒞]×𝒞 = (𝒞 × 𝒞) × 𝒞
+
+module _ where
+
+ module _ where
+
+ open Cartesian SymMonCat-Cartesian′ using (products)
+ open BinaryProducts products using (_×_; _⁂_)
+
+ 𝒟×𝒟 : SymmetricMonoidalCategory o′ ℓ′ e′
+ 𝒟×𝒟 = 𝒟 × 𝒟
+ module 𝒟×𝒟 = SymmetricMonoidalCategory 𝒟×𝒟
+
+ [𝒟×𝒟]×𝒟 : SymmetricMonoidalCategory o′ ℓ′ e′
+ [𝒟×𝒟]×𝒟 = (𝒟 × 𝒟) × 𝒟
+ module [𝒟×𝒟]×𝒟 = SymmetricMonoidalCategory [𝒟×𝒟]×𝒟
+
+ module _ where
+
+ open Cartesian SymMonCat-Cartesian using (products)
+ open BinaryProducts products using (_×_; _⁂_)
+
+ smc𝒞×𝒞 : SymmetricMonoidalCategory o ℓ e
+ smc𝒞×𝒞 = smc 𝒞 × smc 𝒞
+
+ smc[𝒞×𝒞]×𝒞 : SymmetricMonoidalCategory o ℓ e
+ smc[𝒞×𝒞]×𝒞 = (smc 𝒞×𝒞) × smc 𝒞
+
+ F×F′ : SymmetricMonoidalFunctor smc𝒞×𝒞 𝒟×𝒟
+ F×F′ = ⁂-SymmetricMonoidalFunctor {o′} {ℓ′} {e′} {o′} {ℓ′} {e′} {𝒟} {𝒟} {o} {ℓ} {e} {o} {ℓ} {e} {smc 𝒞} {smc 𝒞} F F
+
+ F×F : SymmetricMonoidalFunctor (smc 𝒞×𝒞) 𝒟×𝒟
+ F×F = ∘-SymmetricMonoidal F×F′ from
+ where
+ open Morphism SymMonCat-CC.U using (_≅_)
+ ≅ : smc 𝒞×𝒞 ≅ smc𝒞×𝒞
+ ≅ = SMC.×-iso 𝒞 𝒞
+ open _≅_ ≅
+ module F×F = SymmetricMonoidalFunctor F×F
+
+ [F×F]×F′ : SymmetricMonoidalFunctor smc[𝒞×𝒞]×𝒞 [𝒟×𝒟]×𝒟
+ [F×F]×F′ = ⁂-SymmetricMonoidalFunctor {o′} {ℓ′} {e′} {o′} {ℓ′} {e′} {𝒟×𝒟} {𝒟} {o} {ℓ} {e} {o} {ℓ} {e} {smc 𝒞×𝒞} {smc 𝒞} F×F F
+
+ [F×F]×F : SymmetricMonoidalFunctor (smc [𝒞×𝒞]×𝒞) [𝒟×𝒟]×𝒟
+ [F×F]×F = ∘-SymmetricMonoidal [F×F]×F′ from
+ where
+ open Morphism SymMonCat-CC.U using (_≅_)
+ ≅ : smc [𝒞×𝒞]×𝒞 ≅ smc[𝒞×𝒞]×𝒞
+ ≅ = SMC.×-iso 𝒞×𝒞 𝒞
+ open _≅_ ≅
+ module [F×F]×F = SymmetricMonoidalFunctor [F×F]×F
diff --git a/Category/Monoidal/Instance/Nat.agda b/Category/Monoidal/Instance/Nat.agda
new file mode 100644
index 0000000..24b30a6
--- /dev/null
+++ b/Category/Monoidal/Instance/Nat.agda
@@ -0,0 +1,71 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Category.Monoidal.Instance.Nat where
+
+open import Level using (0ℓ)
+open import Categories.Category.Monoidal.Bundle using (MonoidalCategory; SymmetricMonoidalCategory)
+open import Categories.Category.Instance.Nat using (Nat; Nat-Cartesian; Nat-Cocartesian; Natop)
+open import Categories.Category.Cartesian using (Cartesian)
+open import Categories.Category.Cocartesian using (Cocartesian; module CocartesianMonoidal; module CocartesianSymmetricMonoidal)
+open import Categories.Category.Cartesian.Monoidal using (module CartesianMonoidal)
+open import Categories.Category.Duality using (coCartesian⇒Cocartesian; Cocartesian⇒coCartesian)
+
+import Categories.Category.Cartesian.SymmetricMonoidal as CartesianSymmetricMonoidal
+
+Natop-Cartesian : Cartesian Natop
+Natop-Cartesian = Cocartesian⇒coCartesian Nat Nat-Cocartesian
+
+Natop-Cocartesian : Cocartesian Natop
+Natop-Cocartesian = coCartesian⇒Cocartesian Natop Nat-Cartesian
+
+module Monoidal where
+
+ open MonoidalCategory
+ open CartesianMonoidal using () renaming (monoidal to ×-monoidal)
+ open CocartesianMonoidal using (+-monoidal)
+
+ Nat,+,0 : MonoidalCategory 0ℓ 0ℓ 0ℓ
+ Nat,+,0 .U = Nat
+ Nat,+,0 .monoidal = +-monoidal Nat Nat-Cocartesian
+
+ Nat,×,1 : MonoidalCategory 0ℓ 0ℓ 0ℓ
+ Nat,×,1 .U = Nat
+ Nat,×,1 .monoidal = ×-monoidal Nat-Cartesian
+
+ Natop,+,0 : MonoidalCategory 0ℓ 0ℓ 0ℓ
+ Natop,+,0 .U = Natop
+ Natop,+,0 .monoidal = ×-monoidal Natop-Cartesian
+
+ Natop,×,1 : MonoidalCategory 0ℓ 0ℓ 0ℓ
+ Natop,×,1 .U = Natop
+ Natop,×,1 .monoidal = +-monoidal Natop Natop-Cocartesian
+
+module Symmetric where
+
+ open SymmetricMonoidalCategory
+ open CartesianMonoidal using () renaming (monoidal to ×-monoidal)
+ open CocartesianMonoidal using (+-monoidal)
+ open CartesianSymmetricMonoidal using () renaming (symmetric to ×-symmetric)
+ open CocartesianSymmetricMonoidal using (+-symmetric)
+
+ Nat,+,0 : SymmetricMonoidalCategory 0ℓ 0ℓ 0ℓ
+ Nat,+,0 .U = Nat
+ Nat,+,0 .monoidal = +-monoidal Nat Nat-Cocartesian
+ Nat,+,0 .symmetric = +-symmetric Nat Nat-Cocartesian
+
+ Nat,×,1 : SymmetricMonoidalCategory 0ℓ 0ℓ 0ℓ
+ Nat,×,1 .U = Nat
+ Nat,×,1 .monoidal = ×-monoidal Nat-Cartesian
+ Nat,×,1 .symmetric = ×-symmetric Nat Nat-Cartesian
+
+ Natop,+,0 : SymmetricMonoidalCategory 0ℓ 0ℓ 0ℓ
+ Natop,+,0 .U = Natop
+ Natop,+,0 .monoidal = ×-monoidal Natop-Cartesian
+ Natop,+,0 .symmetric = ×-symmetric Natop Natop-Cartesian
+
+ Natop,×,1 : SymmetricMonoidalCategory 0ℓ 0ℓ 0ℓ
+ Natop,×,1 .U = Natop
+ Natop,×,1 .monoidal = +-monoidal Natop Natop-Cocartesian
+ Natop,×,1 .symmetric = +-symmetric Natop Natop-Cocartesian
+
+open Symmetric public
diff --git a/Cospan/Decorated.agda b/Cospan/Decorated.agda
index 498a869..b5d6f07 100644
--- a/Cospan/Decorated.agda
+++ b/Cospan/Decorated.agda
@@ -17,7 +17,7 @@ module Cospan.Decorated
module C = FinitelyCocompleteCategory C
module D = SymmetricMonoidalCategory D
-open import Category.Instance.Cospans C using (Cospan)
+open import Category.Diagram.Cospan C using (Cospan)
open import Level using (_⊔_)
diff --git a/Data/CMonoid.agda b/Data/CMonoid.agda
new file mode 100644
index 0000000..8aaf869
--- /dev/null
+++ b/Data/CMonoid.agda
@@ -0,0 +1,77 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Level using (Level)
+module Data.CMonoid {c ℓ : Level} where
+
+open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory)
+open import Category.Instance.Setoids.SymmetricMonoidal {c} {ℓ} using (Setoids-×; ×-symmetric′)
+open import Object.Monoid.Commutative using (CommutativeMonoid; CommutativeMonoid⇒)
+open import Categories.Object.Monoid using (Monoid)
+
+open import Data.Monoid {c} {ℓ} using (toMonoid; fromMonoid; toMonoid⇒)
+
+import Algebra.Bundles as Alg
+
+open import Data.Setoid using (∣_∣)
+open import Relation.Binary using (Setoid)
+open import Function using (Func; _⟨$⟩_)
+open import Data.Product using (curry′; uncurry′; _,_)
+open Func
+
+-- A commutative monoid object in the (symmetric monoidal) category of setoids
+-- is just a commutative monoid
+
+toCMonoid : CommutativeMonoid Setoids-×.symmetric → Alg.CommutativeMonoid c ℓ
+toCMonoid M = record
+ { M
+ ; isCommutativeMonoid = record
+ { isMonoid = M.isMonoid
+ ; comm = comm
+ }
+ }
+ where
+ open CommutativeMonoid M using (monoid; commutative; μ)
+ module M = Alg.Monoid (toMonoid monoid)
+ opaque
+ unfolding toMonoid
+ comm : (x y : M.Carrier) → x M.∙ y M.≈ y M.∙ x
+ comm x y = commutative {x , y}
+
+open import Function.Construct.Constant using () renaming (function to Const)
+open import Data.Setoid.Unit using (⊤ₛ)
+
+fromCMonoid : Alg.CommutativeMonoid c ℓ → CommutativeMonoid Setoids-×.symmetric
+fromCMonoid M = record
+ { M
+ ; isCommutativeMonoid = record
+ { isMonoid = M.isMonoid
+ ; commutative = commutative
+ }
+ }
+ where
+ open Alg.CommutativeMonoid M using (monoid; comm)
+ module M = Monoid (fromMonoid monoid)
+ open Setoids-× using (_≈_; _∘_; module braiding)
+ opaque
+ unfolding toMonoid
+ commutative : M.μ ≈ M.μ ∘ braiding.⇒.η _
+ commutative {x , y} = comm x y
+
+-- A morphism of monoids in the (monoidal) category of setoids is a monoid homomorphism
+
+module _ (M N : CommutativeMonoid Setoids-×.symmetric) where
+
+ module M = Alg.CommutativeMonoid (toCMonoid M)
+ module N = Alg.CommutativeMonoid (toCMonoid N)
+
+ open import Data.Product using (Σ; _,_)
+ open import Function using (_⟶ₛ_)
+ open import Algebra.Morphism using (IsMonoidHomomorphism)
+ open CommutativeMonoid
+ open CommutativeMonoid⇒
+
+ toCMonoid⇒
+ : CommutativeMonoid⇒ Setoids-×.symmetric M N
+ → Σ (M.setoid ⟶ₛ N.setoid) (λ f
+ → IsMonoidHomomorphism M.rawMonoid N.rawMonoid (to f))
+ toCMonoid⇒ f = toMonoid⇒ (monoid M) (monoid N) (monoid⇒ f)
diff --git a/Data/Castable.agda b/Data/Castable.agda
new file mode 100644
index 0000000..4f85b3d
--- /dev/null
+++ b/Data/Castable.agda
@@ -0,0 +1,50 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Data.Castable where
+
+open import Level using (Level; suc; _⊔_)
+open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst; cong; module ≡-Reasoning)
+open import Relation.Binary using (Sym; Trans; _⇒_)
+
+record IsCastable {ℓ₁ ℓ₂ : Level} {A : Set ℓ₁} (B : A → Set ℓ₂) : Set (ℓ₁ ⊔ ℓ₂) where
+
+ field
+ cast : {e e′ : A} → .(e ≡ e′) → B e → B e′
+ cast-trans
+ : {m n o : A}
+ → .(eq₁ : m ≡ n)
+ .(eq₂ : n ≡ o)
+ (x : B m)
+ → cast eq₂ (cast eq₁ x) ≡ cast (trans eq₁ eq₂) x
+ cast-is-id : {m : A} .(eq : m ≡ m) (x : B m) → cast eq x ≡ x
+ subst-is-cast : {m n : A} (eq : m ≡ n) (x : B m) → subst B eq x ≡ cast eq x
+
+ infix 3 _≈[_]_
+ _≈[_]_ : {n m : A} → B n → .(eq : n ≡ m) → B m → Set ℓ₂
+ _≈[_]_ x eq y = cast eq x ≡ y
+
+ ≈-reflexive : {n : A} → _≡_ ⇒ (λ xs ys → _≈[_]_ {n} xs refl ys)
+ ≈-reflexive {n} {x} {y} eq = trans (cast-is-id refl x) eq
+
+ ≈-sym : {m n : A} .{m≡n : m ≡ n} → Sym _≈[ m≡n ]_ _≈[ sym m≡n ]_
+ ≈-sym {m} {n} {m≡n} {x} {y} x≡y = begin
+ cast (sym m≡n) y ≡⟨ cong (cast (sym m≡n)) x≡y ⟨
+ cast (sym m≡n) (cast m≡n x) ≡⟨ cast-trans m≡n (sym m≡n) x ⟩
+ cast (trans m≡n (sym m≡n)) x ≡⟨ cast-is-id (trans m≡n (sym m≡n)) x ⟩
+ x ∎
+ where
+ open ≡-Reasoning
+
+ ≈-trans : {m n o : A} .{m≡n : m ≡ n} .{n≡o : n ≡ o} → Trans _≈[ m≡n ]_ _≈[ n≡o ]_ _≈[ trans m≡n n≡o ]_
+ ≈-trans {m} {n} {o} {m≡n} {n≡o} {x} {y} {z} x≡y y≡z = begin
+ cast (trans m≡n n≡o) x ≡⟨ cast-trans m≡n n≡o x ⟨
+ cast n≡o (cast m≡n x) ≡⟨ cong (cast n≡o) x≡y ⟩
+ cast n≡o y ≡⟨ y≡z ⟩
+ z ∎
+ where
+ open ≡-Reasoning
+
+record Castable {ℓ₁ ℓ₂ : Level} {A : Set ℓ₁} : Set (suc (ℓ₁ ⊔ ℓ₂)) where
+ field
+ B : A → Set ℓ₂
+ isCastable : IsCastable B
diff --git a/Data/Circuit.agda b/Data/Circuit.agda
new file mode 100644
index 0000000..473e4fc
--- /dev/null
+++ b/Data/Circuit.agda
@@ -0,0 +1,42 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Level using (Level)
+
+module Data.Circuit {ℓ : Level} where
+
+open import Data.Circuit.Gate using (Gates)
+
+import Data.List as List
+import Data.Hypergraph {ℓ} Gates as Hypergraph
+
+open import Data.Fin using (Fin)
+open import Data.Nat using (ℕ)
+open import Data.List.Relation.Binary.Permutation.Setoid.Properties using (map⁺)
+open import Function using (Func; _⟶ₛ_; _∘_)
+open import Relation.Binary using (Setoid)
+
+open Func
+
+open Hypergraph using (Multiset∘Edgeₛ)
+open Hypergraph
+ using (_≈_ ; mk≈ ; module Edge; edgesₛ)
+ renaming
+ ( Hypergraph to Circuit
+ ; Hypergraphₛ to Circuitₛ
+ ; mkHypergraph to mkCircuit
+ ; mkHypergraphₛ to mkCircuitₛ
+ )
+ public
+open List using ([])
+
+map : {n m : ℕ} → (Fin n → Fin m) → Circuit n → Circuit m
+map f (mkCircuit edges) = mkCircuit (List.map (Edge.map f) edges)
+
+discrete : (n : ℕ) → Circuit n
+discrete n = mkCircuit []
+
+open Edge using (Edgeₛ)
+
+mapₛ : {n m : ℕ} → (Fin n → Fin m) → Circuitₛ n ⟶ₛ Circuitₛ m
+mapₛ f .to = map f
+mapₛ {n} {m} f .cong (mk≈ x≈y) = mk≈ (map⁺ (Edgeₛ n) (Edgeₛ m) (cong (Edge.mapₛ f)) x≈y)
diff --git a/Data/Circuit/Convert.agda b/Data/Circuit/Convert.agda
new file mode 100644
index 0000000..d5abd35
--- /dev/null
+++ b/Data/Circuit/Convert.agda
@@ -0,0 +1,181 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Data.Circuit.Convert where
+
+open import Level using (0ℓ)
+
+import Data.Vec as Vec
+import Data.Vec.Relation.Binary.Equality.Cast as VecCast
+import Data.List.Relation.Binary.Permutation.Propositional as L
+import Data.Vec.Functional.Relation.Binary.Permutation as V
+import DecorationFunctor.Hypergraph.Labeled {0ℓ} {0ℓ} as LabeledHypergraph
+
+open import Data.Nat.Base using (ℕ)
+open import Data.Circuit.Gate using (Gate; Gates; cast-gate; cast-gate-is-id; subst-is-cast-gate)
+open import Data.Circuit {0ℓ} {0ℓ} using (Circuit; Circuitₛ; _≈_; mkCircuit; module Edge; mk≈)
+open import Data.Fin.Base using (Fin)
+open import Data.Product.Base using (_,_)
+open import Data.Permutation using (fromList-↭; toList-↭)
+open import Data.List using (length)
+open import Data.Vec.Functional using (toVec; fromVec; toList; fromList)
+open import Function.Bundles using (Equivalence; _↔_)
+open import Function.Base using (_∘_; id)
+open import Data.Vec.Properties using (tabulate-cong; tabulate-∘; map-cast)
+open import Data.Fin.Base using () renaming (cast to fincast)
+open import Data.Fin.Properties using () renaming (cast-trans to fincast-trans; cast-is-id to fincast-is-id)
+open import Data.List.Relation.Binary.Permutation.Homogeneous using (Permutation)
+open import Data.Product.Base using (proj₁; proj₂; _×_)
+open import Data.Fin.Permutation using (flip; _⟨$⟩ˡ_)
+open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_)
+
+open LabeledHypergraph using (Hypergraph-same) renaming (Hypergraph to Hypergraph′; Hypergraph-setoid to Hypergraph-Setoid′)
+
+to : {v : ℕ} → Circuit v → Hypergraph′ v
+to C = record
+ { h = length edges
+ ; a = arity ∘ fromList edges
+ ; j = fromVec ∘ ports ∘ fromList edges
+ ; l = label ∘ fromList edges
+ }
+ where
+ open Edge.Edge using (arity; ports; label)
+ open Circuit C
+
+from : {v : ℕ} → Hypergraph′ v → Circuit v
+from {v} H = record
+ { edges = toList asEdge
+ }
+ where
+ open Hypergraph′ H
+ asEdge : Fin h → Edge.Edge v
+ asEdge e = record { label = l e ; ports = toVec (j e) }
+
+to-cong : {v : ℕ} {H H′ : Circuit v} → H ≈ H′ → Hypergraph-same (to H) (to H′)
+to-cong {v} {H} {H′} ≈H = record
+ { ↔h = flip ρ
+ ; ≗a = ≗a
+ ; ≗j = ≗j
+ ; ≗l = ≗l
+ }
+ where
+ open Edge.Edge using (arity; ports; label)
+ open _≈_ ≈H
+ open import Data.Fin.Permutation using (_⟨$⟩ʳ_; _⟨$⟩ˡ_; Permutation′; inverseʳ)
+ open import Data.Fin.Base using (cast)
+ open import Data.Fin.Properties using (cast-is-id)
+ ρ : Fin (length H′.edges) ↔ Fin (length H.edges)
+ ρ = proj₁ (fromList-↭ ↭-edges)
+
+ open ≡.≡-Reasoning
+ edges≗ρ∘edges′ : (i : Fin (length H.edges)) → fromList H.edges i ≡ fromList H′.edges (ρ ⟨$⟩ˡ i)
+ edges≗ρ∘edges′ i = begin
+ fromList H.edges i ≡⟨ ≡.cong (fromList H.edges) (inverseʳ ρ) ⟨
+ fromList H.edges (ρ ⟨$⟩ʳ (ρ ⟨$⟩ˡ i)) ≡⟨ proj₂ (fromList-↭ ↭-edges) (ρ ⟨$⟩ˡ i) ⟩
+ fromList H′.edges (ρ ⟨$⟩ˡ i) ∎
+
+ ≗a : (e : Fin (Hypergraph′.h (to H)))
+ → Hypergraph′.a (to H) e
+ ≡ arity (fromList H′.edges (ρ ⟨$⟩ˡ e))
+ ≗a = ≡.cong arity ∘ edges≗ρ∘edges′
+
+ ≗j : (e : Fin (Hypergraph′.h (to H)))
+ (i : Fin (Hypergraph′.a (to H) e))
+ → fromVec (ports (fromList H.edges e)) i
+ ≡ fromVec (ports (fromList H′.edges (ρ ⟨$⟩ˡ e))) (cast (≗a e) i)
+ ≗j e i
+ rewrite edges≗ρ∘edges′ e
+ rewrite cast-is-id ≡.refl i = ≡.refl
+
+ ≗l : (e : Fin (Hypergraph′.h (to H)))
+ → label (fromList H.edges e)
+ ≡ cast-gate (≡.sym (≗a e)) (label (fromList H′.edges (ρ ⟨$⟩ˡ e)))
+ ≗l e
+ rewrite edges≗ρ∘edges′ e
+ rewrite cast-gate-is-id ≡.refl (label (fromList H′.edges (ρ ⟨$⟩ˡ e))) =
+ ≡.refl
+
+module _ {v : ℕ} where
+ open import Data.Hypergraph.Label using (HypergraphLabel)
+ open HypergraphLabel Gates using (isCastable)
+ open import Data.Castable using (IsCastable)
+ open IsCastable isCastable using (≈-reflexive; ≈-sym; ≈-trans)
+ from-cong
+ : {H H′ : Hypergraph′ v}
+ → Hypergraph-same H H′
+ → from H ≈ from H′
+ from-cong {H} {H′} ≈H = mk≈ (toList-↭ (flip ↔h , H∘ρ≗H′))
+ where
+
+ module H = Hypergraph′ H
+ module H′ = Hypergraph′ H′
+ open Hypergraph′
+ open Hypergraph-same ≈H using (↔h; ≗a; ≗l; ≗j; inverseˡ) renaming (from to f; to to t)
+ asEdge : (H : Hypergraph′ v) → Fin (h H) → Edge.Edge v
+ asEdge H e = record { label = l H e ; ports = toVec (j H e) }
+
+ to-from : (e : Fin H′.h) → t (f e) ≡ e
+ to-from e = inverseˡ ≡.refl
+
+ a∘to-from : (e : Fin H′.h) → H′.a (t (f e)) ≡ H′.a e
+ a∘to-from = ≡.cong H′.a ∘ to-from
+
+ ≗a′ : (e : Fin H′.h) → H.a (f e) ≡ H′.a e
+ ≗a′ e = ≡.trans (≗a (f e)) (a∘to-from e)
+
+ l≗ : (e : Fin H.h) → cast-gate (≗a e) (H.l e) ≡ H′.l (t e)
+ l≗ e = ≈-sym (≡.sym (≗l e))
+
+ l∘to-from : (e : Fin H′.h) → cast-gate (a∘to-from e) (H′.l (t (f e))) ≡ H′.l e
+ l∘to-from e rewrite to-from e = ≈-reflexive ≡.refl
+
+ ≗l′ : (e : Fin H′.h) → cast-gate (≗a′ e) (H.l (f e)) ≡ H′.l e
+ ≗l′ e = ≈-trans {H.a _} (l≗ (f e)) (l∘to-from e)
+
+ j∘to-from
+ : (e : Fin H′.h) (i : Fin (H′.a (t (f e))))
+ → H′.j (t (f e)) i
+ ≡ H′.j e (fincast (a∘to-from e) i)
+ j∘to-from e i rewrite to-from e = ≡.cong (H′.j e) (≡.sym (fincast-is-id ≡.refl i))
+
+ open ≡.≡-Reasoning
+
+ ≗j′ : (e : Fin H′.h) (i : Fin (H.a (f e))) → H.j (f e) i ≡ H′.j e (fincast (≗a′ e) i)
+ ≗j′ e i = begin
+ H.j (f e) i ≡⟨ ≗j (f e) i ⟩
+ H′.j (t (f e)) (fincast _ i) ≡⟨ j∘to-from e (fincast _ i) ⟩
+ H′.j e (fincast (a∘to-from e) (fincast _ i)) ≡⟨ ≡.cong (H′.j e) (fincast-trans (≗a (f e)) _ i) ⟩
+ H′.j e (fincast (≗a′ e) i) ∎
+
+ cast-toVec
+ : {n m : ℕ}
+ {A : Set}
+ (m≡n : m ≡ n)
+ (f : Fin n → A)
+ → Vec.cast m≡n (toVec (f ∘ fincast m≡n)) ≡ toVec f
+ cast-toVec m≡n f rewrite m≡n = begin
+ Vec.cast _ (toVec (f ∘ (fincast _))) ≡⟨ VecCast.cast-is-id ≡.refl (toVec (f ∘ fincast ≡.refl)) ⟩
+ toVec (f ∘ fincast _) ≡⟨ tabulate-∘ f (fincast ≡.refl) ⟩
+ Vec.map f (toVec (fincast _)) ≡⟨ ≡.cong (Vec.map f) (tabulate-cong (fincast-is-id ≡.refl)) ⟩
+ Vec.map f (toVec id) ≡⟨ tabulate-∘ f id ⟨
+ toVec f ∎
+
+ ≗p′ : (e : Fin H′.h) → Vec.cast (≗a′ e) (toVec (H.j (f e))) ≡ toVec (H′.j e)
+ ≗p′ e = begin
+ Vec.cast (≗a′ e) (toVec (H.j (f e))) ≡⟨ ≡.cong (Vec.cast (≗a′ e)) (tabulate-cong (≗j′ e)) ⟩
+ Vec.cast _ (toVec (H′.j e ∘ fincast _)) ≡⟨ cast-toVec (≗a′ e) (H′.j e) ⟩
+ toVec (H′.j e) ∎
+
+ H∘ρ≗H′ : (e : Fin H′.h) → asEdge H (↔h ⟨$⟩ˡ e) ≡ asEdge H′ e
+ H∘ρ≗H′ e = Edge.≈⇒≡ record
+ { ≡arity = ≗a′ e
+ ; ≡label = ≗l′ e
+ ; ≡ports = ≗p′ e
+ }
+
+equiv : (v : ℕ) → Equivalence (Circuitₛ v) (Hypergraph-Setoid′ v)
+equiv v = record
+ { to = to
+ ; from = from
+ ; to-cong = to-cong
+ ; from-cong = from-cong
+ }
diff --git a/Data/Circuit/Gate.agda b/Data/Circuit/Gate.agda
new file mode 100644
index 0000000..f4b55de
--- /dev/null
+++ b/Data/Circuit/Gate.agda
@@ -0,0 +1,137 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Data.Circuit.Gate where
+
+open import Level using (0ℓ)
+open import Data.Castable using (Castable)
+open import Data.Hypergraph.Label using (HypergraphLabel)
+open import Data.String using (String)
+open import Data.Nat.Base using (ℕ; _≤_)
+open import Data.Nat.Properties using (≤-refl; ≤-trans; ≤-antisym; ≤-total)
+open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst; isEquivalence; cong)
+import Relation.Binary.PropositionalEquality as ≡
+
+import Data.Nat as Nat
+import Data.Fin as Fin
+
+data Gate : ℕ → Set where
+ ZERO : Gate 1
+ ONE : Gate 1
+ ID : Gate 2
+ NOT : Gate 2
+ AND : Gate 3
+ OR : Gate 3
+ XOR : Gate 3
+ NAND : Gate 3
+ NOR : Gate 3
+ XNOR : Gate 3
+
+cast-gate : {e e′ : ℕ} → .(e ≡ e′) → Gate e → Gate e′
+cast-gate {1} {1} eq g = g
+cast-gate {2} {2} eq g = g
+cast-gate {3} {3} eq g = g
+
+cast-gate-trans
+ : {m n o : ℕ}
+ → .(eq₁ : m ≡ n)
+ .(eq₂ : n ≡ o)
+ (g : Gate m)
+ → cast-gate eq₂ (cast-gate eq₁ g) ≡ cast-gate (trans eq₁ eq₂) g
+cast-gate-trans {1} {1} {1} eq₁ eq₂ g = refl
+cast-gate-trans {2} {2} {2} eq₁ eq₂ g = refl
+cast-gate-trans {3} {3} {3} eq₁ eq₂ g = refl
+
+cast-gate-is-id : {m : ℕ} .(eq : m ≡ m) (g : Gate m) → cast-gate eq g ≡ g
+cast-gate-is-id {1} eq g = refl
+cast-gate-is-id {2} eq g = refl
+cast-gate-is-id {3} eq g = refl
+
+subst-is-cast-gate : {m n : ℕ} (eq : m ≡ n) (g : Gate m) → subst Gate eq g ≡ cast-gate eq g
+subst-is-cast-gate refl g = sym (cast-gate-is-id refl g)
+
+GateCastable : Castable
+GateCastable = record
+ { B = Gate
+ ; isCastable = record
+ { cast = cast-gate
+ ; cast-trans = cast-gate-trans
+ ; cast-is-id = cast-gate-is-id
+ ; subst-is-cast = subst-is-cast-gate
+ }
+ }
+
+showGate : (n : ℕ) → Gate n → String
+showGate _ ZERO = "ZERO"
+showGate _ ONE = "ONE"
+showGate _ ID = "ID"
+showGate _ NOT = "NOT"
+showGate _ AND = "AND"
+showGate _ OR = "OR"
+showGate _ XOR = "XOR"
+showGate _ NAND = "NAND"
+showGate _ NOR = "NOR"
+showGate _ XNOR = "XNOR"
+
+toℕ : (n : ℕ) → Gate n → ℕ
+toℕ 1 ZERO = 0
+toℕ 1 ONE = 1
+toℕ 2 ID = 0
+toℕ 2 NOT = 1
+toℕ 3 AND = 0
+toℕ 3 OR = 1
+toℕ 3 XOR = 2
+toℕ 3 NAND = 3
+toℕ 3 NOR = 4
+toℕ 3 XNOR = 5
+
+toℕ-injective : {n : ℕ} {x y : Gate n} → toℕ n x ≡ toℕ n y → x ≡ y
+toℕ-injective {1} {ZERO} {ZERO} refl = refl
+toℕ-injective {1} {ONE} {ONE} refl = refl
+toℕ-injective {2} {ID} {ID} refl = refl
+toℕ-injective {2} {NOT} {NOT} refl = refl
+toℕ-injective {3} {AND} {AND} refl = refl
+toℕ-injective {3} {OR} {OR} refl = refl
+toℕ-injective {3} {XOR} {XOR} refl = refl
+toℕ-injective {3} {NAND} {NAND} refl = refl
+toℕ-injective {3} {NOR} {NOR} refl = refl
+toℕ-injective {3} {XNOR} {XNOR} refl = refl
+
+open import Relation.Binary using (Rel; Decidable; DecidableEquality)
+import Relation.Nullary.Decidable as Dec
+
+_[_≤_] : (n : ℕ) → Rel (Gate n) 0ℓ
+_[_≤_] n x y = toℕ n x ≤ toℕ n y
+
+_≟_ : {n : ℕ} → DecidableEquality (Gate n)
+_≟_ {n} x y = Dec.map′ toℕ-injective (cong (toℕ n)) (toℕ n x Nat.≟ toℕ n y)
+
+_≤?_ : {n : ℕ} → Decidable (n [_≤_])
+_≤?_ {n} x y = toℕ n x Nat.≤? toℕ n y
+
+Gates : HypergraphLabel
+Gates = record
+ { Label = Gate
+ ; showLabel = showGate
+ ; isCastable = record
+ { cast = cast-gate
+ ; cast-trans = cast-gate-trans
+ ; cast-is-id = cast-gate-is-id
+ ; subst-is-cast = subst-is-cast-gate
+ }
+ ; _[_≤_] = λ n x y → toℕ n x ≤ toℕ n y
+ ; isDecTotalOrder = λ n → record
+ { isTotalOrder = record
+ { isPartialOrder = record
+ { isPreorder = record
+ { isEquivalence = isEquivalence
+ ; reflexive = λ { refl → ≤-refl }
+ ; trans = ≤-trans
+ }
+ ; antisym = λ i≤j j≤i → toℕ-injective (≤-antisym i≤j j≤i)
+ }
+ ; total = λ { x y → ≤-total (toℕ n x) (toℕ n y) }
+ }
+ ; _≟_ = _≟_
+ ; _≤?_ = _≤?_
+ }
+ }
diff --git a/Data/Circuit/Merge.agda b/Data/Circuit/Merge.agda
new file mode 100644
index 0000000..9cf180a
--- /dev/null
+++ b/Data/Circuit/Merge.agda
@@ -0,0 +1,427 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Data.Circuit.Merge where
+
+open import Data.Nat.Base using (ℕ)
+open import Data.Fin.Base using (Fin; pinch; punchIn; punchOut; splitAt)
+open import Data.Fin.Properties using (punchInᵢ≢i; punchIn-punchOut)
+open import Data.Bool.Properties using (if-eta)
+open import Data.Bool using (Bool; if_then_else_)
+open import Data.Circuit.Value using (Value; join; join-comm; join-assoc)
+open import Data.Sum.Properties using ([,]-cong; [,-]-cong; [-,]-cong; [,]-∘; [,]-map)
+open import Data.Subset.Functional
+ using
+ ( Subset
+ ; ⁅_⁆ ; ⊥ ; ⁅⁆∘ρ
+ ; foldl ; foldl-cong₁ ; foldl-cong₂
+ ; foldl-[] ; foldl-suc
+ ; foldl-⊥ ; foldl-⁅⁆
+ ; foldl-fusion
+ )
+open import Data.Vector as V using (Vector; head; tail; removeAt)
+open import Data.Vec.Functional using (_++_)
+open import Data.Fin.Permutation
+ using
+ ( Permutation
+ ; Permutation′
+ ; _⟨$⟩ˡ_ ; _⟨$⟩ʳ_
+ ; inverseˡ ; inverseʳ
+ ; id
+ ; flip
+ ; insert ; remove
+ ; punchIn-permute
+ )
+open import Data.Product using (Σ-syntax; _,_)
+open import Data.Fin.Preimage using (preimage; preimage-cong₁; preimage-cong₂)
+open import Function.Base using (∣_⟩-_; _∘_; case_of_; _$_)
+open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≢_; _≗_; module ≡-Reasoning)
+
+open Value using (U)
+open ℕ
+open Fin
+open Bool
+
+open ≡-Reasoning
+
+_when_ : Value → Bool → Value
+x when b = if b then x else U
+
+opaque
+ merge-with : {A : ℕ} → Value → Vector Value A → Subset A → Value
+ merge-with e v = foldl (∣ join ⟩- v) e
+
+ merge-with-cong : {A : ℕ} {v₁ v₂ : Vector Value A} (e : Value) → v₁ ≗ v₂ → merge-with e v₁ ≗ merge-with e v₂
+ merge-with-cong e v₁≗v₂ = foldl-cong₁ (λ x → ≡.cong (join x) ∘ v₁≗v₂) e
+
+ merge-with-cong₂ : {A : ℕ} (e : Value) (v : Vector Value A) {S₁ S₂ : Subset A} → S₁ ≗ S₂ → merge-with e v S₁ ≡ merge-with e v S₂
+ merge-with-cong₂ e v = foldl-cong₂ (∣ join ⟩- v) e
+
+ merge-with-⊥ : {A : ℕ} (e : Value) (v : Vector Value A) → merge-with e v ⊥ ≡ e
+ merge-with-⊥ e v = foldl-⊥ (∣ join ⟩- v) e
+
+ merge-with-[] : (e : Value) (v : Vector Value 0) (S : Subset 0) → merge-with e v S ≡ e
+ merge-with-[] e v = foldl-[] (∣ join ⟩- v) e
+
+ merge-with-suc
+ : {A : ℕ} (e : Value) (v : Vector Value (suc A)) (S : Subset (suc A))
+ → merge-with e v S
+ ≡ merge-with (if head S then join e (head v) else e) (tail v) (tail S)
+ merge-with-suc e v = foldl-suc (∣ join ⟩- v) e
+
+ merge-with-join
+ : {A : ℕ}
+ (x y : Value)
+ (v : Vector Value A)
+ → merge-with (join x y) v ≗ join x ∘ merge-with y v
+ merge-with-join {A} x y v S = ≡.sym (foldl-fusion (join x) fuse y S)
+ where
+ fuse : (acc : Value) (k : Fin A) → join x (join acc (v k)) ≡ join (join x acc) (v k)
+ fuse acc k = ≡.sym (join-assoc x acc (v k))
+
+ merge-with-⁅⁆ : {A : ℕ} (e : Value) (v : Vector Value A) (x : Fin A) → merge-with e v ⁅ x ⁆ ≡ join e (v x)
+ merge-with-⁅⁆ e v = foldl-⁅⁆ (∣ join ⟩- v) e
+
+merge-with-U : {A : ℕ} (e : Value) (S : Subset A) → merge-with e (λ _ → U) S ≡ e
+merge-with-U {zero} e S = merge-with-[] e (λ _ → U) S
+merge-with-U {suc A} e S = begin
+ merge-with e (λ _ → U) S ≡⟨ merge-with-suc e (λ _ → U) S ⟩
+ merge-with
+ (if head S then join e U else e)
+ (tail (λ _ → U)) (tail S) ≡⟨ ≡.cong (λ h → merge-with (if head S then h else e) _ _) (join-comm e U) ⟩
+ merge-with
+ (if head S then e else e)
+ (tail (λ _ → U)) (tail S) ≡⟨ ≡.cong (λ h → merge-with h (λ _ → U) (tail S)) (if-eta (head S)) ⟩
+ merge-with e (tail (λ _ → U)) (tail S) ≡⟨⟩
+ merge-with e (λ _ → U) (tail S) ≡⟨ merge-with-U e (tail S) ⟩
+ e ∎
+
+merge : {A : ℕ} → Vector Value A → Subset A → Value
+merge v = merge-with U v
+
+merge-cong₁ : {A : ℕ} {v₁ v₂ : Vector Value A} → v₁ ≗ v₂ → merge v₁ ≗ merge v₂
+merge-cong₁ = merge-with-cong U
+
+merge-cong₂ : {A : ℕ} (v : Vector Value A) {S₁ S₂ : Subset A} → S₁ ≗ S₂ → merge v S₁ ≡ merge v S₂
+merge-cong₂ = merge-with-cong₂ U
+
+merge-⊥ : {A : ℕ} (v : Vector Value A) → merge v ⊥ ≡ U
+merge-⊥ = merge-with-⊥ U
+
+merge-[] : (v : Vector Value 0) (S : Subset 0) → merge v S ≡ U
+merge-[] = merge-with-[] U
+
+merge-[]₂ : {v₁ v₂ : Vector Value 0} {S₁ S₂ : Subset 0} → merge v₁ S₁ ≡ merge v₂ S₂
+merge-[]₂ {v₁} {v₂} {S₁} {S₂} = ≡.trans (merge-[] v₁ S₁) (≡.sym (merge-[] v₂ S₂))
+
+merge-⁅⁆ : {A : ℕ} (v : Vector Value A) (x : Fin A) → merge v ⁅ x ⁆ ≡ v x
+merge-⁅⁆ = merge-with-⁅⁆ U
+
+join-merge : {A : ℕ} (e : Value) (v : Vector Value A) (S : Subset A) → join e (merge v S) ≡ merge-with e v S
+join-merge e v S = ≡.sym (≡.trans (≡.cong (λ h → merge-with h v S) (join-comm U e)) (merge-with-join e U v S))
+
+merge-suc
+ : {A : ℕ} (v : Vector Value (suc A)) (S : Subset (suc A))
+ → merge v S
+ ≡ merge-with (head v when head S) (tail v) (tail S)
+merge-suc = merge-with-suc U
+
+insert-f0-0
+ : {A B : ℕ}
+ (f : Fin (suc A) → Fin (suc B))
+ → Σ[ ρ ∈ Permutation′ (suc B) ] (ρ ⟨$⟩ʳ (f zero) ≡ zero)
+insert-f0-0 f = insert (f zero) zero id , help
+ where
+ open import Data.Fin using (_≟_)
+ open import Relation.Nullary.Decidable using (yes; no)
+ help : insert (f zero) zero id ⟨$⟩ʳ f zero ≡ zero
+ help with f zero ≟ f zero
+ ... | yes _ = ≡.refl
+ ... | no f0≢f0 with () ← f0≢f0 ≡.refl
+
+merge-removeAt
+ : {A : ℕ}
+ (k : Fin (suc A))
+ (v : Vector Value (suc A))
+ (S : Subset (suc A))
+ → merge v S ≡ join (v k when S k) (merge (removeAt v k) (removeAt S k))
+merge-removeAt {A} zero v S = begin
+ merge-with U v S ≡⟨ merge-suc v S ⟩
+ merge-with (head v when head S) (tail v) (tail S) ≡⟨ join-merge (head v when head S) (tail v) (tail S) ⟨
+ join (head v when head S) (merge-with U (tail v) (tail S)) ∎
+merge-removeAt {suc A} (suc k) v S = begin
+ merge-with U v S ≡⟨ merge-suc v S ⟩
+ merge-with v0? (tail v) (tail S) ≡⟨ join-merge _ (tail v) (tail S) ⟨
+ join v0? (merge (tail v) (tail S)) ≡⟨ ≡.cong (join v0?) (merge-removeAt k (tail v) (tail S)) ⟩
+ join v0? (join vk? (merge (tail v-) (tail S-))) ≡⟨ join-assoc (head v when head S) _ _ ⟨
+ join (join v0? vk?) (merge (tail v-) (tail S-)) ≡⟨ ≡.cong (λ h → join h (merge (tail v-) (tail S-))) (join-comm (head v- when head S-) _) ⟩
+ join (join vk? v0?) (merge (tail v-) (tail S-)) ≡⟨ join-assoc (tail v k when tail S k) _ _ ⟩
+ join vk? (join v0? (merge (tail v-) (tail S-))) ≡⟨ ≡.cong (join vk?) (join-merge _ (tail v-) (tail S-)) ⟩
+ join vk? (merge-with v0? (tail v-) (tail S-)) ≡⟨ ≡.cong (join vk?) (merge-suc v- S-) ⟨
+ join vk? (merge v- S-) ∎
+ where
+ v0? vk? : Value
+ v0? = head v when head S
+ vk? = tail v k when tail S k
+ v- : Vector Value (suc A)
+ v- = removeAt v (suc k)
+ S- : Subset (suc A)
+ S- = removeAt S (suc k)
+
+import Function.Structures as FunctionStructures
+open module FStruct {A B : Set} = FunctionStructures {_} {_} {_} {_} {A} _≡_ {B} _≡_ using (IsInverse)
+open IsInverse using () renaming (inverseˡ to invˡ; inverseʳ to invʳ)
+
+merge-preimage-ρ
+ : {A B : ℕ}
+ → (ρ : Permutation A B)
+ → (v : Vector Value A)
+ (S : Subset B)
+ → merge v (preimage (ρ ⟨$⟩ʳ_) S) ≡ merge (v ∘ (ρ ⟨$⟩ˡ_)) S
+merge-preimage-ρ {zero} {zero} ρ v S = merge-[]₂
+merge-preimage-ρ {zero} {suc B} ρ v S with () ← ρ ⟨$⟩ˡ zero
+merge-preimage-ρ {suc A} {zero} ρ v S with () ← ρ ⟨$⟩ʳ zero
+merge-preimage-ρ {suc A} {suc B} ρ v S = begin
+ merge v (preimage ρʳ S) ≡⟨ merge-removeAt (head ρˡ) v (preimage ρʳ S) ⟩
+ join
+ (head (v ∘ ρˡ) when S (ρʳ (ρˡ zero)))
+ (merge v- [preimageρʳS]-) ≡⟨ ≡.cong (λ h → join h (merge v- [preimageρʳS]-)) ≡vρˡ0? ⟩
+ join vρˡ0? (merge v- [preimageρʳS]-) ≡⟨ ≡.cong (join vρˡ0?) (merge-cong₂ v- preimage-) ⟩
+ join vρˡ0? (merge v- (preimage ρʳ- S-)) ≡⟨ ≡.cong (join vρˡ0?) (merge-preimage-ρ ρ- v- S-) ⟩
+ join vρˡ0? (merge (v- ∘ ρˡ-) S-) ≡⟨ ≡.cong (join vρˡ0?) (merge-cong₁ v∘ρˡ- S-) ⟩
+ join vρˡ0? (merge (tail (v ∘ ρˡ)) S-) ≡⟨ join-merge vρˡ0? (tail (v ∘ ρˡ)) S- ⟩
+ merge-with vρˡ0? (tail (v ∘ ρˡ)) S- ≡⟨ merge-suc (v ∘ ρˡ) S ⟨
+ merge (v ∘ ρˡ) S ∎
+ where
+ ρˡ : Fin (suc B) → Fin (suc A)
+ ρˡ = ρ ⟨$⟩ˡ_
+ ρʳ : Fin (suc A) → Fin (suc B)
+ ρʳ = ρ ⟨$⟩ʳ_
+ ρ- : Permutation A B
+ ρ- = remove (head ρˡ) ρ
+ ρˡ- : Fin B → Fin A
+ ρˡ- = ρ- ⟨$⟩ˡ_
+ ρʳ- : Fin A → Fin B
+ ρʳ- = ρ- ⟨$⟩ʳ_
+ v- : Vector Value A
+ v- = removeAt v (head ρˡ)
+ [preimageρʳS]- : Subset A
+ [preimageρʳS]- = removeAt (preimage ρʳ S) (head ρˡ)
+ S- : Subset B
+ S- = tail S
+ vρˡ0? : Value
+ vρˡ0? = head (v ∘ ρˡ) when head S
+ ≡vρˡ0?  : head (v ∘ ρˡ) when S (ρʳ (head ρˡ)) ≡ head (v ∘ ρˡ) when head S
+ ≡vρˡ0? = ≡.cong ((head (v ∘ ρˡ) when_) ∘ S) (inverseʳ ρ)
+ v∘ρˡ- : v- ∘ ρˡ- ≗ tail (v ∘ ρˡ)
+ v∘ρˡ- x = begin
+ v- (ρˡ- x) ≡⟨⟩
+ v (punchIn (head ρˡ) (punchOut {A} {head ρˡ} _)) ≡⟨ ≡.cong v (punchIn-punchOut _) ⟩
+ v (ρˡ (punchIn (ρʳ (ρˡ zero)) x)) ≡⟨ ≡.cong (λ h → v (ρˡ (punchIn h x))) (inverseʳ ρ) ⟩
+ v (ρˡ (punchIn zero x)) ≡⟨⟩
+ v (ρˡ (suc x)) ≡⟨⟩
+ tail (v ∘ ρˡ) x ∎
+ preimage- : [preimageρʳS]- ≗ preimage ρʳ- S-
+ preimage- x = begin
+ [preimageρʳS]- x ≡⟨⟩
+ removeAt (preimage ρʳ S) (head ρˡ) x ≡⟨⟩
+ S (ρʳ (punchIn (head ρˡ) x)) ≡⟨ ≡.cong S (punchIn-permute ρ (head ρˡ) x) ⟩ 
+ S (punchIn (ρʳ (head ρˡ)) (ρʳ- x)) ≡⟨⟩
+ S (punchIn (ρʳ (ρˡ zero)) (ρʳ- x)) ≡⟨ ≡.cong (λ h → S (punchIn h (ρʳ- x))) (inverseʳ ρ) ⟩ 
+ S (punchIn zero (ρʳ- x)) ≡⟨⟩ 
+ S (suc (ρʳ- x)) ≡⟨⟩
+ preimage ρʳ- S- x ∎
+
+push-with : {A B : ℕ} → (e : Value) → Vector Value A → (Fin A → Fin B) → Vector Value B
+push-with e v f = merge-with e v ∘ preimage f ∘ ⁅_⁆
+
+push : {A B : ℕ} → Vector Value A → (Fin A → Fin B) → Vector Value B
+push = push-with U
+
+mutual
+ merge-preimage
+ : {A B : ℕ}
+ (f : Fin A → Fin B)
+ → (v : Vector Value A)
+ (S : Subset B)
+ → merge v (preimage f S) ≡ merge (push v f) S
+ merge-preimage {zero} {zero} f v S = merge-[]₂
+ merge-preimage {zero} {suc B} f v S = begin
+ merge v (preimage f S) ≡⟨ merge-[] v (preimage f S) ⟩
+ U ≡⟨ merge-with-U U S ⟨
+ merge (λ _ → U) S ≡⟨ merge-cong₁ (λ x → ≡.sym (merge-[] v (⁅ x ⁆ ∘ f))) S ⟩
+ merge (push v f) S ∎
+ merge-preimage {suc A} {zero} f v S with () ← f zero
+ merge-preimage {suc A} {suc B} f v S with insert-f0-0 f
+ ... | ρ , ρf0≡0 = begin
+ merge v (preimage f S) ≡⟨ merge-cong₂ v (preimage-cong₁ (λ x → inverseˡ ρ {f x}) S) ⟨
+ merge v (preimage (ρˡ ∘ ρʳ ∘ f) S) ≡⟨⟩
+ merge v (preimage (ρʳ ∘ f) (preimage ρˡ S)) ≡⟨ merge-preimage-f0≡0 (ρʳ ∘ f) ρf0≡0 v (preimage ρˡ S) ⟩
+ merge (merge v ∘ preimage (ρʳ ∘ f) ∘ ⁅_⁆) (preimage ρˡ S) ≡⟨ merge-preimage-ρ (flip ρ) (merge v ∘ preimage (ρʳ ∘ f) ∘ ⁅_⁆) S ⟩
+ merge (merge v ∘ preimage (ρʳ ∘ f) ∘ ⁅_⁆ ∘ ρʳ) S ≡⟨ merge-cong₁ (merge-cong₂ v ∘ preimage-cong₂ (ρʳ ∘ f) ∘ ⁅⁆∘ρ ρ) S ⟩
+ merge (merge v ∘ preimage (ρʳ ∘ f) ∘ preimage ρˡ ∘ ⁅_⁆) S ≡⟨⟩
+ merge (merge v ∘ preimage (ρˡ ∘ ρʳ ∘ f) ∘ ⁅_⁆) S ≡⟨ merge-cong₁ (merge-cong₂ v ∘ preimage-cong₁ (λ y → inverseˡ ρ {f y}) ∘ ⁅_⁆) S ⟩
+ merge (merge v ∘ preimage f ∘ ⁅_⁆) S ∎
+ where
+ ρʳ ρˡ : Fin (ℕ.suc B) → Fin (ℕ.suc B)
+ ρʳ = ρ ⟨$⟩ʳ_
+ ρˡ = ρ ⟨$⟩ˡ_
+
+ merge-preimage-f0≡0
+ : {A B : ℕ}
+ (f : Fin (ℕ.suc A) → Fin (ℕ.suc B))
+ → f Fin.zero ≡ Fin.zero
+ → (v : Vector Value (ℕ.suc A))
+ (S : Subset (ℕ.suc B))
+ → merge v (preimage f S) ≡ merge (merge v ∘ preimage f ∘ ⁅_⁆) S
+ merge-preimage-f0≡0 {A} {B} f f0≡0 v S
+ using S0 , S- ← head S , tail S
+ using v0 , v- ← head v , tail v
+ using _ , f- ← head f , tail f
+ = begin
+ merge v f⁻¹[S] ≡⟨ merge-suc v f⁻¹[S] ⟩
+ merge-with v0? v- f⁻¹[S]- ≡⟨ join-merge v0? v- f⁻¹[S]- ⟨
+ join v0? (merge v- f⁻¹[S]-) ≡⟨ ≡.cong (join v0?) (merge-preimage f- v- S) ⟩
+ join v0? (merge f[v-] S) ≡⟨ join-merge v0? f[v-] S ⟩
+ merge-with v0? f[v-] S ≡⟨ merge-with-suc v0? f[v-] S ⟩
+ merge-with v0?+[f[v-]0?] f[v-]- S- ≡⟨ ≡.cong (λ h → merge-with h f[v-]- S-) ≡f[v]0 ⟩
+ merge-with f[v]0? f[v-]- S- ≡⟨ merge-with-cong f[v]0? ≡f[v]- S- ⟩
+ merge-with f[v]0? f[v]- S- ≡⟨ merge-suc f[v] S ⟨
+ merge f[v] S ∎
+ where
+ f⁻¹[S] : Subset (suc A)
+ f⁻¹[S] = preimage f S
+ f⁻¹[S]- : Subset A
+ f⁻¹[S]- = tail f⁻¹[S]
+ f⁻¹[S]0 : Bool
+ f⁻¹[S]0 = head f⁻¹[S]
+ f[v] : Vector Value (suc B)
+ f[v] = push v f
+ f[v]- : Vector Value B
+ f[v]- = tail f[v]
+ f[v]0 : Value
+ f[v]0 = head f[v]
+ f[v-] : Vector Value (suc B)
+ f[v-] = push v- f-
+ f[v-]- : Vector Value B
+ f[v-]- = tail f[v-]
+ f[v-]0 : Value
+ f[v-]0 = head f[v-]
+ f⁻¹⁅0⁆ : Subset (suc A)
+ f⁻¹⁅0⁆ = preimage f ⁅ zero ⁆
+ f⁻¹⁅0⁆- : Subset A
+ f⁻¹⁅0⁆- = tail f⁻¹⁅0⁆
+ v0? v0?+[f[v-]0?] f[v]0? : Value
+ v0? = v0 when f⁻¹[S]0
+ v0?+[f[v-]0?] = (if S0 then join v0? f[v-]0 else v0?)
+ f[v]0? = f[v]0 when S0
+ ≡f[v]0 : v0?+[f[v-]0?] ≡ f[v]0?
+ ≡f[v]0 rewrite f0≡0 with S0
+ ... | true = begin
+ join v0 (merge v- f⁻¹⁅0⁆-) ≡⟨ join-merge v0 v- (tail (preimage f ⁅ zero ⁆)) ⟩
+ merge-with v0 v- f⁻¹⁅0⁆- ≡⟨ ≡.cong (λ h → merge-with (v0 when ⁅ zero ⁆ h) v- f⁻¹⁅0⁆-) f0≡0 ⟨
+ merge-with v0?′ v- f⁻¹⁅0⁆- ≡⟨ merge-suc v (preimage f ⁅ zero ⁆) ⟨
+ merge v f⁻¹⁅0⁆  ∎
+ where
+ v0?′ : Value
+ v0?′ = v0 when head f⁻¹⁅0⁆
+ ... | false = ≡.refl
+ ≡f[v]- : f[v-]- ≗ f[v]-
+ ≡f[v]- x = begin
+ push v- f- (suc x) ≡⟨ ≡.cong (λ h → merge-with (v0 when ⁅ suc x ⁆ h) v- (preimage f- ⁅ suc x ⁆)) f0≡0 ⟨
+ push-with v0?′ v- f- (suc x) ≡⟨ merge-suc v (preimage f ⁅ suc x ⁆) ⟨
+ push v f (suc x) ∎
+ where
+ v0?′ : Value
+ v0?′ = v0 when head (preimage f ⁅ suc x ⁆)
+
+merge-++
+ : {n m : ℕ}
+ (xs : Vector Value n)
+ (ys : Vector Value m)
+ (S₁ : Subset n)
+ (S₂ : Subset m)
+ → merge (xs ++ ys) (S₁ ++ S₂)
+ ≡ join (merge xs S₁) (merge ys S₂)
+merge-++ {zero} {m} xs ys S₁ S₂ = begin
+ merge (xs ++ ys) (S₁ ++ S₂) ≡⟨ merge-cong₂ (xs ++ ys) (λ _ → ≡.refl) ⟩
+ merge (xs ++ ys) S₂ ≡⟨ merge-cong₁ (λ _ → ≡.refl) S₂ ⟩
+ merge ys S₂ ≡⟨ ≡.cong (λ h → join h (merge ys S₂)) (merge-[] xs S₁) ⟨
+ join (merge xs S₁) (merge ys S₂) ∎
+merge-++ {suc n} {m} xs ys S₁ S₂ = begin
+ merge (xs ++ ys) (S₁ ++ S₂) ≡⟨ merge-suc (xs ++ ys) (S₁ ++ S₂) ⟩
+ merge-with (head xs when head S₁) (tail (xs ++ ys)) (tail (S₁ ++ S₂)) ≡⟨ join-merge (head xs when head S₁) (tail (xs ++ ys)) (tail (S₁ ++ S₂)) ⟨
+ join (head xs when head S₁) (merge (tail (xs ++ ys)) (tail (S₁ ++ S₂)))
+ ≡⟨ ≡.cong (join (head xs when head S₁)) (merge-cong₁ ([,]-map ∘ splitAt n) (tail (S₁ ++ S₂))) ⟩
+ join (head xs when head S₁) (merge (tail xs ++ ys) (tail (S₁ ++ S₂)))
+ ≡⟨ ≡.cong (join (head xs when head S₁)) (merge-cong₂ (tail xs ++ ys) ([,]-map ∘ splitAt n)) ⟩
+ join (head xs when head S₁) (merge (tail xs ++ ys) (tail S₁ ++ S₂)) ≡⟨ ≡.cong (join (head xs when head S₁)) (merge-++ (tail xs) ys (tail S₁) S₂) ⟩
+ join (head xs when head S₁) (join (merge (tail xs) (tail S₁)) (merge ys S₂)) ≡⟨ join-assoc (head xs when head S₁) (merge (tail xs) (tail S₁)) _ ⟨
+ join (join (head xs when head S₁) (merge (tail xs) (tail S₁))) (merge ys S₂)
+ ≡⟨ ≡.cong (λ h → join h (merge ys S₂)) (join-merge (head xs when head S₁) (tail xs) (tail S₁)) ⟩
+ join (merge-with (head xs when head S₁) (tail xs) (tail S₁)) (merge ys S₂) ≡⟨ ≡.cong (λ h → join h (merge ys S₂)) (merge-suc xs S₁) ⟨
+ join (merge xs S₁) (merge ys S₂) ∎
+
+open import Function using (Equivalence)
+open Equivalence
+open import Data.Nat using (_+_)
+open import Data.Fin using (_↑ˡ_; _↑ʳ_; _≟_)
+open import Data.Fin.Properties using (↑ˡ-injective; ↑ʳ-injective; splitAt⁻¹-↑ˡ; splitAt-↑ˡ; splitAt⁻¹-↑ʳ; splitAt-↑ʳ)
+open import Relation.Nullary.Decidable using (does; does-⇔; dec-false)
+
+open Fin
+⁅⁆-≟ : {n : ℕ} (x y : Fin n) → ⁅ x ⁆ y ≡ does (x ≟ y)
+⁅⁆-≟ zero zero = ≡.refl
+⁅⁆-≟ zero (suc y) = ≡.refl
+⁅⁆-≟ (suc x) zero = ≡.refl
+⁅⁆-≟ (suc x) (suc y) = ⁅⁆-≟ x y
+
+open import Data.Sum using ([_,_]′; inj₁; inj₂)
+⁅⁆-++
+ : {n′ m′ : ℕ}
+ (i : Fin (n′ + m′))
+ → [ (λ x → ⁅ x ⁆ ++ ⊥) , (λ x → ⊥ ++ ⁅ x ⁆) ]′ (splitAt n′ i) ≗ ⁅ i ⁆
+⁅⁆-++ {n′} {m′} i x with splitAt n′ i in eq₁
+... | inj₁ i′ with splitAt n′ x in eq₂
+... | inj₁ x′ = begin
+ ⁅ i′ ⁆ x′ ≡⟨ ⁅⁆-≟ i′ x′ ⟩
+ does (i′ ≟ x′) ≡⟨ does-⇔ ⇔ (i′ ≟ x′) (i′ ↑ˡ m′ ≟ x′ ↑ˡ m′) ⟩
+ does (i′ ↑ˡ m′ ≟ x′ ↑ˡ m′) ≡⟨ ⁅⁆-≟ (i′ ↑ˡ m′) (x′ ↑ˡ m′) ⟨
+ ⁅ i′ ↑ˡ m′ ⁆ (x′ ↑ˡ m′) ≡⟨ ≡.cong₂ ⁅_⁆ (splitAt⁻¹-↑ˡ eq₁) (splitAt⁻¹-↑ˡ eq₂) ⟩
+ ⁅ i ⁆ x ∎
+ where
+ ⇔ : Equivalence (≡.setoid (i′ ≡ x′)) (≡.setoid (i′ ↑ˡ m′ ≡ x′ ↑ˡ m′))
+ ⇔ .to = ≡.cong (_↑ˡ m′)
+ ⇔ .from = ↑ˡ-injective m′ i′ x′
+ ⇔ .to-cong ≡.refl = ≡.refl
+ ⇔ .from-cong ≡.refl = ≡.refl
+... | inj₂ x′ = begin
+ false ≡⟨ dec-false (i′ ↑ˡ m′ ≟ n′ ↑ʳ x′) ↑ˡ≢↑ʳ ⟨
+ does (i′ ↑ˡ m′ ≟ n′ ↑ʳ x′) ≡⟨ ⁅⁆-≟ (i′ ↑ˡ m′) (n′ ↑ʳ x′) ⟨
+ ⁅ i′ ↑ˡ m′ ⁆ (n′ ↑ʳ x′) ≡⟨ ≡.cong₂ ⁅_⁆ (splitAt⁻¹-↑ˡ eq₁) (splitAt⁻¹-↑ʳ eq₂) ⟩
+ ⁅ i ⁆ x ∎
+ where
+ ↑ˡ≢↑ʳ : i′ ↑ˡ m′ ≢ n′ ↑ʳ x′
+ ↑ˡ≢↑ʳ ≡ = case ≡.trans (≡.sym (splitAt-↑ˡ n′ i′ m′)) (≡.trans (≡.cong (splitAt n′) ≡) (splitAt-↑ʳ n′ m′ x′)) of λ { () }
+⁅⁆-++ {n′} i x | inj₂ i′ with splitAt n′ x in eq₂
+⁅⁆-++ {n′} {m′} i x | inj₂ i′ | inj₁ x′ = begin
+ [ ⊥ , ⁅ i′ ⁆ ]′ (splitAt n′ x) ≡⟨ ≡.cong ([ ⊥ , ⁅ i′ ⁆ ]′) eq₂ ⟩
+ false ≡⟨ dec-false (n′ ↑ʳ i′ ≟ x′ ↑ˡ m′) ↑ʳ≢↑ˡ ⟨
+ does (n′ ↑ʳ i′ ≟ x′ ↑ˡ m′) ≡⟨ ⁅⁆-≟ (n′ ↑ʳ i′) (x′ ↑ˡ m′) ⟨
+ ⁅ n′ ↑ʳ i′ ⁆ (x′ ↑ˡ m′) ≡⟨ ≡.cong₂ ⁅_⁆ (splitAt⁻¹-↑ʳ eq₁) (splitAt⁻¹-↑ˡ eq₂) ⟩
+ ⁅ i ⁆ x ∎
+ where
+ ↑ʳ≢↑ˡ : n′ ↑ʳ i′ ≢ x′ ↑ˡ m′
+ ↑ʳ≢↑ˡ ≡ = case ≡.trans (≡.sym (splitAt-↑ʳ n′ m′ i′)) (≡.trans (≡.cong (splitAt n′) ≡) (splitAt-↑ˡ n′ x′ m′)) of λ { () }
+⁅⁆-++ {n′} i x | inj₂ i′ | inj₂ x′ = begin
+ [ ⊥ , ⁅ i′ ⁆ ]′ (splitAt n′ x) ≡⟨ ≡.cong [ ⊥ , ⁅ i′ ⁆ ]′ eq₂ ⟩
+ ⁅ i′ ⁆ x′ ≡⟨ ⁅⁆-≟ i′ x′ ⟩
+ does (i′ ≟ x′) ≡⟨ does-⇔ ⇔ (i′ ≟ x′) (n′ ↑ʳ i′ ≟ n′ ↑ʳ x′) ⟩
+ does (n′ ↑ʳ i′ ≟ n′ ↑ʳ x′) ≡⟨ ⁅⁆-≟ (n′ ↑ʳ i′) (n′ ↑ʳ x′) ⟨
+ ⁅ n′ ↑ʳ i′ ⁆ (n′ ↑ʳ x′) ≡⟨ ≡.cong₂ ⁅_⁆ (splitAt⁻¹-↑ʳ eq₁) (splitAt⁻¹-↑ʳ eq₂) ⟩
+ ⁅ i ⁆ x ∎
+ where
+ ⇔ : Equivalence (≡.setoid (i′ ≡ x′)) (≡.setoid (n′ ↑ʳ i′ ≡ n′ ↑ʳ x′))
+ ⇔ .to = ≡.cong (n′ ↑ʳ_)
+ ⇔ .from = ↑ʳ-injective n′ i′ x′
+ ⇔ .to-cong ≡.refl = ≡.refl
+ ⇔ .from-cong ≡.refl = ≡.refl
diff --git a/Data/Circuit/Typecheck.agda b/Data/Circuit/Typecheck.agda
new file mode 100644
index 0000000..e34ea44
--- /dev/null
+++ b/Data/Circuit/Typecheck.agda
@@ -0,0 +1,78 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Data.Circuit.Typecheck where
+
+open import Data.SExp using (SExp)
+open import Data.Circuit.Gate using (GateLabel; Gate)
+open import Data.Hypergraph.Label using (HypergraphLabel)
+open import Data.Hypergraph.Edge GateLabel using (Edge)
+open import Data.Hypergraph.Base GateLabel using (Hypergraph)
+
+open import Data.List using (List; length) renaming (map to mapL)
+open import Data.List.Effectful using () renaming (module TraversableA to ListTraversable)
+open import Data.Maybe using (Maybe) renaming (map to mapM)
+open import Data.Nat using (ℕ; _<?_; _≟_)
+open import Data.String using (String)
+open import Data.Product using (_×_; _,_; Σ)
+open import Data.Vec using (Vec; []; _∷_; fromList) renaming (map to mapV)
+open import Data.Vec.Effectful using () renaming (module TraversableA to VecTraversable)
+open import Data.Maybe.Effectful using (applicative)
+open import Data.Fin using (Fin; #_; fromℕ<)
+open import Level using (0ℓ)
+
+import Relation.Binary.PropositionalEquality as ≡
+
+open List
+open SExp
+open Gate
+open Maybe
+
+gate : {n a : ℕ} (g : Gate a) → Vec (Fin n) a → Edge n
+gate g p = record { label = g; ports = p }
+
+typeCheckGateLabel : SExp → Maybe (Σ ℕ Gate)
+typeCheckGateLabel (Atom "one") = just (1 , ONE)
+typeCheckGateLabel (Atom "zero") = just (1 , ZERO)
+typeCheckGateLabel (Atom "not") = just (2 , NOT)
+typeCheckGateLabel (Atom "id") = just (2 , ID)
+typeCheckGateLabel (Atom "and") = just (3 , AND)
+typeCheckGateLabel (Atom "or") = just (3 , OR)
+typeCheckGateLabel (Atom "xor") = just (3 , XOR)
+typeCheckGateLabel (Atom "nand") = just (3 , NAND)
+typeCheckGateLabel (Atom "nor") = just (3 , NOR)
+typeCheckGateLabel (Atom "xnor") = just (3 , XNOR)
+typeCheckGateLabel _ = nothing
+
+open import Relation.Nullary.Decidable using (Dec; yes; no)
+open Dec
+open VecTraversable {0ℓ} applicative using () renaming (sequenceA to vecSequenceA)
+open ListTraversable {0ℓ} applicative using () renaming (sequenceA to listSequenceA)
+
+typeCheckPort : (v : ℕ) → SExp → Maybe (Fin v)
+typeCheckPort v (Nat n) with n <? v
+... | yes n<v = just (fromℕ< n<v)
+... | no _ = nothing
+typeCheckPort _ _ = nothing
+
+typeCheckPorts : (v n : ℕ) → List SExp → Maybe (Vec (Fin v) n)
+typeCheckPorts v n xs with length xs ≟ n
+... | yes ≡.refl = vecSequenceA (mapV (typeCheckPort v) (fromList xs))
+... | no _ = nothing
+
+typeCheckGate : (v : ℕ) → SExp → Maybe (Edge v)
+typeCheckGate v (SExps (labelString ∷ ports)) with typeCheckGateLabel labelString
+... | just (n , label) = mapM (gate label) (typeCheckPorts v n ports)
+... | nothing = nothing
+typeCheckGate v _ = nothing
+
+typeCheckHeader : SExp → Maybe ℕ
+typeCheckHeader (SExps (Atom "hypergraph" ∷ Nat n ∷ [])) = just n
+typeCheckHeader _ = nothing
+
+typeCheckHypergraph : SExp → Maybe (Σ ℕ Hypergraph)
+typeCheckHypergraph (SExps (x ∷ xs)) with typeCheckHeader x
+... | nothing = nothing
+... | just n with listSequenceA (mapL (typeCheckGate n) xs)
+... | just e = just (n , record { edges = e })
+... | nothing = nothing
+typeCheckHypergraph _ = nothing
diff --git a/Data/Circuit/Value.agda b/Data/Circuit/Value.agda
new file mode 100644
index 0000000..b135c35
--- /dev/null
+++ b/Data/Circuit/Value.agda
@@ -0,0 +1,180 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Data.Circuit.Value where
+
+import Relation.Binary.Lattice.Properties.BoundedJoinSemilattice as LatticeProp
+
+open import Algebra.Bundles using (CommutativeMonoid)
+open import Algebra.Structures using (IsCommutativeMonoid; IsMonoid; IsSemigroup; IsMagma)
+open import Data.Product.Base using (_×_; _,_)
+open import Data.String.Base using (String)
+open import Level using (0ℓ)
+open import Relation.Binary.Lattice.Bundles using (BoundedJoinSemilattice)
+open import Relation.Binary.PropositionalEquality as ≡ using (_≡_)
+
+open CommutativeMonoid
+open IsCommutativeMonoid
+open IsMagma
+open IsMonoid
+open IsSemigroup
+
+data Value : Set where
+ U T F X : Value
+
+data ≤-Value : Value → Value → Set where
+ v≤v : {v : Value} → ≤-Value v v
+ U≤T : ≤-Value U T
+ U≤F : ≤-Value U F
+ U≤X : ≤-Value U X
+ T≤X : ≤-Value T X
+ F≤X : ≤-Value F X
+
+≤-reflexive : {x y : Value} → x ≡ y → ≤-Value x y
+≤-reflexive ≡.refl = v≤v
+
+≤-transitive : {i j k : Value} → ≤-Value i j → ≤-Value j k → ≤-Value i k
+≤-transitive v≤v y = y
+≤-transitive x v≤v = x
+≤-transitive U≤T T≤X = U≤X
+≤-transitive U≤F F≤X = U≤X
+
+≤-antisymmetric : {i j : Value} → ≤-Value i j → ≤-Value j i → i ≡ j
+≤-antisymmetric v≤v _ = ≡.refl
+
+showValue : Value → String
+showValue U = "U"
+showValue T = "T"
+showValue F = "F"
+showValue X = "X"
+
+join : Value → Value → Value
+join U y = y
+join x U = x
+join T T = T
+join T F = X
+join F T = X
+join F F = F
+join X _ = X
+join _ X = X
+
+≤-supremum
+ : (x y : Value)
+ → ≤-Value x (join x y)
+ × ≤-Value y (join x y)
+ × ((z : Value) → ≤-Value x z → ≤-Value y z → ≤-Value (join x y) z)
+≤-supremum U U = v≤v , v≤v , λ _ U≤z _ → U≤z
+≤-supremum U T = U≤T , v≤v , λ { z x≤z y≤z → y≤z }
+≤-supremum U F = U≤F , v≤v , λ { z x≤z y≤z → y≤z }
+≤-supremum U X = U≤X , v≤v , λ { z x≤z y≤z → y≤z }
+≤-supremum T U = v≤v , U≤T , λ { z x≤z y≤z → x≤z }
+≤-supremum T T = v≤v , v≤v , λ { z x≤z y≤z → x≤z }
+≤-supremum T F = T≤X , F≤X , λ { X x≤z y≤z → v≤v }
+≤-supremum T X = T≤X , v≤v , λ { z x≤z y≤z → y≤z }
+≤-supremum F U = v≤v , U≤F , λ { z x≤z y≤z → x≤z }
+≤-supremum F T = F≤X , T≤X , λ { X x≤z y≤z → v≤v }
+≤-supremum F F = v≤v , v≤v , λ { z x≤z y≤z → x≤z }
+≤-supremum F X = F≤X , v≤v , λ { z x≤z y≤z → y≤z }
+≤-supremum X U = v≤v , U≤X , λ { z x≤z y≤z → x≤z }
+≤-supremum X T = v≤v , T≤X , λ { z x≤z y≤z → x≤z }
+≤-supremum X F = v≤v , F≤X , λ { z x≤z y≤z → x≤z }
+≤-supremum X X = v≤v , v≤v , λ { z x≤z y≤z → x≤z }
+
+join-comm : (x y : Value) → join x y ≡ join y x
+join-comm U U = ≡.refl
+join-comm U T = ≡.refl
+join-comm U F = ≡.refl
+join-comm U X = ≡.refl
+join-comm T U = ≡.refl
+join-comm T T = ≡.refl
+join-comm T F = ≡.refl
+join-comm T X = ≡.refl
+join-comm F U = ≡.refl
+join-comm F T = ≡.refl
+join-comm F F = ≡.refl
+join-comm F X = ≡.refl
+join-comm X U = ≡.refl
+join-comm X T = ≡.refl
+join-comm X F = ≡.refl
+join-comm X X = ≡.refl
+
+join-assoc : (x y z : Value) → join (join x y) z ≡ join x (join y z)
+join-assoc U y z = ≡.refl
+join-assoc T U z = ≡.refl
+join-assoc T T U = ≡.refl
+join-assoc T T T = ≡.refl
+join-assoc T T F = ≡.refl
+join-assoc T T X = ≡.refl
+join-assoc T F U = ≡.refl
+join-assoc T F T = ≡.refl
+join-assoc T F F = ≡.refl
+join-assoc T F X = ≡.refl
+join-assoc T X U = ≡.refl
+join-assoc T X T = ≡.refl
+join-assoc T X F = ≡.refl
+join-assoc T X X = ≡.refl
+join-assoc F U z = ≡.refl
+join-assoc F T U = ≡.refl
+join-assoc F T T = ≡.refl
+join-assoc F T F = ≡.refl
+join-assoc F T X = ≡.refl
+join-assoc F F U = ≡.refl
+join-assoc F F T = ≡.refl
+join-assoc F F F = ≡.refl
+join-assoc F F X = ≡.refl
+join-assoc F X U = ≡.refl
+join-assoc F X T = ≡.refl
+join-assoc F X F = ≡.refl
+join-assoc F X X = ≡.refl
+join-assoc X U z = ≡.refl
+join-assoc X T U = ≡.refl
+join-assoc X T T = ≡.refl
+join-assoc X T F = ≡.refl
+join-assoc X T X = ≡.refl
+join-assoc X F U = ≡.refl
+join-assoc X F T = ≡.refl
+join-assoc X F F = ≡.refl
+join-assoc X F X = ≡.refl
+join-assoc X X U = ≡.refl
+join-assoc X X T = ≡.refl
+join-assoc X X F = ≡.refl
+join-assoc X X X = ≡.refl
+
+Lattice : BoundedJoinSemilattice 0ℓ 0ℓ 0ℓ
+Lattice = record
+ { Carrier = Value
+ ; _≈_ = _≡_
+ ; _≤_ = ≤-Value
+ ; _∨_ = join
+ ; ⊥ = U
+ ; isBoundedJoinSemilattice = record
+ { isJoinSemilattice = record
+ { isPartialOrder = record 
+ { isPreorder = record
+ { isEquivalence = ≡.isEquivalence
+ ; reflexive = ≤-reflexive
+ ; trans = ≤-transitive
+ }
+ ; antisym = ≤-antisymmetric
+ }
+ ; supremum = ≤-supremum
+ }
+ ; minimum = λ where
+ U → v≤v
+ T → U≤T
+ F → U≤F
+ X → U≤X
+ }
+ }
+
+module Lattice = BoundedJoinSemilattice Lattice
+
+Monoid : CommutativeMonoid 0ℓ 0ℓ
+Monoid .Carrier = Lattice.Carrier
+Monoid ._≈_ = Lattice._≈_
+Monoid ._∙_ = Lattice._∨_
+Monoid .ε = Lattice.⊥
+Monoid .isCommutativeMonoid .isMonoid .isSemigroup .isMagma .isEquivalence = ≡.isEquivalence
+Monoid .isCommutativeMonoid .isMonoid .isSemigroup .isMagma .∙-cong = ≡.cong₂ join
+Monoid .isCommutativeMonoid .isMonoid .isSemigroup .assoc = join-assoc
+Monoid .isCommutativeMonoid .isMonoid .identity = LatticeProp.identity Lattice
+Monoid .isCommutativeMonoid .comm = join-comm
diff --git a/Data/Fin/Preimage.agda b/Data/Fin/Preimage.agda
new file mode 100644
index 0000000..4f7ea43
--- /dev/null
+++ b/Data/Fin/Preimage.agda
@@ -0,0 +1,48 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Data.Fin.Preimage where
+
+open import Data.Nat.Base using (ℕ)
+open import Data.Fin.Base using (Fin)
+open import Function.Base using (∣_⟩-_; _∘_)
+open import Relation.Binary.PropositionalEquality as ≡ using (_≗_)
+open import Data.Subset.Functional using (Subset; foldl; _∪_; ⊥; ⁅_⁆)
+
+private
+ variable A B C : ℕ
+
+preimage : (Fin A → Fin B) → Subset B → Subset A
+preimage f Y = Y ∘ f
+
+⋃ : Subset A → (Fin A → Subset B) → Subset B
+⋃ S f = foldl (∣ _∪_ ⟩- f) ⊥ S
+
+image : (Fin A → Fin B) → Subset A → Subset B
+image f X = ⋃ X (⁅_⁆ ∘ f)
+
+preimage-cong₁
+ : {f g : Fin A → Fin B}
+ → f ≗ g
+ → (S : Subset B)
+ → preimage f S ≗ preimage g S
+preimage-cong₁ f≗g S x = ≡.cong S (f≗g x)
+
+preimage-cong₂
+ : (f : Fin A → Fin B)
+ {S₁ S₂ : Subset B}
+ → S₁ ≗ S₂
+ → preimage f S₁ ≗ preimage f S₂
+preimage-cong₂ f S₁≗S₂ = S₁≗S₂ ∘ f
+
+preimage-∘
+ : (f : Fin A → Fin B)
+ (g : Fin B → Fin C)
+ (z : Fin C)
+ → preimage (g ∘ f) ⁅ z ⁆ ≗ preimage f (preimage g ⁅ z ⁆)
+preimage-∘ f g S x = ≡.refl
+
+preimage-⊥
+ : {n m : ℕ}
+ (f : Fin n → Fin m)
+ → preimage f ⊥ ≗ ⊥
+preimage-⊥ f x = ≡.refl
diff --git a/Data/Hypergraph.agda b/Data/Hypergraph.agda
new file mode 100644
index 0000000..532e082
--- /dev/null
+++ b/Data/Hypergraph.agda
@@ -0,0 +1,86 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Data.Hypergraph.Label using (HypergraphLabel)
+open import Level using (Level; 0ℓ)
+
+module Data.Hypergraph {ℓ : Level} (HL : HypergraphLabel) where
+
+import Data.List.Relation.Binary.Pointwise as PW
+import Function.Reasoning as →-Reasoning
+import Relation.Binary.PropositionalEquality as ≡
+import Data.Hypergraph.Edge {ℓ} HL as Hyperedge
+import Data.List.Relation.Binary.Permutation.Propositional as List-↭
+import Data.List.Relation.Binary.Permutation.Setoid as ↭
+
+open HypergraphLabel HL using (Label) public
+
+open import Data.List using (List; map)
+open import Data.Nat using (ℕ)
+open import Data.String using (String; unlines)
+open import Function using (_∘_; _⟶ₛ_; Func)
+open import Relation.Binary using (Setoid)
+
+module Edge = Hyperedge
+open Edge using (Edge; Edgeₛ)
+
+-- A hypergraph is a list of edges
+record Hypergraph (v : ℕ) : Set ℓ where
+ constructor mkHypergraph
+ field
+ edges : List (Edge v)
+
+module _ {v : ℕ} where
+
+ open ↭ (Edgeₛ v) using (_↭_; ↭-refl; ↭-sym; ↭-trans)
+
+ show : Hypergraph v → String
+ show (mkHypergraph e) = unlines (map Edge.show e)
+
+ -- an equivalence relation on hypergraphs
+ record _≈_ (H H′ : Hypergraph v) : Set ℓ where
+
+ constructor mk≈
+
+ module H = Hypergraph H
+ module H′ = Hypergraph H′
+
+ field
+ ↭-edges : H.edges ↭ H′.edges
+
+ infixr 4 _≈_
+
+ ≈-refl : {H : Hypergraph v} → H ≈ H
+ ≈-refl = mk≈ ↭-refl
+
+ ≈-sym : {H H′ : Hypergraph v} → H ≈ H′ → H′ ≈ H
+ ≈-sym (mk≈ ≡n) = mk≈ (↭-sym ≡n)
+
+ ≈-trans : {H H′ H″ : Hypergraph v} → H ≈ H′ → H′ ≈ H″ → H ≈ H″
+ ≈-trans (mk≈ ≡n₁) (mk≈ ≡n₂) = mk≈ (↭-trans ≡n₁ ≡n₂)
+
+-- The setoid of labeled hypergraphs with v nodes
+Hypergraphₛ : ℕ → Setoid ℓ ℓ
+Hypergraphₛ v = record
+ { Carrier = Hypergraph v
+ ; _≈_ = _≈_
+ ; isEquivalence = record
+ { refl = ≈-refl
+ ; sym = ≈-sym
+ ; trans = ≈-trans
+ }
+ }
+
+open Func
+
+open ↭ using (↭-setoid)
+
+Multiset∘Edgeₛ : (n : ℕ) → Setoid ℓ ℓ
+Multiset∘Edgeₛ = ↭-setoid ∘ Edgeₛ
+
+mkHypergraphₛ : {n : ℕ} → Multiset∘Edgeₛ n ⟶ₛ Hypergraphₛ n
+mkHypergraphₛ .to = mkHypergraph
+mkHypergraphₛ .cong = mk≈
+
+edgesₛ : {n : ℕ} → Hypergraphₛ n ⟶ₛ Multiset∘Edgeₛ n
+edgesₛ .to = Hypergraph.edges
+edgesₛ .cong = _≈_.↭-edges
diff --git a/Data/Hypergraph/Edge.agda b/Data/Hypergraph/Edge.agda
new file mode 100644
index 0000000..447f008
--- /dev/null
+++ b/Data/Hypergraph/Edge.agda
@@ -0,0 +1,113 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Data.Hypergraph.Label using (HypergraphLabel)
+
+open import Level using (Level; 0ℓ)
+module Data.Hypergraph.Edge {ℓ : Level} (HL : HypergraphLabel) where
+
+import Data.Vec.Functional as Vec
+import Data.Vec.Functional.Relation.Binary.Equality.Setoid as PW
+import Data.Fin.Properties as FinProp
+
+open import Data.Fin as Fin using (Fin)
+open import Data.Fin.Show using () renaming (show to showFin)
+open import Data.Nat using (ℕ)
+open import Data.String using (String; _<+>_)
+open import Data.Vec.Show using () renaming (show to showVec)
+open import Level using (0ℓ)
+open import Relation.Binary using (Setoid; IsEquivalence)
+open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; module ≡-Reasoning)
+open import Function using (_⟶ₛ_; Func; _∘_)
+
+module HL = HypergraphLabel HL
+
+open HL using (Label)
+open Vec using (Vector)
+open Func
+
+record Edge (v : ℕ) : Set ℓ where
+ constructor mkEdge
+ field
+ {arity} : ℕ
+ label : Label arity
+ ports : Fin arity → Fin v
+
+map : {n m : ℕ} → (Fin n → Fin m) → Edge n → Edge m
+map f edge = record
+ { label = label
+ ; ports = Vec.map f ports
+ }
+ where
+ open Edge edge
+
+module _ {v : ℕ} where
+
+ open PW (≡.setoid (Fin v)) using (_≋_)
+
+ -- an equivalence relation on edges with v nodes
+ record _≈_ (E E′ : Edge v) : Set ℓ where
+ constructor mk≈
+ module E = Edge E
+ module E′ = Edge E′
+ field
+ ≡arity : E.arity ≡ E′.arity
+ ≡label : HL.cast ≡arity E.label ≡ E′.label
+ ≡ports : E.ports ≋ E′.ports ∘ Fin.cast ≡arity
+
+ ≈-refl : {x : Edge v} → x ≈ x
+ ≈-refl {x} = record
+ { ≡arity = ≡.refl
+ ; ≡label = HL.≈-reflexive ≡.refl
+ ; ≡ports = ≡.cong (Edge.ports x) ∘ ≡.sym ∘ FinProp.cast-is-id _
+ }
+
+ ≈-sym : {x y : Edge v} → x ≈ y → y ≈ x
+ ≈-sym x≈y = record
+ { ≡arity = ≡.sym ≡arity
+ ; ≡label = HL.≈-sym ≡label
+ ; ≡ports = ≡.sym ∘ ≡ports-sym
+ }
+ where
+ open _≈_ x≈y
+ open ≡-Reasoning
+ ≡ports-sym : (i : Fin E′.arity) → E.ports (Fin.cast _ i) ≡ E′.ports i
+ ≡ports-sym i = begin
+ E.ports (Fin.cast _ i) ≡⟨ ≡ports (Fin.cast _ i) ⟩
+ E′.ports (Fin.cast ≡arity (Fin.cast _ i))
+ ≡⟨ ≡.cong E′.ports (FinProp.cast-involutive ≡arity _ i) ⟩
+ E′.ports i ∎
+
+ ≈-trans : {x y z : Edge v} → x ≈ y → y ≈ z → x ≈ z
+ ≈-trans {x} {y} {z} x≈y y≈z = record
+ { ≡arity = ≡.trans x≈y.≡arity y≈z.≡arity
+ ; ≡label = HL.≈-trans x≈y.≡label y≈z.≡label
+ ; ≡ports = ≡-ports
+ }
+ where
+ module x≈y = _≈_ x≈y
+ module y≈z = _≈_ y≈z
+ open ≡-Reasoning
+ ≡-ports : (i : Fin x≈y.E.arity) → x≈y.E.ports i ≡ y≈z.E′.ports (Fin.cast _ i)
+ ≡-ports i = begin
+ x≈y.E.ports i  ≡⟨ x≈y.≡ports i ⟩
+ y≈z.E.ports (Fin.cast _ i)  ≡⟨ y≈z.≡ports (Fin.cast _ i) ⟩
+ y≈z.E′.ports (Fin.cast y≈z.≡arity (Fin.cast _ i)) 
+ ≡⟨ ≡.cong y≈z.E′.ports (FinProp.cast-trans _ y≈z.≡arity i) ⟩
+ y≈z.E′.ports (Fin.cast _ i) ∎
+
+ ≈-IsEquivalence : IsEquivalence _≈_
+ ≈-IsEquivalence = record
+ { refl = ≈-refl
+ ; sym = ≈-sym
+ ; trans = ≈-trans
+ }
+
+ show : Edge v → String
+ show (mkEdge {a} l p) = HL.showLabel a l <+> showVec showFin (Vec.toVec p)
+
+Edgeₛ : (v : ℕ) → Setoid ℓ ℓ
+Edgeₛ v = record { isEquivalence = ≈-IsEquivalence {v} }
+
+mapₛ : {n m : ℕ} → (Fin n → Fin m) → Edgeₛ n ⟶ₛ Edgeₛ m
+mapₛ f .to = map f
+mapₛ f .cong (mk≈ ≡a ≡l ≡p) = mk≈ ≡a ≡l (≡.cong f ∘ ≡p)
diff --git a/Data/Hypergraph/Edge/Order.agda b/Data/Hypergraph/Edge/Order.agda
new file mode 100644
index 0000000..4b3c1e8
--- /dev/null
+++ b/Data/Hypergraph/Edge/Order.agda
@@ -0,0 +1,280 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Data.Hypergraph.Label using (HypergraphLabel)
+
+module Data.Hypergraph.Edge.Order (HL : HypergraphLabel) where
+
+import Data.List.Sort as ListSort
+import Data.Fin as Fin
+import Data.Fin.Properties as FinProp
+import Data.Vec as Vec
+import Data.Vec.Relation.Binary.Equality.Cast as VecCast
+import Data.Vec.Relation.Binary.Lex.Strict as Lex
+import Relation.Binary.PropositionalEquality as ≡
+import Relation.Binary.Properties.DecTotalOrder as DTOP
+import Relation.Binary.Properties.StrictTotalOrder as STOP
+
+open import Data.Hypergraph.Edge HL using (Edge; ≈-Edge; ≈-Edge-IsEquivalence)
+open import Data.Fin using (Fin)
+open import Data.Nat using (ℕ; _<_)
+open import Data.Nat.Properties using (<-irrefl; <-trans; <-resp₂-≡; <-cmp)
+open import Data.Product.Base using (_,_; proj₁; proj₂)
+open import Data.Vec.Relation.Binary.Pointwise.Inductive using (Pointwise-≡⇒≡)
+open import Level using (0ℓ)
+open import Relation.Binary
+ using
+ ( Rel
+ ; Tri ; Trichotomous
+ ; IsStrictTotalOrder ; IsEquivalence
+ ; _Respects_
+ ; DecTotalOrder ; StrictTotalOrder
+ )
+open import Relation.Nullary using (¬_)
+
+module HL = HypergraphLabel HL
+open HL using (Label; cast; cast-is-id)
+open Vec using (Vec)
+
+open ≡ using (_≡_)
+
+open HL using (_[_<_])
+_<<_ : {v a : ℕ} → Rel (Vec (Fin v) a) 0ℓ
+_<<_ {v} = Lex.Lex-< _≡_ (Fin._<_ {v})
+
+data <-Edge {v : ℕ} : Edge v → Edge v → Set where
+ <-arity
+ : {x y : Edge v}
+ → Edge.arity x < Edge.arity y
+ → <-Edge x y
+ <-label
+ : {x y : Edge v}
+ (≡a : Edge.arity x ≡ Edge.arity y)
+ → Edge.arity y [ cast ≡a (Edge.label x) < Edge.label y ]
+ → <-Edge x y
+ <-ports
+ : {x y : Edge v}
+ (≡a : Edge.arity x ≡ Edge.arity y)
+ (≡l : Edge.label x HL.≈[ ≡a ] Edge.label y)
+ → Vec.cast ≡a (Edge.ports x) << Edge.ports y
+ → <-Edge x y
+
+<-Edge-irrefl : {v : ℕ} {x y : Edge v} → ≈-Edge x y → ¬ <-Edge x y
+<-Edge-irrefl record { ≡arity = ≡a } (<-arity n<m) = <-irrefl ≡a n<m
+<-Edge-irrefl record { ≡label = ≡l } (<-label _ (_ , x≉y)) = x≉y ≡l
+<-Edge-irrefl record { ≡ports = ≡p } (<-ports ≡.refl ≡l x<y)
+ = Lex.<-irrefl FinProp.<-irrefl (≡⇒Pointwise-≡ ≡p) x<y
+
+<-Edge-trans : {v : ℕ} {i j k : Edge v} → <-Edge i j → <-Edge j k → <-Edge i k
+<-Edge-trans (<-arity i<j) (<-arity j<k) = <-arity (<-trans i<j j<k)
+<-Edge-trans (<-arity i<j) (<-label ≡.refl j<k) = <-arity i<j
+<-Edge-trans (<-arity i<j) (<-ports ≡.refl _ j<k) = <-arity i<j
+<-Edge-trans (<-label ≡.refl i<j) (<-arity j<k) = <-arity j<k
+<-Edge-trans {_} {i} (<-label ≡.refl i<j) (<-label ≡.refl j<k)
+ = <-label ≡.refl (<-label-trans i<j (<-respˡ-≈ (HL.≈-reflexive ≡.refl) j<k))
+ where
+ open DTOP (HL.decTotalOrder (Edge.arity i)) using (<-respˡ-≈) renaming (<-trans to <-label-trans)
+<-Edge-trans {k = k} (<-label ≡.refl i<j) (<-ports ≡.refl ≡.refl _)
+ = <-label ≡.refl (<-respʳ-≈ (≡.sym (HL.≈-reflexive ≡.refl)) i<j)
+ where
+ open DTOP (HL.decTotalOrder (Edge.arity k)) using (<-respʳ-≈)
+<-Edge-trans (<-ports ≡.refl _ _) (<-arity j<k) = <-arity j<k
+<-Edge-trans {k = k} (<-ports ≡.refl ≡.refl _) (<-label ≡.refl j<k)
+ = <-label ≡.refl (<-respˡ-≈ (≡.cong (cast _) (HL.≈-reflexive ≡.refl)) j<k)
+ where
+ open DTOP (HL.decTotalOrder (Edge.arity k)) using (<-respˡ-≈)
+<-Edge-trans {j = j} (<-ports ≡.refl ≡l₁ i<j) (<-ports ≡.refl ≡l₂ j<k)
+ rewrite (VecCast.cast-is-id ≡.refl (Edge.ports j))
+ = <-ports ≡.refl
+ (HL.≈-trans ≡l₁ ≡l₂)
+ (Lex.<-trans ≡-isPartialEquivalence FinProp.<-resp₂-≡ FinProp.<-trans i<j j<k)
+ where
+ open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence)
+
+<-Edge-respˡ-≈ : {v : ℕ} {y : Edge v} → (λ x → <-Edge x y) Respects ≈-Edge
+<-Edge-respˡ-≈ ≈x (<-arity x₁<y) = <-arity (proj₂ <-resp₂-≡ ≡arity x₁<y)
+ where
+ open ≈-Edge ≈x using (≡arity)
+<-Edge-respˡ-≈ {_} {y} record { ≡arity = ≡.refl ; ≡label = ≡.refl } (<-label ≡.refl x₁<y)
+ = <-label ≡.refl (<-respˡ-≈ (≡.sym (HL.≈-reflexive ≡.refl)) x₁<y)
+ where
+ module y = Edge y
+ open DTOP (HL.decTotalOrder y.arity) using (<-respˡ-≈)
+<-Edge-respˡ-≈ record { ≡arity = ≡.refl ; ≡label = ≡.refl; ≡ports = ≡.refl} (<-ports ≡.refl ≡.refl x₁<y)
+ = <-ports
+ ≡.refl
+ (≡.cong (cast _) (HL.≈-reflexive ≡.refl))
+ (Lex.<-respectsˡ
+ ≡-isPartialEquivalence
+ FinProp.<-respˡ-≡
+ (≡⇒Pointwise-≡ (≡.sym (VecCast.≈-reflexive ≡.refl)))
+ x₁<y)
+ where
+ open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence)
+
+<-Edge-respʳ-≈ : {v : ℕ} {x : Edge v} → <-Edge x Respects ≈-Edge
+<-Edge-respʳ-≈ record { ≡arity = ≡a } (<-arity x<y₁) = <-arity (proj₁ <-resp₂-≡ ≡a x<y₁)
+<-Edge-respʳ-≈ {_} {x} record { ≡arity = ≡.refl ; ≡label = ≡.refl } (<-label ≡.refl x<y₁)
+ = <-label ≡.refl (<-respʳ-≈ (≡.sym (HL.≈-reflexive ≡.refl)) x<y₁)
+ where
+ module x = Edge x
+ open DTOP (HL.decTotalOrder x.arity) using (<-respʳ-≈)
+<-Edge-respʳ-≈ record { ≡arity = ≡.refl ; ≡label = ≡.refl; ≡ports = ≡.refl} (<-ports ≡.refl ≡.refl x<y₁)
+ = <-ports
+ ≡.refl
+ (≡.cong (cast _) (≡.sym (HL.≈-reflexive ≡.refl)))
+ (Lex.<-respectsʳ
+ ≡-isPartialEquivalence
+ FinProp.<-respʳ-≡
+ (≡⇒Pointwise-≡ (≡.sym (VecCast.≈-reflexive ≡.refl)))
+ x<y₁)
+ where
+ open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence)
+
+open Tri
+open ≈-Edge
+tri : {v : ℕ} → Trichotomous (≈-Edge {v}) (<-Edge {v})
+tri x y with <-cmp x.arity y.arity
+ where
+ module x = Edge x
+ module y = Edge y
+tri x y | tri< x<y x≢y y≮x = tri< (<-arity x<y) (λ x≡y → x≢y (≡arity x≡y)) ¬y<x
+ where
+ ¬y<x : ¬ <-Edge y x
+ ¬y<x (<-arity y<x) = y≮x y<x
+ ¬y<x (<-label ≡a _) = x≢y (≡.sym ≡a)
+ ¬y<x (<-ports ≡a _ _) = x≢y (≡.sym ≡a)
+tri x y | tri≈ x≮y ≡.refl y≮x = compare-label
+ where
+ module x = Edge x
+ module y = Edge y
+ open StrictTotalOrder (HL.strictTotalOrder x.arity) using (compare)
+ import Relation.Binary.Properties.DecTotalOrder
+ open DTOP (HL.decTotalOrder x.arity) using (<-respˡ-≈)
+ compare-label : Tri (<-Edge x y) (≈-Edge x y) (<-Edge y x)
+ compare-label with compare x.label y.label
+ ... | tri< x<y x≢y y≮x′ = tri<
+ (<-label ≡.refl (<-respˡ-≈ (≡.sym (HL.≈-reflexive ≡.refl)) x<y))
+ (λ x≡y → x≢y (≡.trans (≡.sym (HL.≈-reflexive ≡.refl)) (≡label x≡y)))
+ ¬y<x
+ where
+ ¬y<x : ¬ <-Edge y x
+ ¬y<x (<-arity y<x) = y≮x y<x
+ ¬y<x (<-label _ y<x) = y≮x′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) y<x)
+ ¬y<x (<-ports _ ≡l _) = x≢y (≡.trans (≡.sym ≡l) (cast-is-id ≡.refl y.label))
+ ... | tri≈ x≮y′ x≡y′ y≮x′ = compare-ports
+ where
+ compare-ports : Tri (<-Edge x y) (≈-Edge x y) (<-Edge y x)
+ compare-ports with Lex.<-cmp ≡.sym FinProp.<-cmp x.ports y.ports
+ ... | tri< x<y x≢y y≮x″ =
+ tri<
+ (<-ports ≡.refl
+ (HL.≈-reflexive x≡y′)
+ (Lex.<-respectsˡ
+ ≡-isPartialEquivalence
+ FinProp.<-respˡ-≡
+ (≡⇒Pointwise-≡ (≡.sym (VecCast.≈-reflexive ≡.refl)))
+ x<y))
+ (λ x≡y → x≢y (≡⇒Pointwise-≡ (≡.trans (≡.sym (VecCast.≈-reflexive ≡.refl)) (≡ports x≡y))))
+ ¬y<x
+ where
+ open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence)
+ ¬y<x : ¬ <-Edge y x
+ ¬y<x (<-arity y<x) = y≮x y<x
+ ¬y<x (<-label _ y<x) = y≮x′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) y<x)
+ ¬y<x (<-ports _ _ y<x) =
+ y≮x″
+ (Lex.<-respectsˡ
+ ≡-isPartialEquivalence
+ FinProp.<-respˡ-≡
+ (≡⇒Pointwise-≡ (VecCast.≈-reflexive ≡.refl))
+ y<x)
+ ... | tri≈ x≮y″ x≡y″ y≮x″ = tri≈
+ ¬x<y
+ (record { ≡arity = ≡.refl ; ≡label = HL.≈-reflexive x≡y′ ; ≡ports = VecCast.≈-reflexive (Pointwise-≡⇒≡ x≡y″) })
+ ¬y<x
+ where
+ open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence)
+ ¬x<y : ¬ <-Edge x y
+ ¬x<y (<-arity x<y) = x≮y x<y
+ ¬x<y (<-label _ x<y) = x≮y′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) x<y)
+ ¬x<y (<-ports _ _ x<y) =
+ x≮y″
+ (Lex.<-respectsˡ
+ ≡-isPartialEquivalence
+ FinProp.<-respˡ-≡
+ (≡⇒Pointwise-≡ (VecCast.≈-reflexive ≡.refl))
+ x<y)
+ ¬y<x : ¬ <-Edge y x
+ ¬y<x (<-arity y<x) = y≮x y<x
+ ¬y<x (<-label _ y<x) = y≮x′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) y<x)
+ ¬y<x (<-ports _ _ y<x) =
+ y≮x″
+ (Lex.<-respectsˡ
+ ≡-isPartialEquivalence
+ FinProp.<-respˡ-≡
+ (≡⇒Pointwise-≡ (VecCast.≈-reflexive ≡.refl))
+ y<x)
+
+ ... | tri> x≮y″ x≢y y<x =
+ tri>
+ ¬x<y
+ (λ x≡y → x≢y (≡⇒Pointwise-≡ (≡.trans (≡.sym (VecCast.≈-reflexive ≡.refl)) (≡ports x≡y))))
+ (<-ports
+ ≡.refl
+ (HL.≈-sym (HL.≈-reflexive x≡y′))
+ (Lex.<-respectsˡ
+ ≡-isPartialEquivalence
+ FinProp.<-respˡ-≡
+ (≡⇒Pointwise-≡ (≡.sym (VecCast.≈-reflexive ≡.refl)))
+ y<x))
+ where
+ open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence)
+ ¬x<y : ¬ <-Edge x y
+ ¬x<y (<-arity x<y) = x≮y x<y
+ ¬x<y (<-label _ x<y) = x≮y′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) x<y)
+ ¬x<y (<-ports _ _ x<y) =
+ x≮y″
+ (Lex.<-respectsˡ
+ ≡-isPartialEquivalence
+ FinProp.<-respˡ-≡
+ (≡⇒Pointwise-≡ (VecCast.≈-reflexive ≡.refl))
+ x<y)
+ ... | tri> x≮y′ x≢y y<x = tri>
+ ¬x<y
+ (λ x≡y → x≢y (≡.trans (≡.sym (HL.≈-reflexive ≡.refl)) (≡label x≡y)))
+ (<-label ≡.refl (<-respˡ-≈ (≡.sym (HL.≈-reflexive ≡.refl)) y<x))
+ where
+ ¬x<y : ¬ <-Edge x y
+ ¬x<y (<-arity x<y) = x≮y x<y
+ ¬x<y (<-label ≡a x<y) = x≮y′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) x<y)
+ ¬x<y (<-ports _ ≡l _) = x≢y (≡.trans (≡.sym (HL.≈-reflexive ≡.refl)) ≡l)
+tri x y | tri> x≮y x≢y y<x = tri> ¬x<y (λ x≡y → x≢y (≡arity x≡y)) (<-arity y<x)
+ where
+ ¬x<y : ¬ <-Edge x y
+ ¬x<y (<-arity x<y) = x≮y x<y
+ ¬x<y (<-label ≡a x<y) = x≢y ≡a
+ ¬x<y (<-ports ≡a _ _) = x≢y ≡a
+
+isStrictTotalOrder : {v : ℕ} → IsStrictTotalOrder (≈-Edge {v}) (<-Edge {v})
+isStrictTotalOrder = record
+ { isStrictPartialOrder = record
+ { isEquivalence = ≈-Edge-IsEquivalence
+ ; irrefl = <-Edge-irrefl
+ ; trans = <-Edge-trans
+ ; <-resp-≈ = <-Edge-respʳ-≈ , <-Edge-respˡ-≈
+ }
+ ; compare = tri
+ }
+
+strictTotalOrder : {v : ℕ} → StrictTotalOrder 0ℓ 0ℓ 0ℓ
+strictTotalOrder {v} = record
+ { Carrier = Edge v
+ ; _≈_ = ≈-Edge {v}
+ ; _<_ = <-Edge {v}
+ ; isStrictTotalOrder = isStrictTotalOrder {v}
+ }
+
+open module STOP′ {v} = STOP (strictTotalOrder {v}) using (decTotalOrder) public
+
+module Sort {v} = ListSort (decTotalOrder {v})
+open Sort using (sort) public
diff --git a/Data/Hypergraph/Label.agda b/Data/Hypergraph/Label.agda
new file mode 100644
index 0000000..ca95002
--- /dev/null
+++ b/Data/Hypergraph/Label.agda
@@ -0,0 +1,36 @@
+{-# OPTIONS --without-K --safe #-}
+module Data.Hypergraph.Label where
+
+open import Data.Castable using (IsCastable)
+open import Data.Nat.Base using (ℕ)
+open import Data.String using (String)
+open import Level using (Level; 0ℓ)
+open import Relation.Binary using (Rel; IsDecTotalOrder)
+open import Relation.Binary.Bundles using (DecTotalOrder; StrictTotalOrder)
+open import Relation.Binary.Properties.DecTotalOrder using (<-strictTotalOrder; _<_)
+open import Relation.Binary.PropositionalEquality using (_≡_)
+
+record HypergraphLabel : Set₁ where
+
+ field
+ Label : ℕ → Set
+ showLabel : (n : ℕ) → Label n → String
+ isCastable : IsCastable Label
+ _[_≤_] : (n : ℕ) → Rel (Label n) 0ℓ
+ isDecTotalOrder : (n : ℕ) → IsDecTotalOrder _≡_ (n [_≤_])
+
+ decTotalOrder : (n : ℕ) → DecTotalOrder 0ℓ 0ℓ 0ℓ
+ decTotalOrder n = record
+ { Carrier = Label n
+ ; _≈_ = _≡_
+ ; _≤_ = n [_≤_]
+ ; isDecTotalOrder = isDecTotalOrder n
+ }
+
+ _[_<_] : (n : ℕ) → Rel (Label n) 0ℓ
+ _[_<_] n = _<_ (decTotalOrder n)
+
+ strictTotalOrder : (n : ℕ) → StrictTotalOrder 0ℓ 0ℓ 0ℓ
+ strictTotalOrder n = <-strictTotalOrder (decTotalOrder n)
+
+ open IsCastable isCastable public
diff --git a/Data/Monoid.agda b/Data/Monoid.agda
new file mode 100644
index 0000000..1ba0af4
--- /dev/null
+++ b/Data/Monoid.agda
@@ -0,0 +1,86 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Level using (Level)
+module Data.Monoid {c ℓ : Level} where
+
+open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory)
+open import Category.Instance.Setoids.SymmetricMonoidal {c} {ℓ} using (Setoids-×; ×-monoidal′)
+open import Categories.Object.Monoid using (Monoid; Monoid⇒)
+
+import Algebra.Bundles as Alg
+
+open import Data.Setoid using (∣_∣)
+open import Relation.Binary using (Setoid)
+open import Function using (Func)
+open import Data.Product using (curry′; uncurry′; _,_)
+open Func
+
+-- A monoid object in the (monoidal) category of setoids is just a monoid
+
+open import Function.Construct.Constant using () renaming (function to Const)
+open import Data.Setoid.Unit using (⊤ₛ)
+
+opaque
+ unfolding ×-monoidal′
+ toMonoid : Monoid Setoids-×.monoidal → Alg.Monoid c ℓ
+ toMonoid M = record
+ { Carrier = Carrier
+ ; _≈_ = _≈_
+ ; _∙_ = curry′ (to μ)
+ ; ε = to η _
+ ; isMonoid = record
+ { isSemigroup = record
+ { isMagma = record
+ { isEquivalence = isEquivalence
+ ; ∙-cong = curry′ (cong μ)
+ }
+ ; assoc = λ x y z → assoc {(x , y) , z}
+ }
+ ; identity = (λ x → sym (identityˡ {_ , x}) ) , λ x → sym (identityʳ {x , _})
+ }
+ }
+ where
+ open Monoid M renaming (Carrier to A)
+ open Setoid A
+
+ fromMonoid : Alg.Monoid c ℓ → Monoid Setoids-×.monoidal
+ fromMonoid M = record
+ { Carrier = setoid
+ ; isMonoid = record
+ { μ = record { to = uncurry′ _∙_ ; cong = uncurry′ ∙-cong }
+ ; η = Const ⊤ₛ setoid ε
+ ; assoc = λ { {(x , y) , z} → assoc x y z }
+ ; identityˡ = λ { {_ , x} → sym (identityˡ x) }
+ ; identityʳ = λ { {x , _} → sym (identityʳ x) }
+ }
+ }
+ where
+ open Alg.Monoid M
+
+-- A morphism of monoids in the (monoidal) category of setoids is a monoid homomorphism
+
+module _ (M N : Monoid Setoids-×.monoidal) where
+
+ module M = Alg.Monoid (toMonoid M)
+ module N = Alg.Monoid (toMonoid N)
+
+ open import Data.Product using (Σ; _,_)
+ open import Function using (_⟶ₛ_)
+ open import Algebra.Morphism using (IsMonoidHomomorphism)
+ open Monoid⇒
+
+ opaque
+
+ unfolding toMonoid
+
+ toMonoid⇒
+ : Monoid⇒ Setoids-×.monoidal M N
+ → Σ (M.setoid ⟶ₛ N.setoid) (λ f
+ → IsMonoidHomomorphism M.rawMonoid N.rawMonoid (to f))
+ toMonoid⇒ f = arr f , record
+ { isMagmaHomomorphism = record
+ { isRelHomomorphism = record { cong = cong (arr f) }
+ ; homo = λ x y → preserves-μ f {x , y}
+ }
+ ; ε-homo = preserves-η f
+ }
diff --git a/Data/Opaque/List.agda b/Data/Opaque/List.agda
new file mode 100644
index 0000000..83a2fe3
--- /dev/null
+++ b/Data/Opaque/List.agda
@@ -0,0 +1,165 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Data.Opaque.List where
+
+import Data.List as L
+import Function.Construct.Constant as Const
+import Relation.Binary.Reasoning.Setoid as ≈-Reasoning
+
+open import Algebra.Bundles using (Monoid)
+open import Algebra.Morphism using (IsMonoidHomomorphism)
+open import Data.List.Effectful.Foldable using (foldable; ++-homo)
+open import Data.List.Relation.Binary.Pointwise as PW using (++⁺; map⁺)
+open import Data.Product using (_,_; curry′; uncurry′)
+open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
+open import Data.Setoid using (∣_∣)
+open import Data.Unit.Polymorphic using (⊤)
+open import Effect.Foldable using (RawFoldable)
+open import Function using (_⟶ₛ_; Func; _⟨$⟩_; id)
+open import Level using (Level; _⊔_)
+open import Relation.Binary using (Setoid)
+
+open Func
+
+private
+
+ variable
+ a c ℓ : Level
+ A B : Set a
+ Aₛ Bₛ : Setoid c ℓ
+
+ ⊤ₛ : Setoid c ℓ
+ ⊤ₛ = record { Carrier = ⊤ ; _≈_ = λ _ _ → ⊤ }
+
+opaque
+
+ List : Set a → Set a
+ List = L.List
+
+ [] : List A
+ [] = L.[]
+
+ _∷_ : A → List A → List A
+ _∷_ = L._∷_
+
+ map : (A → B) → List A → List B
+ map = L.map
+
+ _++_ : List A → List A → List A
+ _++_ = L._++_
+
+ Listₛ : Setoid c ℓ → Setoid c (c ⊔ ℓ)
+ Listₛ = PW.setoid
+
+ []ₛ : ⊤ₛ {c} {c ⊔ ℓ} ⟶ₛ Listₛ {c} {ℓ} Aₛ
+ []ₛ = Const.function ⊤ₛ (Listₛ _) []
+
+ ∷ₛ : Aₛ ×ₛ Listₛ Aₛ ⟶ₛ Listₛ Aₛ
+ ∷ₛ .to = uncurry′ _∷_
+ ∷ₛ .cong = uncurry′ PW._∷_
+
+ [-]ₛ : Aₛ ⟶ₛ Listₛ Aₛ
+ [-]ₛ .to = L.[_]
+ [-]ₛ .cong y = y PW.∷ PW.[]
+
+ mapₛ : (Aₛ ⟶ₛ Bₛ) → Listₛ Aₛ ⟶ₛ Listₛ Bₛ
+ mapₛ f .to = map (to f)
+ mapₛ f .cong xs≈ys = map⁺ (to f) (to f) (PW.map (cong f) xs≈ys)
+
+ cartesianProduct : ∣ Listₛ Aₛ ∣ → ∣ Listₛ Bₛ ∣ → ∣ Listₛ (Aₛ ×ₛ Bₛ) ∣
+ cartesianProduct = L.cartesianProduct
+
+ cartesian-product-cong
+ : {xs xs′ : ∣ Listₛ Aₛ ∣}
+ {ys ys′ : ∣ Listₛ Bₛ ∣}
+ → (let open Setoid (Listₛ Aₛ) in xs ≈ xs′)
+ → (let open Setoid (Listₛ Bₛ) in ys ≈ ys′)
+ → (let open Setoid (Listₛ (Aₛ ×ₛ Bₛ)) in cartesianProduct xs ys ≈ cartesianProduct xs′ ys′)
+ cartesian-product-cong PW.[] ys≋ys′ = PW.[]
+ cartesian-product-cong {Aₛ = Aₛ} {Bₛ = Bₛ} {xs = x₀ L.∷ xs} {xs′ = x₀′ L.∷ xs′} (x₀≈x₀′ PW.∷ xs≋xs′) ys≋ys′ =
+ ++⁺
+ (map⁺ (x₀ ,_) (x₀′ ,_) (PW.map (x₀≈x₀′ ,_) ys≋ys′))
+ (cartesian-product-cong {Aₛ = Aₛ} {Bₛ = Bₛ} xs≋xs′ ys≋ys′)
+
+ pairsₛ : Listₛ Aₛ ×ₛ Listₛ Bₛ ⟶ₛ Listₛ (Aₛ ×ₛ Bₛ)
+ pairsₛ .to = uncurry′ L.cartesianProduct
+ pairsₛ {Aₛ = Aₛ} {Bₛ = Bₛ} .cong = uncurry′ (cartesian-product-cong {Aₛ = Aₛ} {Bₛ = Bₛ})
+
+ ++ₛ : Listₛ Aₛ ×ₛ Listₛ Aₛ ⟶ₛ Listₛ Aₛ
+ ++ₛ .to = uncurry′ _++_
+ ++ₛ .cong = uncurry′ ++⁺
+
+ foldr : (Aₛ ×ₛ Bₛ ⟶ₛ Bₛ) → ∣ Bₛ ∣ → ∣ Listₛ Aₛ ∣ → ∣ Bₛ ∣
+ foldr f = L.foldr (curry′ (to f))
+
+ foldr-cong
+ : (f : Aₛ ×ₛ Bₛ ⟶ₛ Bₛ)
+ → (e : ∣ Bₛ ∣)
+ → (let module [A]ₛ = Setoid (Listₛ Aₛ))
+ → {xs ys : ∣ Listₛ Aₛ ∣}
+ → (xs [A]ₛ.≈ ys)
+ → (open Setoid Bₛ)
+ → foldr f e xs ≈ foldr f e ys
+ foldr-cong {Bₛ = Bₛ} f e PW.[] = Setoid.refl Bₛ
+ foldr-cong f e (x≈y PW.∷ xs≋ys) = cong f (x≈y , foldr-cong f e xs≋ys)
+
+ foldrₛ : (Aₛ ×ₛ Bₛ ⟶ₛ Bₛ) → ∣ Bₛ ∣ → Listₛ Aₛ ⟶ₛ Bₛ
+ foldrₛ f e .to = foldr f e
+ foldrₛ {Bₛ = Bₛ} f e .cong = foldr-cong f e
+
+module _ (M : Monoid c ℓ) where
+
+ open Monoid M renaming (setoid to Mₛ)
+
+ opaque
+ unfolding List
+ fold : ∣ Listₛ Mₛ ∣ → ∣ Mₛ ∣
+ fold = RawFoldable.fold foldable rawMonoid
+
+ fold-cong
+ : {xs ys : ∣ Listₛ Mₛ ∣}
+ → (let module [M]ₛ = Setoid (Listₛ Mₛ))
+ → (xs [M]ₛ.≈ ys)
+ → fold xs ≈ fold ys
+ fold-cong = PW.rec (λ {xs} {ys} _ → fold xs ≈ fold ys) ∙-cong refl
+
+ foldₛ : Listₛ Mₛ ⟶ₛ Mₛ
+ foldₛ .to = fold
+ foldₛ .cong = fold-cong
+
+ opaque
+ unfolding fold
+ ++ₛ-homo
+ : (xs ys : ∣ Listₛ Mₛ ∣)
+ → foldₛ ⟨$⟩ (++ₛ ⟨$⟩ (xs , ys)) ≈ (foldₛ ⟨$⟩ xs) ∙ (foldₛ ⟨$⟩ ys)
+ ++ₛ-homo xs ys = ++-homo M id xs
+
+ []ₛ-homo : foldₛ ⟨$⟩ ([]ₛ ⟨$⟩ _) ≈ ε
+ []ₛ-homo = refl
+
+module _ (M N : Monoid c ℓ) where
+
+ module M = Monoid M
+ module N = Monoid N
+
+ open IsMonoidHomomorphism
+
+ opaque
+ unfolding fold
+
+ fold-mapₛ
+ : (f : M.setoid ⟶ₛ N.setoid)
+ → IsMonoidHomomorphism M.rawMonoid N.rawMonoid (to f)
+ → {xs : ∣ Listₛ M.setoid ∣}
+ → foldₛ N ⟨$⟩ (mapₛ f ⟨$⟩ xs) N.≈ f ⟨$⟩ (foldₛ M ⟨$⟩ xs)
+ fold-mapₛ f isMH {L.[]} = N.sym (ε-homo isMH)
+ fold-mapₛ f isMH {x L.∷ xs} = begin
+ f′ x ∙ fold N (map f′ xs) ≈⟨ N.∙-cong N.refl (fold-mapₛ f isMH {xs}) ⟩
+ f′ x ∙ f′ (fold M xs) ≈⟨ homo isMH x (fold M xs) ⟨
+ f′ (x ∘ fold M xs) ∎
+ where
+ open N using (_∙_)
+ open M using () renaming (_∙_ to _∘_)
+ open ≈-Reasoning N.setoid
+ f′ : M.Carrier → N.Carrier
+ f′ = to f
diff --git a/Data/Opaque/Multiset.agda b/Data/Opaque/Multiset.agda
new file mode 100644
index 0000000..99501d6
--- /dev/null
+++ b/Data/Opaque/Multiset.agda
@@ -0,0 +1,131 @@
+{-# OPTIONS --without-K --safe #-}
+{-# OPTIONS --hidden-argument-puns #-}
+
+module Data.Opaque.Multiset where
+
+import Data.List as L
+import Relation.Binary.Reasoning.Setoid as ≈-Reasoning
+import Data.Opaque.List as List
+
+open import Algebra.Bundles using (CommutativeMonoid)
+open import Data.List.Effectful.Foldable using (foldable; ++-homo)
+open import Data.List.Relation.Binary.Permutation.Setoid as ↭ using (↭-setoid; ↭-refl)
+open import Data.List.Relation.Binary.Permutation.Setoid.Properties using (map⁺; ++⁺; ++-comm)
+open import Algebra.Morphism using (IsMonoidHomomorphism)
+open import Data.Product using (_,_; uncurry′)
+open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
+open import Data.Setoid using (∣_∣)
+open import Data.Setoid.Unit using (⊤ₛ)
+open import Effect.Foldable using (RawFoldable)
+open import Function using (_⟶ₛ_; Func; _⟨$⟩_; id)
+open import Function.Construct.Constant using () renaming (function to Const)
+open import Level using (Level; _⊔_)
+open import Relation.Binary using (Setoid)
+
+open Func
+
+private
+
+ variable
+ a c ℓ : Level
+ A B : Set a
+ Aₛ Bₛ : Setoid c ℓ
+
+opaque
+
+ Multiset : Set a → Set a
+ Multiset = L.List
+
+ [] : Multiset A
+ [] = L.[]
+
+ _∷_ : A → Multiset A → Multiset A
+ _∷_ = L._∷_
+
+ map : (A → B) → Multiset A → Multiset B
+ map = L.map
+
+ _++_ : Multiset A → Multiset A → Multiset A
+ _++_ = L._++_
+
+ Multisetₛ : Setoid c ℓ → Setoid c (c ⊔ ℓ)
+ Multisetₛ = ↭-setoid
+
+ []ₛ : ⊤ₛ {c} {c ⊔ ℓ} ⟶ₛ Multisetₛ {c} {ℓ} Aₛ
+ []ₛ {Aₛ} = Const ⊤ₛ (Multisetₛ Aₛ) []
+
+ ∷ₛ : Aₛ ×ₛ Multisetₛ Aₛ ⟶ₛ Multisetₛ Aₛ
+ ∷ₛ .to = uncurry′ _∷_
+ ∷ₛ .cong = uncurry′ ↭.prep
+
+ [-]ₛ : Aₛ ⟶ₛ Multisetₛ Aₛ
+ [-]ₛ .to = L.[_]
+ [-]ₛ {Aₛ} .cong y = ↭.prep y (↭-refl Aₛ)
+
+ mapₛ : (Aₛ ⟶ₛ Bₛ) → Multisetₛ Aₛ ⟶ₛ Multisetₛ Bₛ
+ mapₛ f .to = map (to f)
+ mapₛ {Aₛ} {Bₛ} f .cong xs≈ys = map⁺ Aₛ Bₛ (cong f) xs≈ys
+
+ ++ₛ : Multisetₛ Aₛ ×ₛ Multisetₛ Aₛ ⟶ₛ Multisetₛ Aₛ
+ ++ₛ .to = uncurry′ _++_
+ ++ₛ {Aₛ} .cong = uncurry′ (++⁺ Aₛ)
+
+ ++ₛ-comm
+ : (open Setoid (Multisetₛ Aₛ))
+ → (xs ys : Carrier)
+ → ++ₛ ⟨$⟩ (xs , ys) ≈ ++ₛ ⟨$⟩ (ys , xs)
+ ++ₛ-comm {Aₛ} xs ys = ++-comm Aₛ xs ys
+
+module _ (M : CommutativeMonoid c ℓ) where
+
+ open CommutativeMonoid M renaming (setoid to Mₛ)
+
+ opaque
+ unfolding Multiset List.fold-cong
+ fold : ∣ Multisetₛ Mₛ ∣ → ∣ Mₛ ∣
+ fold = List.fold monoid -- RawFoldable.fold foldable rawMonoid
+
+ fold-cong
+ : {xs ys : ∣ Multisetₛ Mₛ ∣}
+ → (let module [M]ₛ = Setoid (Multisetₛ Mₛ))
+ → (xs [M]ₛ.≈ ys)
+ → fold xs ≈ fold ys
+ fold-cong (↭.refl x) = cong (List.foldₛ monoid) x
+ fold-cong (↭.prep x≈y xs↭ys) = ∙-cong x≈y (fold-cong xs↭ys)
+ fold-cong
+ {x₀ L.∷ x₁ L.∷ xs}
+ {y₀ L.∷ y₁ L.∷ ys}
+ (↭.swap x₀≈y₁ x₁≈y₀ xs↭ys) = trans
+ (sym (assoc x₀ x₁ (fold xs))) (trans 
+ (∙-cong (trans (∙-cong x₀≈y₁ x₁≈y₀) (comm y₁ y₀)) (fold-cong xs↭ys))
+ (assoc y₀ y₁ (fold ys)))
+ fold-cong {xs} {ys} (↭.trans xs↭zs zs↭ys) = trans (fold-cong xs↭zs) (fold-cong zs↭ys)
+
+ foldₛ : Multisetₛ Mₛ ⟶ₛ Mₛ
+ foldₛ .to = fold
+ foldₛ .cong = fold-cong
+
+ opaque
+ unfolding fold
+ ++ₛ-homo
+ : (xs ys : ∣ Multisetₛ Mₛ ∣)
+ → foldₛ ⟨$⟩ (++ₛ ⟨$⟩ (xs , ys)) ≈ (foldₛ ⟨$⟩ xs) ∙ (foldₛ ⟨$⟩ ys)
+ ++ₛ-homo xs ys = ++-homo monoid id xs
+
+ []ₛ-homo : foldₛ ⟨$⟩ ([]ₛ ⟨$⟩ _) ≈ ε
+ []ₛ-homo = refl
+
+module _ (M N : CommutativeMonoid c ℓ) where
+
+ module M = CommutativeMonoid M
+ module N = CommutativeMonoid N
+
+ opaque
+ unfolding fold
+
+ fold-mapₛ
+ : (f : M.setoid ⟶ₛ N.setoid)
+ → IsMonoidHomomorphism M.rawMonoid N.rawMonoid (to f)
+ → {xs : ∣ Multisetₛ M.setoid ∣}
+ → foldₛ N ⟨$⟩ (mapₛ f ⟨$⟩ xs) N.≈ f ⟨$⟩ (foldₛ M ⟨$⟩ xs)
+ fold-mapₛ = List.fold-mapₛ M.monoid N.monoid
diff --git a/Data/Permutation.agda b/Data/Permutation.agda
new file mode 100644
index 0000000..55c8748
--- /dev/null
+++ b/Data/Permutation.agda
@@ -0,0 +1,217 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Level using (Level)
+
+module Data.Permutation {ℓ : Level} {A : Set ℓ} where
+
+import Data.Fin as Fin
+import Data.Fin.Properties as FinProp
+import Data.Fin.Permutation as ↔-Fin
+import Data.List as List
+import Data.List.Properties as ListProp
+import Data.List.Relation.Binary.Permutation.Propositional as ↭-List
+import Data.Nat as Nat
+import Data.Vec.Functional as Vector
+import Data.Vec.Functional.Properties as VectorProp
+import Data.Vec.Functional.Relation.Binary.Permutation as ↭-Vec
+import Data.Vec.Functional.Relation.Binary.Permutation.Properties as ↭-VecProp
+
+open import Relation.Binary.PropositionalEquality as ≡ using (_≡_)
+open import Data.Product.Base using (_,_; proj₁; proj₂)
+open import Data.Vec.Functional.Relation.Unary.Any using (Any)
+open import Function.Base using (_∘_)
+
+open ↭-Vec using () renaming (_↭_ to _↭′_)
+open ↭-List using (_↭_; ↭-sym; module PermutationReasoning)
+open ↔-Fin using (Permutation; _⟨$⟩ˡ_; _⟨$⟩ʳ_)
+open List using (List) hiding (module List)
+open Fin using (Fin; cast) hiding (module Fin)
+open Vector using (Vector; toList; fromList)
+open Fin.Fin
+open Nat using (ℕ; zero; suc)
+open _↭_
+
+module _ where
+
+ open Fin using (#_)
+ open ↔-Fin using (lift₀; insert)
+ open ↭-VecProp using (↭-refl; ↭-trans)
+
+ -- convert a List permutation to a Vector permutation
+ fromList-↭
+ : {xs ys : List A}
+ → xs ↭ ys
+ → fromList xs ↭′ fromList ys
+ fromList-↭ refl = ↭-refl
+ fromList-↭ (prep _ xs↭ys)
+ with n↔m , xs↭ys′ ← fromList-↭ xs↭ys = lift₀ n↔m , λ where
+ zero → ≡.refl
+ (suc i) → xs↭ys′ i
+ fromList-↭ (swap x y xs↭ys)
+ with n↔m , xs↭ys′ ← fromList-↭ xs↭ys = insert (# 0) (# 1) (lift₀ n↔m) , λ where
+ zero → ≡.refl
+ (suc zero) → ≡.refl
+ (suc (suc i)) → xs↭ys′ i
+ fromList-↭ (trans {xs} xs↭ys ys↭zs) =
+ ↭-trans {_} {_} {_} {i = fromList xs} (fromList-↭ xs↭ys) (fromList-↭ ys↭zs)
+
+-- witness for an element in a Vector
+_∈_ : A → {n : ℕ} → Vector A n → Set ℓ
+x ∈ xs = Any (x ≡_) xs
+
+-- apply a permutation to a witness
+apply
+ : {n m : ℕ}
+ {xs : Vector A n}
+ {ys : Vector A m}
+ {x : A}
+ → (xs↭ys : xs ↭′ ys)
+ → x ∈ xs
+ → x ∈ ys
+apply {suc n} {zero} (↔n , _) (i , _) with () ← ↔n ⟨$⟩ˡ i
+apply {suc n} {suc m} {xs} {ys} {x} (↔n , ↔≗) (i , x≡xs-i) = i′ , x≡ys-i′
+ where
+ i′ : Fin (suc m)
+ i′ = ↔n ⟨$⟩ˡ i
+ open ≡.≡-Reasoning
+ x≡ys-i′ : x ≡ ys i′
+ x≡ys-i′ = begin
+ x ≡⟨ x≡xs-i ⟩
+ xs i ≡⟨ ≡.cong xs (↔-Fin.inverseʳ ↔n) ⟨
+ xs (↔n ⟨$⟩ʳ (↔n ⟨$⟩ˡ i)) ≡⟨⟩
+ xs (↔n ⟨$⟩ʳ i′) ≡⟨ ↔≗ i′ ⟩
+ ys i′ ∎
+
+-- remove an element from a Vector
+remove : {n : ℕ} {x : A} (xs : Vector A (suc n)) → x ∈ xs → Vector A n
+remove xs (i , _) = Vector.removeAt xs i
+
+-- remove an element and its image from a permutation
+↭-remove
+ : {n m : ℕ}
+ {xs : Vector A (suc n)}
+ {ys : Vector A (suc m)}
+ {x : A}
+ → (xs↭ys : xs ↭′ ys)
+ → (x∈xs : x ∈ xs)
+ → let x∈ys = apply xs↭ys x∈xs in
+ remove xs x∈xs ↭′ remove ys x∈ys
+↭-remove {n} {m} {xs} {ys} {x} xs↭ys@(ρ , ↔≗) x∈xs@(k , _) = ρ⁻ , ↔≗⁻
+ where
+ k′ : Fin (suc m)
+ k′ = ρ ⟨$⟩ˡ k
+ x∈ys : x ∈ ys
+ x∈ys = apply xs↭ys x∈xs
+ ρ⁻ : Permutation m n
+ ρ⁻ = ↔-Fin.remove k′ ρ
+ xs⁻ : Vector A n
+ xs⁻ = remove xs x∈xs
+ ys⁻ : Vector A m
+ ys⁻ = remove ys x∈ys
+ open ≡.≡-Reasoning
+ open Fin using (punchIn)
+ ↔≗⁻ : (i : Fin m) → xs⁻ (ρ⁻ ⟨$⟩ʳ i) ≡ ys⁻ i
+ ↔≗⁻ i = begin
+ xs⁻ (ρ⁻ ⟨$⟩ʳ i) ≡⟨⟩
+ remove xs x∈xs (ρ⁻ ⟨$⟩ʳ i) ≡⟨⟩
+ xs (punchIn k (ρ⁻ ⟨$⟩ʳ i)) ≡⟨ ≡.cong xs (↔-Fin.punchIn-permute′ ρ k i) ⟨
+ xs (ρ ⟨$⟩ʳ (punchIn k′ i)) ≡⟨ ↔≗ (punchIn k′ i) ⟩
+ ys (punchIn k′ i) ≡⟨⟩
+ remove ys x∈ys i ≡⟨⟩
+ ys⁻ i ∎
+
+open List.List
+open List using (length; insertAt)
+
+-- build a permutation which moves the first element of a list to an arbitrary position
+↭-insert-half
+ : {x₀ : A}
+ {xs : List A}
+ → (i : Fin (suc (length xs)))
+ → x₀ ∷ xs ↭ insertAt xs i x₀
+↭-insert-half zero = refl
+↭-insert-half {x₀} {x₁ ∷ xs} (suc i) = trans (swap x₀ x₁ refl) (prep x₁ (↭-insert-half i))
+
+-- add a mapping to a permutation, given a value and its start and end positions
+↭-insert
+ : {xs ys : List A}
+ → xs ↭ ys
+ → (i : Fin (suc (length xs)))
+ (j : Fin (suc (length ys)))
+ (x : A)
+ → insertAt xs i x ↭ insertAt ys j x
+↭-insert {xs} {ys} xs↭ys i j x = xs↭ys⁺
+ where
+ open PermutationReasoning
+ xs↭ys⁺ : insertAt xs i x ↭ insertAt ys j x
+ xs↭ys⁺ = begin
+ insertAt xs i x ↭⟨ ↭-insert-half i ⟨
+ x ∷ xs <⟨ xs↭ys ⟩
+ x ∷ ys ↭⟨ ↭-insert-half j ⟩
+ insertAt ys j x ∎
+
+open ListProp using (length-tabulate; tabulate-cong)
+insertAt-toList
+ : {n : ℕ}
+ {v : Vector A n}
+ (i : Fin (suc (length (toList v))))
+ (i′ : Fin (suc n))
+ → i ≡ cast (≡.cong suc (≡.sym (length-tabulate v))) i′
+ → (x : A)
+ → insertAt (toList v) i x
+ ≡ toList (Vector.insertAt v i′ x)
+insertAt-toList zero zero _ x = ≡.refl
+insertAt-toList {suc n} {v} (suc i) (suc i′) ≡.refl x =
+ ≡.cong (v zero ∷_) (insertAt-toList i i′ ≡.refl x)
+
+-- convert a Vector permutation to a List permutation
+toList-↭
+ : {n m : ℕ}
+ {xs : Vector A n}
+ {ys : Vector A m}
+ → xs ↭′ ys
+ → toList xs ↭ toList ys
+toList-↭ {zero} {zero} _ = refl
+toList-↭ {zero} {suc m} (ρ , _) with () ← ρ ⟨$⟩ʳ zero
+toList-↭ {suc n} {zero} (ρ , _) with () ← ρ ⟨$⟩ˡ zero
+toList-↭ {suc n} {suc m} {xs} {ys} xs↭ys′ = xs↭ys
+ where
+ -- first element and its image
+ x₀ : A
+ x₀ = xs zero
+ x₀∈xs : x₀ ∈ xs
+ x₀∈xs = zero , ≡.refl
+ x₀∈ys : x₀ ∈ ys
+ x₀∈ys = apply xs↭ys′ x₀∈xs
+ -- reduce the problem by removing those elements
+ xs⁻ : Vector A n
+ xs⁻ = remove xs x₀∈xs
+ ys⁻ : Vector A m
+ ys⁻ = remove ys x₀∈ys
+ xs↭ys⁻ : xs⁻ ↭′ ys⁻
+ xs↭ys⁻ = ↭-remove xs↭ys′ x₀∈xs
+ -- recursion on the reduced problem
+ xs↭ys⁻′ : toList xs⁻ ↭ toList ys⁻
+ xs↭ys⁻′ = toList-↭ xs↭ys⁻
+ -- indices for working with vectors
+ i : Fin (suc n)
+ i = proj₁ x₀∈xs
+ j : Fin (suc m)
+ j = proj₁ x₀∈ys
+ i′ : Fin (suc (length (toList xs⁻)))
+ i′ = cast (≡.sym (≡.cong suc (length-tabulate xs⁻))) i
+ j′ : Fin (suc (length (toList ys⁻)))
+ j′ = cast (≡.sym (≡.cong suc (length-tabulate ys⁻))) j
+ -- main construction
+ open VectorProp using (insertAt-removeAt)
+ open PermutationReasoning
+ open Vector using () renaming (insertAt to insertAt′)
+ xs↭ys : toList xs ↭ toList ys
+ xs↭ys = begin
+ toList xs ≡⟨ tabulate-cong (insertAt-removeAt xs i) ⟨
+ toList (insertAt′ xs⁻ i x₀) ≡⟨ insertAt-toList i′ i ≡.refl x₀ ⟨
+ insertAt (toList xs⁻) i′ x₀ ↭⟨ ↭-insert xs↭ys⁻′ i′ j′ x₀ ⟩
+ insertAt (toList ys⁻) j′ x₀ ≡⟨ insertAt-toList j′ j ≡.refl x₀ ⟩
+ toList (insertAt′ ys⁻ j x₀) ≡⟨ ≡.cong (toList ∘ insertAt′ ys⁻ j) (proj₂ x₀∈ys) ⟩
+ toList (insertAt′ ys⁻ j (ys j)) ≡⟨ tabulate-cong (insertAt-removeAt ys j) ⟩
+ toList ys ∎
diff --git a/Data/Permutation/Sort.agda b/Data/Permutation/Sort.agda
new file mode 100644
index 0000000..8d097f2
--- /dev/null
+++ b/Data/Permutation/Sort.agda
@@ -0,0 +1,29 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Relation.Binary.Bundles using (DecTotalOrder)
+
+module Data.Permutation.Sort {ℓ₁ ℓ₂ ℓ₃} (dto : DecTotalOrder ℓ₁ ℓ₂ ℓ₃) where
+
+open DecTotalOrder dto using (module Eq; totalOrder) renaming (Carrier to A)
+
+open import Data.List.Base using (List)
+open import Data.List.Relation.Binary.Equality.Setoid Eq.setoid using (_≋_)
+open import Data.List.Relation.Binary.Permutation.Setoid Eq.setoid using (_↭_; module PermutationReasoning)
+open import Data.List.Relation.Unary.Sorted.TotalOrder.Properties using (↗↭↗⇒≋)
+open import Data.List.Sort dto using (sortingAlgorithm)
+open import Data.List.Sort.Base totalOrder using (SortingAlgorithm)
+open SortingAlgorithm sortingAlgorithm using (sort; sort-↭ₛ; sort-↗)
+
+sorted-≋
+ : {xs ys : List A}
+ → xs ↭ ys
+ → sort xs ≋ sort ys
+sorted-≋ {xs} {ys} xs↭ys = ↗↭↗⇒≋ totalOrder (sort-↗ xs) (sort-↗ ys) sort-xs↭sort-ys
+ where
+ open PermutationReasoning
+ sort-xs↭sort-ys : sort xs ↭ sort ys
+ sort-xs↭sort-ys = begin
+ sort xs ↭⟨ sort-↭ₛ xs ⟩
+ xs ↭⟨ xs↭ys ⟩
+ ys ↭⟨ sort-↭ₛ ys ⟨
+ sort ys ∎
diff --git a/Data/SExp.agda b/Data/SExp.agda
new file mode 100644
index 0000000..adf4325
--- /dev/null
+++ b/Data/SExp.agda
@@ -0,0 +1,75 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Data.SExp where
+
+open import Data.List using (List)
+open import Data.Nat.Base using (ℕ)
+open import Data.Nat.Show using () renaming (show to showNat)
+open import Data.String.Base as String using (String; parens; intersperse; _<+>_)
+
+open List
+
+module ListBased where
+
+ data SExp : Set where
+ Atom : String → SExp
+ Nat : ℕ → SExp
+ SExps : List SExp → SExp
+
+ mutual
+ showSExp : SExp → String
+ showSExp (Atom s) = s
+ showSExp (Nat n) = showNat n
+ showSExp (SExps xs) = parens (intersperse " " (showList xs))
+
+ -- expanded out map for termination checker
+ showList : List SExp → List String
+ showList [] = []
+ showList (x ∷ xs) = showSExp x ∷ showList xs
+
+module PairBased where
+
+ data SExp : Set where
+ Atom : String → SExp
+ Nat : ℕ → SExp
+ Nil : SExp
+ Pair : SExp → SExp → SExp
+
+ mutual
+ showSExp : SExp → String
+ showSExp (Atom s) = s
+ showSExp (Nat n) = showNat n
+ showSExp Nil = "()"
+ showSExp (Pair l r) = parens (showPair l r)
+
+ showPair : SExp → SExp → String
+ showPair x (Atom s) = showSExp x <+> "." <+> s
+ showPair x (Nat n) = showSExp x <+> "." <+> showNat n
+ showPair x Nil = showSExp x
+ showPair x (Pair l r) = showSExp x <+> showPair l r
+
+open ListBased public
+open PairBased
+
+mutual
+ sexpL→sexpP : ListBased.SExp → PairBased.SExp
+ sexpL→sexpP (Atom s) = Atom s
+ sexpL→sexpP (Nat n) = Nat n
+ sexpL→sexpP (SExps xs) = [sexpL]→sexpP xs
+
+ [sexpL]→sexpP : List (ListBased.SExp) → PairBased.SExp
+ [sexpL]→sexpP [] = Nil
+ [sexpL]→sexpP (x ∷ xs) = Pair (sexpL→sexpP x) ([sexpL]→sexpP xs)
+
+mutual
+ sexpP→sexpL : PairBased.SExp → ListBased.SExp
+ sexpP→sexpL (Atom s) = Atom s
+ sexpP→sexpL (Nat n) = Nat n
+ sexpP→sexpL Nil = SExps []
+ sexpP→sexpL (Pair x y) = SExps (sexpP→sexpL x ∷ sexpP→[sexpL] y)
+
+ sexpP→[sexpL] : PairBased.SExp → List (ListBased.SExp)
+ sexpP→[sexpL] (Atom _) = []
+ sexpP→[sexpL] (Nat _) = []
+ sexpP→[sexpL] Nil = []
+ sexpP→[sexpL] (Pair x y) = sexpP→sexpL x ∷ sexpP→[sexpL] y
diff --git a/Data/SExp/Parser.agda b/Data/SExp/Parser.agda
new file mode 100644
index 0000000..ec1b6a5
--- /dev/null
+++ b/Data/SExp/Parser.agda
@@ -0,0 +1,73 @@
+{-# OPTIONS --without-K --guardedness --safe #-}
+
+open import Text.Parser.Types.Core using (Parameters)
+
+module Data.SExp.Parser {l} {P : Parameters l} where
+
+import Data.String.Base as String
+open import Data.List as List using (List)
+
+open import Data.Char.Base using (Char)
+open import Data.List.Sized.Interface using (Sized)
+open import Data.List.NonEmpty as List⁺ using (List⁺) renaming (map to map⁺)
+open import Data.Subset using (Subset; into)
+open import Effect.Monad using (RawMonadPlus)
+open import Function.Base using (_∘_; _$_)
+open import Induction.Nat.Strong using (fix; map; □_)
+open import Relation.Binary.PropositionalEquality.Decidable using (DecidableEquality)
+open import Relation.Unary using (IUniversal; _⇒_)
+open import Level.Bounded using (theSet; [_])
+open import Text.Parser.Types P using (Parser)
+open import Text.Parser.Combinators {P = P} using (_<$>_; list⁺; _<|>_; _<$_; _<&_; _<&?_; box)
+open import Text.Parser.Combinators.Char {P = P} using (alpha; parens; withSpaces; spaces; char)
+open import Text.Parser.Combinators.Numbers {P = P} using (decimalℕ)
+
+open import Data.SExp using (SExp)
+open SExp
+
+open Parameters P using (M; Tok; Toks)
+
+module _
+ {{𝕄 : RawMonadPlus M}}
+ {{𝕊 : Sized Tok Toks}}
+ {{𝔻 : DecidableEquality (theSet Tok)}}
+ {{ℂ : Subset Char (theSet Tok)}}
+ {{ℂ⁻ : Subset (theSet Tok) Char}}
+ where
+
+ -- An atom is just a non-empty list of alphabetical characters.
+ -- We use `<$>` to turn that back into a string and apply the `Atom` constructor.
+ atom : ∀[ Parser [ SExp ] ]
+ atom = Atom ∘ String.fromList⁺ ∘ map⁺ (into ℂ⁻) <$> list⁺ alpha
+
+ -- Natural number parser
+ nat : ∀[ Parser [ SExp ] ]
+ nat = Nat <$> decimalℕ
+
+ -- Empty list parser
+ nil : ∀[ Parser [ SExp ] ]
+ nil = SExps List.[] <$ char '(' <&? box spaces <& box (char ')')
+
+ -- Parser for a list of S-Expressions
+ list : ∀[ Parser [ SExp ] ⇒ Parser [ List SExp ] ]
+ list sexp = List⁺.toList <$> list⁺ (withSpaces sexp)
+
+ -- Compound S-Expression parser
+ compound : ∀[ □ Parser [ SExp ] ⇒ Parser [ SExp ] ]
+ compound rec = nil <|> SExps <$> parens (map list rec)
+
+ -- S-Expression parser
+ sexp : ∀[ □ Parser [ SExp ] ⇒ Parser [ SExp ] ]
+ sexp rec = atom <|> nat <|> compound rec
+
+ -- Build the parser as a fixpoint since SExp is an inductive type
+ sexp-top : ∀[ Parser [ SExp ] ]
+ sexp-top = fix (Parser [ SExp ]) sexp
+
+ -- Top-level parser for list of S-Expressions
+ LIST : ∀[ Parser [ SExp ] ]
+ LIST = SExps <$> list sexp-top
+
+ -- Top-level S-Expression parser
+ SEXP : ∀[ Parser [ SExp ] ]
+ SEXP = withSpaces sexp-top
diff --git a/Data/Setoid.agda b/Data/Setoid.agda
new file mode 100644
index 0000000..454d276
--- /dev/null
+++ b/Data/Setoid.agda
@@ -0,0 +1,8 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Data.Setoid where
+
+open import Relation.Binary using (Setoid)
+open import Function.Construct.Setoid using () renaming (setoid to infixr 0 _⇒ₛ_) public
+
+open Setoid renaming (Carrier to ∣_∣) public
diff --git a/Data/Setoid/Unit.agda b/Data/Setoid/Unit.agda
new file mode 100644
index 0000000..8b8edde
--- /dev/null
+++ b/Data/Setoid/Unit.agda
@@ -0,0 +1,11 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Level using (Level)
+
+module Data.Setoid.Unit {c ℓ : Level} where
+
+open import Categories.Category.Instance.SingletonSet using (SingletonSetoid)
+open import Relation.Binary using (Setoid)
+
+⊤ₛ : Setoid c ℓ
+⊤ₛ = SingletonSetoid {c} {ℓ}
diff --git a/Data/Subset/Functional.agda b/Data/Subset/Functional.agda
new file mode 100644
index 0000000..33a6d8e
--- /dev/null
+++ b/Data/Subset/Functional.agda
@@ -0,0 +1,162 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Data.Subset.Functional where
+
+open import Data.Bool.Base using (Bool; _∨_; _∧_; if_then_else_)
+open import Data.Bool.Properties using (if-float)
+open import Data.Fin.Base using (Fin)
+open import Data.Fin.Permutation using (Permutation′; _⟨$⟩ʳ_; _⟨$⟩ˡ_; inverseˡ; inverseʳ)
+open import Data.Fin.Properties using (suc-injective; 0≢1+n)
+open import Data.Nat.Base using (ℕ)
+open import Function.Base using (∣_⟩-_; _∘_)
+open import Function.Definitions using (Injective)
+open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_; _≢_)
+open import Data.Vector as V using (Vector; head; tail)
+
+open Bool
+open Fin
+open ℕ
+
+Subset : ℕ → Set
+Subset = Vector Bool
+
+private
+ variable n A : ℕ
+ variable B C : Set
+
+⊥ : Subset n
+⊥ _ = false
+
+_∪_ : Subset n → Subset n → Subset n
+(A ∪ B) k = A k ∨ B k
+
+_∩_ : Subset n → Subset n → Subset n
+(A ∩ B) k = A k ∧ B k
+
+⁅_⁆ : Fin n → Subset n
+⁅_⁆ zero zero = true
+⁅_⁆ zero (suc _) = false
+⁅_⁆ (suc k) zero = false
+⁅_⁆ (suc k) (suc i) = ⁅ k ⁆ i
+
+⁅⁆-refl : (k : Fin n) → ⁅ k ⁆ k ≡ true
+⁅⁆-refl zero = ≡.refl
+⁅⁆-refl (suc k) = ⁅⁆-refl k
+
+⁅x⁆y≡true
+ : (x y : Fin n)
+ → .(⁅ x ⁆ y ≡ true)
+ → x ≡ y
+⁅x⁆y≡true zero zero prf = ≡.refl
+⁅x⁆y≡true (suc x) (suc y) prf = ≡.cong suc (⁅x⁆y≡true x y prf)
+
+⁅x⁆y≡false
+ : (x y : Fin n)
+ → .(⁅ x ⁆ y ≡ false)
+ → x ≢ y
+⁅x⁆y≡false zero (suc y) prf = 0≢1+n
+⁅x⁆y≡false (suc x) zero prf = 0≢1+n ∘ ≡.sym
+⁅x⁆y≡false (suc x) (suc y) prf = ⁅x⁆y≡false x y prf ∘ suc-injective
+
+f-⁅⁆
+ : {n m : ℕ}
+ (f : Fin n → Fin m)
+ → Injective _≡_ _≡_ f
+ → (x y : Fin n)
+ → ⁅ x ⁆ y ≡ ⁅ f x ⁆ (f y)
+f-⁅⁆ f f-inj zero zero = ≡.sym (⁅⁆-refl (f zero))
+f-⁅⁆ f f-inj zero (suc y) with ⁅ f zero ⁆ (f (suc y)) in eq
+... | true with () ← f-inj (⁅x⁆y≡true (f zero) (f (suc y)) eq)
+... | false = ≡.refl
+f-⁅⁆ f f-inj (suc x) zero with ⁅ f (suc x) ⁆ (f zero) in eq
+... | true with () ← f-inj (⁅x⁆y≡true (f (suc x)) (f zero) eq)
+... | false = ≡.refl
+f-⁅⁆ f f-inj (suc x) (suc y) = f-⁅⁆ (f ∘ suc) (suc-injective ∘ f-inj) x y
+
+⁅⁆∘ρ
+ : (ρ : Permutation′ (suc n))
+ (x : Fin (suc n))
+ → ⁅ ρ ⟨$⟩ʳ x ⁆ ≗ ⁅ x ⁆ ∘ (ρ ⟨$⟩ˡ_)
+⁅⁆∘ρ {n} ρ x y = begin
+ ⁅ ρ ⟨$⟩ʳ x ⁆ y ≡⟨ f-⁅⁆ (ρ ⟨$⟩ˡ_) ρˡ-inj (ρ ⟨$⟩ʳ x) y ⟩
+ ⁅ ρ ⟨$⟩ˡ (ρ ⟨$⟩ʳ x) ⁆ (ρ ⟨$⟩ˡ y) ≡⟨ ≡.cong (λ h → ⁅ h ⁆ (ρ ⟨$⟩ˡ y)) (inverseˡ ρ) ⟩
+ ⁅ x ⁆ (ρ ⟨$⟩ˡ y) ∎
+ where
+ open ≡.≡-Reasoning
+ ρˡ-inj : {x y : Fin (suc n)} → ρ ⟨$⟩ˡ x ≡ ρ ⟨$⟩ˡ y → x ≡ y
+ ρˡ-inj {x} {y} ρˡx≡ρˡy = begin
+ x ≡⟨ inverseʳ ρ ⟨
+ ρ ⟨$⟩ʳ (ρ ⟨$⟩ˡ x) ≡⟨ ≡.cong (ρ ⟨$⟩ʳ_) ρˡx≡ρˡy ⟩
+ ρ ⟨$⟩ʳ (ρ ⟨$⟩ˡ y) ≡⟨ inverseʳ ρ ⟩
+ y ∎
+
+opaque
+ -- TODO dependent fold
+ foldl : (B → Fin A → B) → B → Subset A → B
+ foldl {B = B} f = V.foldl (λ _ → B) (λ { {k} acc b → if b then f acc k else acc })
+
+ foldl-cong₁
+ : {f g : B → Fin A → B}
+ → (∀ x y → f x y ≡ g x y)
+ → (e : B)
+ → (S : Subset A)
+ → foldl f e S ≡ foldl g e S
+ foldl-cong₁ {B = B} f≗g e S = V.foldl-cong (λ _ → B) (λ { {k} x y → ≡.cong (if y then_else x) (f≗g x k) }) e S
+
+ foldl-cong₂
+ : (f : B → Fin A → B)
+ (e : B)
+ {S₁ S₂ : Subset A}
+ → (S₁ ≗ S₂)
+ → foldl f e S₁ ≡ foldl f e S₂
+ foldl-cong₂ {B = B} f e S₁≗S₂ = V.foldl-cong-arg (λ _ → B) (λ {n} acc b → if b then f acc n else acc) e S₁≗S₂
+
+ foldl-suc
+ : (f : B → Fin (suc A) → B)
+ → (e : B)
+ → (S : Subset (suc A))
+ → foldl f e S ≡ foldl (∣ f ⟩- suc) (if head S then f e zero else e) (tail S)
+ foldl-suc f e S = ≡.refl
+
+ foldl-⊥
+ : {A : ℕ}
+ {B : Set}
+ (f : B → Fin A → B)
+ (e : B)
+ → foldl f e ⊥ ≡ e
+ foldl-⊥ {zero} _ _ = ≡.refl
+ foldl-⊥ {suc A} f e = foldl-⊥ (∣ f ⟩- suc) e
+
+ foldl-⁅⁆
+ : (f : B → Fin A → B)
+ (e : B)
+ (k : Fin A)
+ → foldl f e ⁅ k ⁆ ≡ f e k
+ foldl-⁅⁆ f e zero = foldl-⊥ f (f e zero)
+ foldl-⁅⁆ f e (suc k) = foldl-⁅⁆ (∣ f ⟩- suc) e k
+
+ foldl-fusion
+ : (h : C → B)
+ {f : C → Fin A → C}
+ {g : B → Fin A → B}
+ → (∀ x n → h (f x n) ≡ g (h x) n)
+ → (e : C)
+ → h ∘ foldl f e ≗ foldl g (h e)
+ foldl-fusion {C = C} {A = A} h {f} {g} fuse e = V.foldl-fusion h ≡.refl fuse′
+ where
+ open ≡.≡-Reasoning
+ fuse′
+ : {k : Fin A}
+ (acc : C)
+ (b : Bool)
+ → h (if b then f acc k else acc) ≡ (if b then g (h acc) k else h acc)
+ fuse′ {k} acc b = begin
+ h (if b then f acc k else acc) ≡⟨ if-float h b ⟩
+ (if b then h (f acc k) else h acc) ≡⟨ ≡.cong (if b then_else h acc) (fuse acc k) ⟩
+ (if b then g (h acc) k else h acc) ∎
+
+Subset0≗⊥ : (S : Subset 0) → S ≗ ⊥
+Subset0≗⊥ S ()
+
+foldl-[] : (f : B → Fin 0 → B) (e : B) (S : Subset 0) → foldl f e S ≡ e
+foldl-[] f e S = ≡.trans (foldl-cong₂ f e (Subset0≗⊥ S)) (foldl-⊥ f e)
diff --git a/Data/System.agda b/Data/System.agda
new file mode 100644
index 0000000..d71c2a8
--- /dev/null
+++ b/Data/System.agda
@@ -0,0 +1,144 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Level using (Level; 0ℓ; suc)
+
+module Data.System {ℓ : Level} where
+
+import Relation.Binary.Properties.Preorder as PreorderProperties
+import Relation.Binary.Reasoning.Setoid as ≈-Reasoning
+
+open import Categories.Category using (Category)
+open import Data.Circuit.Value using (Monoid)
+open import Data.Nat using (ℕ)
+open import Data.Setoid using (_⇒ₛ_; ∣_∣)
+open import Data.Setoid.Unit using (⊤ₛ)
+open import Data.System.Values Monoid using (Values; _≋_; module ≋; <ε>)
+open import Function using (Func; _⟨$⟩_; flip)
+open import Function.Construct.Constant using () renaming (function to Const)
+open import Function.Construct.Identity using () renaming (function to Id)
+open import Function.Construct.Setoid using (_∙_)
+open import Level using (Level; 0ℓ; suc)
+open import Relation.Binary as Rel using (Reflexive; Transitive; Preorder; Setoid; Rel)
+open import Relation.Binary.PropositionalEquality as ≡ using (_≡_)
+
+open Func
+
+module _ (n : ℕ) where
+
+ record System : Set₁ where
+
+ field
+ S : Setoid 0ℓ 0ℓ
+ fₛ : ∣ Values n ⇒ₛ S ⇒ₛ S ∣
+ fₒ : ∣ S ⇒ₛ Values n ∣
+
+ fₛ′ : ∣ Values n ∣ → ∣ S ∣ → ∣ S ∣
+ fₛ′ i = to (to fₛ i)
+
+ fₒ′ : ∣ S ∣ → ∣ Values n ∣
+ fₒ′ = to fₒ
+
+ module S = Setoid S
+
+ open System
+
+ discrete : System
+ discrete .S = ⊤ₛ
+ discrete .fₛ = Const (Values n) (⊤ₛ ⇒ₛ ⊤ₛ) (Id ⊤ₛ)
+ discrete .fₒ = Const ⊤ₛ (Values n) <ε>
+
+module _ {n : ℕ} where
+
+ record _≤_ (a b : System n) : Set ℓ where
+
+ private
+ module A = System a
+ module B = System b
+
+ open B using (S)
+
+ field
+ ⇒S : ∣ A.S ⇒ₛ B.S ∣
+ ≗-fₛ : (i : ∣ Values n ∣) (s : ∣ A.S ∣) → ⇒S ⟨$⟩ (A.fₛ′ i s) S.≈ B.fₛ′ i (⇒S ⟨$⟩ s)
+ ≗-fₒ : (s : ∣ A.S ∣) → A.fₒ′ s ≋ B.fₒ′ (⇒S ⟨$⟩ s)
+
+ infix 4 _≤_
+
+open System
+
+private
+
+ module _ {n : ℕ} where
+
+ open _≤_
+
+ ≤-refl : Reflexive (_≤_ {n})
+ ⇒S ≤-refl = Id _
+ ≗-fₛ (≤-refl {x}) _ _ = S.refl x
+ ≗-fₒ ≤-refl _ = ≋.refl
+
+ ≡⇒≤ : _≡_ Rel.⇒ _≤_
+ ≡⇒≤ ≡.refl = ≤-refl
+
+ ≤-trans : Transitive _≤_
+ ⇒S (≤-trans a b) = ⇒S b ∙ ⇒S a
+ ≗-fₛ (≤-trans {x} {y} {z} a b) i s = let open ≈-Reasoning (S z) in begin
+ ⇒S b ⟨$⟩ (⇒S a ⟨$⟩ (fₛ′ x i s)) ≈⟨ cong (⇒S b) (≗-fₛ a i s) ⟩
+ ⇒S b ⟨$⟩ (fₛ′ y i (⇒S a ⟨$⟩ s)) ≈⟨ ≗-fₛ b i (⇒S a ⟨$⟩ s) ⟩
+ fₛ′ z i (⇒S b ⟨$⟩ (⇒S a ⟨$⟩ s)) ∎
+ ≗-fₒ (≤-trans {x} {y} {z} a b) s = let open ≈-Reasoning (Values n) in begin
+ fₒ′ x s ≈⟨ ≗-fₒ a s ⟩
+ fₒ′ y (⇒S a ⟨$⟩ s) ≈⟨ ≗-fₒ b (⇒S a ⟨$⟩ s) ⟩
+ fₒ′ z (⇒S b ⟨$⟩ (⇒S a ⟨$⟩ s)) ∎
+
+ variable
+ A B C : System n
+
+ _≈_ : Rel (A ≤ B) 0ℓ
+ _≈_ {A} {B} ≤₁ ≤₂ = ⇒S ≤₁ A⇒B.≈ ⇒S ≤₂
+ where
+ module A⇒B = Setoid (S A ⇒ₛ S B)
+
+ open Rel.IsEquivalence
+
+ ≈-isEquiv : Rel.IsEquivalence (_≈_ {A} {B})
+ ≈-isEquiv {B = B} .refl = S.refl B
+ ≈-isEquiv {B = B} .sym a = S.sym B a
+ ≈-isEquiv {B = B} .trans a b = S.trans B a b
+
+ ≤-resp-≈ : {f h : B ≤ C} {g i : A ≤ B} → f ≈ h → g ≈ i → ≤-trans g f ≈ ≤-trans i h
+ ≤-resp-≈ {_} {C} {_} {f} {h} {g} {i} f≈h g≈i {x} = begin
+ ⇒S f ⟨$⟩ (⇒S g ⟨$⟩ x) ≈⟨ f≈h ⟩
+ ⇒S h ⟨$⟩ (⇒S g ⟨$⟩ x) ≈⟨ cong (⇒S h) g≈i ⟩
+ ⇒S h ⟨$⟩ (⇒S i ⟨$⟩ x) ∎
+ where
+ open ≈-Reasoning (System.S C)
+
+System-≤ : ℕ → Preorder (suc 0ℓ) (suc 0ℓ) ℓ
+System-≤ n = record
+ { _≲_ = _≤_ {n}
+ ; isPreorder = record
+ { isEquivalence = ≡.isEquivalence
+ ; reflexive = ≡⇒≤
+ ; trans = ≤-trans
+ }
+ }
+
+Systemₛ : ℕ → Setoid (suc 0ℓ) ℓ
+Systemₛ n = PreorderProperties.InducedEquivalence (System-≤ n)
+
+Systems : ℕ → Category (suc 0ℓ) ℓ 0ℓ
+Systems n = record
+ { Obj = System n
+ ; _⇒_ = _≤_
+ ; _≈_ = _≈_
+ ; id = ≤-refl
+ ; _∘_ = flip ≤-trans
+ ; assoc = λ {D = D} → S.refl D
+ ; sym-assoc = λ {D = D} → S.refl D
+ ; identityˡ = λ {B = B} → S.refl B
+ ; identityʳ = λ {B = B} → S.refl B
+ ; identity² = λ {A = A} → S.refl A
+ ; equiv = ≈-isEquiv
+ ; ∘-resp-≈ = λ {f = f} {h} {g} {i} → ≤-resp-≈ {f = f} {h} {g} {i}
+ }
diff --git a/Data/System/Values.agda b/Data/System/Values.agda
new file mode 100644
index 0000000..545a835
--- /dev/null
+++ b/Data/System/Values.agda
@@ -0,0 +1,146 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Algebra.Bundles using (CommutativeMonoid)
+open import Level using (0ℓ)
+
+module Data.System.Values (A : CommutativeMonoid 0ℓ 0ℓ) where
+
+import Algebra.Properties.CommutativeMonoid.Sum as Sum
+import Data.Vec.Functional.Relation.Binary.Equality.Setoid as Pointwise
+import Relation.Binary.PropositionalEquality as ≡
+
+open import Data.Fin using (_↑ˡ_; _↑ʳ_; zero; suc; splitAt)
+open import Data.Nat using (ℕ; _+_; suc)
+open import Data.Product using (_,_)
+open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
+open import Data.Setoid using (∣_∣)
+open import Data.Sum using (inj₁; inj₂)
+open import Data.Vec.Functional as Vec using (Vector; zipWith; replicate)
+open import Function using (Func; _⟶ₛ_; _⟨$⟩_; _∘_)
+open import Level using (0ℓ)
+open import Relation.Binary using (Rel; Setoid; IsEquivalence)
+
+open CommutativeMonoid A renaming (Carrier to Value)
+open Func
+open Sum A using (sum)
+
+open Pointwise setoid using (≋-setoid; ≋-isEquivalence)
+
+opaque
+
+ Values : ℕ → Setoid 0ℓ 0ℓ
+ Values = ≋-setoid
+
+module _ {n : ℕ} where
+
+ opaque
+
+ unfolding Values
+
+ merge : ∣ Values n ∣ → Value
+ merge = sum
+
+ _⊕_ : ∣ Values n ∣ → ∣ Values n ∣ → ∣ Values n ∣
+ xs ⊕ ys = zipWith _∙_ xs ys
+
+ <ε> : ∣ Values n ∣
+ <ε> = replicate n ε
+
+ head : ∣ Values (suc n) ∣ → Value
+ head xs = xs zero
+
+ tail : ∣ Values (suc n) ∣ → ∣ Values n ∣
+ tail xs = xs ∘ suc
+
+ module ≋ = Setoid (Values n)
+
+ _≋_ : Rel ∣ Values n ∣ 0ℓ
+ _≋_ = ≋._≈_
+
+ infix 4 _≋_
+
+opaque
+
+ unfolding Values
+ open Setoid
+ ≋-isEquiv : ∀ n → IsEquivalence (_≈_ (Values n))
+ ≋-isEquiv = ≋-isEquivalence
+
+module _ {n : ℕ} where
+
+ opaque
+ unfolding _⊕_
+
+ ⊕-cong : {x y u v : ≋.Carrier {n}} → x ≋ y → u ≋ v → x ⊕ u ≋ y ⊕ v
+ ⊕-cong x≋y u≋v i = ∙-cong (x≋y i) (u≋v i)
+
+ ⊕-assoc : (x y z : ≋.Carrier {n}) → (x ⊕ y) ⊕ z ≋ x ⊕ (y ⊕ z)
+ ⊕-assoc x y z i = assoc (x i) (y i) (z i)
+
+ ⊕-identityˡ : (x : ≋.Carrier {n}) → <ε> ⊕ x ≋ x
+ ⊕-identityˡ x i = identityˡ (x i)
+
+ ⊕-identityʳ : (x : ≋.Carrier {n}) → x ⊕ <ε> ≋ x
+ ⊕-identityʳ x i = identityʳ (x i)
+
+ ⊕-comm : (x y : ≋.Carrier {n}) → x ⊕ y ≋ y ⊕ x
+ ⊕-comm x y i = comm (x i) (y i)
+
+open CommutativeMonoid
+Valuesₘ : ℕ → CommutativeMonoid 0ℓ 0ℓ
+Valuesₘ n .Carrier = ∣ Values n ∣
+Valuesₘ n ._≈_ = _≋_
+Valuesₘ n ._∙_ = _⊕_
+Valuesₘ n .ε = <ε>
+Valuesₘ n .isCommutativeMonoid = record
+ { isMonoid = record
+ { isSemigroup = record
+ { isMagma = record
+ { isEquivalence = ≋-isEquiv n
+ ; ∙-cong = ⊕-cong
+ }
+ ; assoc = ⊕-assoc
+ }
+ ; identity = ⊕-identityˡ , ⊕-identityʳ
+ }
+ ; comm = ⊕-comm
+ }
+
+opaque
+
+ unfolding Values
+
+ [] : ∣ Values 0 ∣
+ [] = Vec.[]
+
+ []-unique : (xs ys : ∣ Values 0 ∣) → xs ≋ ys
+ []-unique xs ys ()
+
+module _ {n m : ℕ} where
+
+ opaque
+
+ unfolding Values
+
+ _++_ : ∣ Values n ∣ → ∣ Values m ∣ → ∣ Values (n + m) ∣
+ _++_ = Vec._++_
+
+ infixr 5 _++_
+
+ ++-cong
+ : (xs xs′ : ∣ Values n ∣)
+ {ys ys′ : ∣ Values m ∣}
+ → xs ≋ xs′
+ → ys ≋ ys′
+ → xs ++ ys ≋ xs′ ++ ys′
+ ++-cong xs xs′ xs≋xs′ ys≋ys′ i with splitAt n i
+ ... | inj₁ i = xs≋xs′ i
+ ... | inj₂ i = ys≋ys′ i
+
+ splitₛ : Values (n + m) ⟶ₛ Values n ×ₛ Values m
+ to splitₛ v = v ∘ (_↑ˡ m) , v ∘ (n ↑ʳ_)
+ cong splitₛ v₁≋v₂ = v₁≋v₂ ∘ (_↑ˡ m) , v₁≋v₂ ∘ (n ↑ʳ_)
+
+ ++ₛ : Values n ×ₛ Values m ⟶ₛ Values (n + m)
+ to ++ₛ (xs , ys) = xs ++ ys
+ cong ++ₛ (≗xs , ≗ys) = ++-cong _ _ ≗xs ≗ys
diff --git a/Data/Vector.agda b/Data/Vector.agda
new file mode 100644
index 0000000..874f0b2
--- /dev/null
+++ b/Data/Vector.agda
@@ -0,0 +1,126 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Data.Vector where
+
+open import Data.Nat.Base using (ℕ)
+open import Data.Vec.Functional using (Vector; head; tail; []; removeAt; map; _++_) public
+open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_; module ≡-Reasoning)
+open import Function.Base using (∣_⟩-_; _∘_)
+open import Data.Fin.Base using (Fin; toℕ; _↑ˡ_; _↑ʳ_)
+open ℕ
+open Fin
+
+foldl
+ : ∀ {n : ℕ} {A : Set} (B : ℕ → Set)
+ → (∀ {k : Fin n} → B (toℕ k) → A → B (suc (toℕ k)))
+ → B zero
+ → Vector A n
+ → B n
+foldl {zero} B ⊕ e v = e
+foldl {suc n} B ⊕ e v = foldl (B ∘ suc) ⊕ (⊕ e (head v)) (tail v)
+
+foldl-cong
+ : {n : ℕ} {A : Set}
+ (B : ℕ → Set)
+ {f g : ∀ {k : Fin n} → B (toℕ k) → A → B (suc (toℕ k))}
+ → (∀ {k} → ∀ x y → f {k} x y ≡ g {k} x y)
+ → (e : B zero)
+ → (v : Vector A n)
+ → foldl B f e v ≡ foldl B g e v
+foldl-cong {zero} B f≗g e v = ≡.refl
+foldl-cong {suc n} B {g = g} f≗g e v rewrite (f≗g e (head v)) = foldl-cong (B ∘ suc) f≗g (g e (head v)) (tail v)
+
+foldl-cong-arg
+ : {n : ℕ} {A : Set}
+ (B : ℕ → Set)
+ (f : ∀ {k : Fin n} → B (toℕ k) → A → B (suc (toℕ k)))
+ → (e : B zero)
+ → {v w : Vector A n}
+ → v ≗ w
+ → foldl B f e v ≡ foldl B f e w
+foldl-cong-arg {zero} B f e v≗w = ≡.refl
+foldl-cong-arg {suc n} B f e {w = w} v≗w rewrite v≗w zero = foldl-cong-arg (B ∘ suc) f (f e (head w)) (v≗w ∘ suc)
+
+foldl-map
+ : {n : ℕ} {A : ℕ → Set} {B C : Set}
+ (f : ∀ {k : Fin n} → A (toℕ k) → B → A (suc (toℕ k)))
+ (g : C → B)
+ (x : A zero)
+ (xs : Vector C n)
+ → foldl A f x (map g xs)
+ ≡ foldl A (∣ f ⟩- g) x xs
+foldl-map {zero} f g e xs = ≡.refl
+foldl-map {suc n} f g e xs = foldl-map f g (f e (g (head xs))) (tail xs)
+
+foldl-fusion
+ : {n : ℕ}
+ {A : Set} {B C : ℕ → Set}
+ (h : {k : ℕ} → B k → C k)
+ → {f : {k : Fin n} → B (toℕ k) → A → B (suc (toℕ k))} {d : B zero}
+ → {g : {k : Fin n} → C (toℕ k) → A → C (suc (toℕ k))} {e : C zero}
+ → (h d ≡ e)
+ → ({k : Fin n} (b : B (toℕ k)) (x : A) → h (f {k} b x) ≡ g (h b) x)
+ → h ∘ foldl B f d ≗ foldl C g e
+foldl-fusion {zero} _ base _ _ = base
+foldl-fusion {suc n} {A} h {f} {d} {g} {e} base fuse xs = foldl-fusion h eq fuse (tail xs)
+ where
+ x₀ : A
+ x₀ = head xs
+ open ≡.≡-Reasoning
+ eq : h (f d x₀) ≡ g e x₀
+ eq = begin
+ h (f d x₀) ≡⟨ fuse d x₀ ⟩
+ g (h d) x₀ ≡⟨ ≡.cong-app (≡.cong g base) x₀ ⟩
+ g e x₀ ∎
+
+foldl-[]
+ : {A : Set}
+ (B : ℕ → Set)
+ (f : {k : Fin 0} → B (toℕ k) → A → B (suc (toℕ k)))
+ {e : B 0}
+ → foldl B f e [] ≡ e
+foldl-[] _ _ = ≡.refl
+
+open import Data.Sum using ([_,_]′)
+open import Data.Sum.Properties using ([,-]-cong; [-,]-cong; [,]-∘)
+open import Data.Fin.Properties using (splitAt-↑ˡ; splitAt-↑ʳ)
+open import Data.Fin using (splitAt)
+open import Data.Nat using (_+_)
+++-↑ˡ
+ : {n m : ℕ}
+ {A : Set}
+ (X : Vector A n)
+ (Y : Vector A m)
+ → (X ++ Y) ∘ (_↑ˡ m) ≗ X
+++-↑ˡ {n} {m} X Y i = ≡.cong [ X , Y ]′ (splitAt-↑ˡ n i m)
+
+++-↑ʳ
+ : {n m : ℕ}
+ {A : Set}
+ (X : Vector A n)
+ (Y : Vector A m)
+ → (X ++ Y) ∘ (n ↑ʳ_) ≗ Y
+++-↑ʳ {n} {m} X Y i = ≡.cong [ X , Y ]′ (splitAt-↑ʳ n m i)
+
++-assocʳ : {m n o : ℕ} → Fin (m + (n + o)) → Fin (m + n + o)
++-assocʳ {m} {n} {o} = [ (λ x → x ↑ˡ n ↑ˡ o) , [ (λ x → (m ↑ʳ x) ↑ˡ o) , m + n ↑ʳ_ ]′ ∘ splitAt n ]′ ∘ splitAt m
+
+open ≡-Reasoning
+++-assoc
+ : {m n o : ℕ}
+ {A : Set}
+ (X : Vector A m)
+ (Y : Vector A n)
+ (Z : Vector A o)
+ → ((X ++ Y) ++ Z) ∘ +-assocʳ {m} ≗ X ++ (Y ++ Z)
+++-assoc {m} {n} {o} X Y Z i = begin
+ ((X ++ Y) ++ Z) (+-assocʳ {m} i) ≡⟨⟩
+ ((X ++ Y) ++ Z) ([ (λ x → x ↑ˡ n ↑ˡ o) , _ ]′ (splitAt m i)) ≡⟨ [,]-∘ ((X ++ Y) ++ Z) (splitAt m i) ⟩
+ [ ((X ++ Y) ++ Z) ∘ (λ x → x ↑ˡ n ↑ˡ o) , _ ]′ (splitAt m i) ≡⟨ [-,]-cong (++-↑ˡ (X ++ Y) Z ∘ (_↑ˡ n)) (splitAt m i) ⟩
+ [ (X ++ Y) ∘ (_↑ˡ n) , _ ]′ (splitAt m i) ≡⟨ [-,]-cong (++-↑ˡ X Y) (splitAt m i) ⟩
+ [ X , ((X ++ Y) ++ Z) ∘ [ _ , _ ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,-]-cong ([,]-∘ ((X ++ Y) ++ Z) ∘ splitAt n) (splitAt m i) ⟩
+ [ X , [ (_ ++ Z) ∘ (_↑ˡ o) ∘ (m ↑ʳ_) , _ ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,-]-cong ([-,]-cong (++-↑ˡ (X ++ Y) Z ∘ (m ↑ʳ_)) ∘ splitAt n) (splitAt m i) ⟩
+ [ X , [ (X ++ Y) ∘ (m ↑ʳ_) , _ ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,-]-cong ([-,]-cong (++-↑ʳ X Y) ∘ splitAt n) (splitAt m i) ⟩
+ [ X , [ Y , ((X ++ Y) ++ Z) ∘ (m + n ↑ʳ_) ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,-]-cong ([,-]-cong (++-↑ʳ (X ++ Y) Z) ∘ splitAt n) (splitAt m i) ⟩
+ [ X , [ Y , Z ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨⟩
+ (X ++ (Y ++ Z)) i ∎
diff --git a/DecorationFunctor/Graph.agda b/DecorationFunctor/Graph.agda
index 7f05855..8b62430 100644
--- a/DecorationFunctor/Graph.agda
+++ b/DecorationFunctor/Graph.agda
@@ -4,62 +4,48 @@ module DecorationFunctor.Graph where
import Categories.Morphism as Morphism
+open import Level using (0ℓ)
+
open import Categories.Category.BinaryProducts using (module BinaryProducts)
open import Categories.Category.Cartesian using (Cartesian)
-open import Categories.Category.Cocartesian using (Cocartesian; module BinaryCoproducts)
-open import Categories.Category.Core using (Category)
-open import Categories.Category.Instance.Nat using (Nat-Cocartesian)
open import Categories.Category.Instance.Nat using (Nat)
open import Categories.Category.Instance.Setoids using (Setoids)
-open import Categories.Category.Instance.SingletonSet using (SingletonSetoid)
open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian)
open import Categories.Category.Product using (_⁂_)
open import Categories.Functor using () renaming (_∘F_ to _∘′_)
open import Categories.Functor.Core using (Functor)
open import Categories.Functor.Monoidal.Symmetric using (module Lax)
-open import Categories.NaturalTransformation using (NaturalTransformation)
-
+open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)
-open import Category.Instance.Setoids.SymmetricMonoidal using (Setoids-×)
open import Category.Instance.Nat.FinitelyCocomplete using (Nat-FinitelyCocomplete)
-
+open import Category.Instance.Setoids.SymmetricMonoidal {0ℓ} {0ℓ} using (Setoids-×; ×-symmetric′)
open import Data.Empty using (⊥-elim)
-open import Data.Fin using (#_)
-open import Data.Fin.Base using (Fin; splitAt; join; zero; suc; _↑ˡ_; _↑ʳ_)
+open import Data.Fin using (#_; Fin; splitAt; join; zero; suc; _↑ˡ_; _↑ʳ_)
open import Data.Fin.Patterns using (0F; 1F)
-open import Data.Fin.Properties using (splitAt-join; join-splitAt)
+open import Data.Fin.Properties using (splitAt-join; join-splitAt; splitAt-↑ˡ; splitAt⁻¹-↑ˡ)
open import Data.Nat using (ℕ; _+_)
open import Data.Product.Base using (_,_)
open import Data.Product.Relation.Binary.Pointwise.NonDependent using (×-setoid)
+open import Data.Setoid.Unit {0ℓ} {0ℓ} using (⊤ₛ)
open import Data.Sum.Base using (_⊎_; map; inj₁; inj₂; swap) renaming ([_,_]′ to [_,_])
open import Data.Sum.Properties using (map-map; [,]-map; [,]-∘; [-,]-cong; [,-]-cong; map-cong; swap-involutive)
open import Data.Unit using (tt)
-open import Data.Unit.Properties using () renaming (≡-setoid to ⊤-setoid)
-
-open import Function.Base using (_∘_; id; const; case_of_)
-open import Function.Bundles using (Func; Inverse; _↔_; mk↔)
+open import Function using (_∘_; id; const; Func; Inverse; _↔_; mk↔)
open import Function.Construct.Composition using (_↔-∘_)
+open import Function.Construct.Constant using () renaming (function to Const)
open import Function.Construct.Identity using (↔-id)
open import Function.Construct.Symmetry using (↔-sym)
-
-open import Level using (0ℓ; lift)
-
-open import Relation.Binary.Bundles using (Setoid)
-open import Relation.Binary.PropositionalEquality using (_≗_)
-open import Relation.Binary.PropositionalEquality.Core using (_≡_; erefl; refl; sym; trans; cong)
+open import Relation.Binary using (Setoid)
+open import Relation.Binary.PropositionalEquality using (_≗_; _≡_; erefl; refl; sym; trans; cong)
open import Relation.Binary.PropositionalEquality.Properties using (isEquivalence; module ≡-Reasoning)
open import Relation.Nullary.Negation.Core using (¬_)
open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using (products)
-open Cocartesian Nat-Cocartesian using (coproducts)
open FinitelyCocompleteCategory Nat-FinitelyCocomplete
- using ()
- renaming (symmetricMonoidalCategory to Nat-smc)
-open Morphism (Setoids 0ℓ 0ℓ) using (_≅_)
+ using (-+-)
+ renaming (symmetricMonoidalCategory to Nat-smc; +-assoc to Nat-+-assoc)
open Lax using (SymmetricMonoidalFunctor)
-
open BinaryProducts products using (-×-)
-open BinaryCoproducts coproducts using (-+-) renaming (+-assoc to Nat-+-assoc)
record Graph (v : ℕ) : Set where
@@ -164,50 +150,33 @@ Graph-Func f = record
F-resp-≈
: {f g : Fin n → Fin m}
→ (∀ (x : Fin n) → f x ≡ g x)
- → Graph-same G G′
- → Graph-same (map-nodes f G) (map-nodes g G′)
-F-resp-≈ {g = g} f≗g ≡G = record
- { ↔e = ↔e
- ; ≗s = λ { x → trans (f≗g (s x)) (cong g (≗s x)) }
- ; ≗t = λ { x → trans (f≗g (t x)) (cong g (≗t x)) }
+ → Graph-same (map-nodes f G) (map-nodes g G)
+F-resp-≈ {G = G} f≗g = record
+ { ↔e = ↔-id _
+ ; ≗s = f≗g ∘ s
+ ; ≗t = f≗g ∘ t
}
where
- open Graph-same ≡G
+ open Graph G
F : Functor Nat (Setoids 0ℓ 0ℓ)
F = record
{ F₀ = Graph-setoid
; F₁ = Graph-Func
- ; identity = id
- ; homomorphism = λ { {_} {_} {_} {f} {g} → homomorphism f g }
+ ; identity = Graph-same-refl
+ ; homomorphism = Graph-same-refl
; F-resp-≈ = λ f≗g → F-resp-≈ f≗g
}
- where
- homomorphism
- : (f : Fin n → Fin m)
- → (g : Fin m → Fin o)
- → Graph-same G G′
- → Graph-same (map-nodes (g ∘ f) G) (map-nodes g (map-nodes f G′))
- homomorphism f g ≡G = record
- { ↔e = ↔e
- ; ≗s = cong (g ∘ f) ∘ ≗s
- ; ≗t = cong (g ∘ f) ∘ ≗t
- }
- where
- open Graph-same ≡G
-empty-graph : Graph 0
-empty-graph = record
+discrete : {n : ℕ} → Graph n
+discrete = record
{ e = 0
; s = λ ()
; t = λ ()
}
-ε : Func (SingletonSetoid {0ℓ} {0ℓ}) (Graph-setoid 0)
-ε = record
- { to = const empty-graph
- ; cong = const Graph-same-refl
- }
+ε : Func ⊤ₛ (Graph-setoid 0)
+ε = Const ⊤ₛ (Graph-setoid 0) discrete
together : Graph n → Graph m → Graph (n + m)
together {n} {m} G₁ G₂ = record
@@ -313,77 +282,67 @@ together-resp-same {n} {m} ≡G₁ ≡G₂ = record
commute
: ∀ {n n′ m m′}
- → {G₁ G₁′ : Graph n}
- → {G₂ G₂′ : Graph m}
+ → {G₁ : Graph n}
+ → {G₂ : Graph m}
→ (f : Fin n → Fin n′)
→ (g : Fin m → Fin m′)
- → Graph-same G₁ G₁′
- → Graph-same G₂ G₂′
→ Graph-same
(together (map-nodes f G₁) (map-nodes g G₂))
- (map-nodes ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ splitAt n) (together G₁′ G₂′))
-commute {n} {n′} {m} {m′} f g ≡G₁ ≡G₂ = record
- { ↔e = +-resp-↔ ≡G₁.↔e ≡G₂.↔e
+ (map-nodes ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ splitAt n) (together G₁ G₂))
+commute {n} {n′} {m} {m′} {G₁} {G₂} f g = record
+ { ↔e = ↔e
; ≗s = source-commute
; ≗t = target-commute
}
where
- ≡fG₁ : Graph-same (map-nodes f _) (map-nodes f _)
- ≡fG₁ = F-resp-≈ (erefl ∘ f) ≡G₁
- ≡gG₂ : Graph-same (map-nodes g _) (map-nodes g _)
- ≡gG₂ = F-resp-≈ (erefl ∘ g) ≡G₂
- module ≡G₁ = Graph-same ≡G₁
- module ≡G₂ = Graph-same ≡G₂
- module ≡fG₁ = Graph-same ≡fG₁
- module ≡fG₂ = Graph-same ≡gG₂
- module ≡G₁+G₂ = Graph-same (together-resp-same ≡G₁ ≡G₂)
- module ≡fG₁+gG₂ = Graph-same (together-resp-same ≡fG₁ ≡gG₂)
+ open Graph-same (Graph-same-refl {_} {together G₁ G₂})
+ module G₁ = Graph G₁
+ module G₂ = Graph G₂
+ module fG₁ = Graph (map-nodes f G₁)
+ module gG₂ = Graph (map-nodes g G₂)
+ module G₁+G₂ = Graph (together G₁ G₂)
+ module fG₁+gG₂ = Graph (together (map-nodes f G₁) (map-nodes g G₂))
open ≡-Reasoning
source-commute
- : ≡fG₁+gG₂.s
+ : fG₁+gG₂.s
≗ [ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ splitAt n
- ∘ ≡G₁+G₂.s′
- ∘ ≡fG₁+gG₂.to
+ ∘ G₁+G₂.s
+ ∘ to
source-commute x = begin
- ≡fG₁+gG₂.s x
- ≡⟨ ≡fG₁+gG₂.≗s x ⟩
- (≡fG₁+gG₂.s′ ∘ ≡fG₁+gG₂.to) x
+ fG₁+gG₂.s x
≡⟨⟩
- (join n′ m′ ∘ map ≡fG₁.s′ ≡fG₂.s′ ∘ splitAt ≡G₁.e′ ∘ ≡fG₁+gG₂.to) x
- ≡⟨ cong (join n′ m′) (map-map ((splitAt ≡G₁.e′ ∘ ≡fG₁+gG₂.to) x)) ⟨
- (join n′ m′ ∘ map f g ∘ map ≡G₁.s′ ≡G₂.s′ ∘ splitAt ≡G₁.e′ ∘ ≡fG₁+gG₂.to) x
- ≡⟨ [,]-map ((map ≡G₁.s′ ≡G₂.s′ ∘ splitAt ≡G₁.e′ ∘ ≡fG₁+gG₂.to) x) ⟩
- ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ map ≡G₁.s′ ≡G₂.s′ ∘ splitAt ≡G₁.e′ ∘ ≡fG₁+gG₂.to) x
- ≡⟨ cong [ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] (splitAt-join n m (map ≡G₁.s′ ≡G₂.s′ (splitAt ≡G₁.e′ (≡fG₁+gG₂.to x)))) ⟨
- ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ splitAt n ∘ join n m ∘ map ≡G₁.s′ ≡G₂.s′ ∘ splitAt ≡G₁.e′ ∘ ≡fG₁+gG₂.to) x
+ (join n′ m′ ∘ map fG₁.s gG₂.s ∘ splitAt G₁.e ∘ to) x
+ ≡⟨ cong (join n′ m′) (map-map ((splitAt G₁.e ∘ to) x)) ⟨
+ (join n′ m′ ∘ map f g ∘ map G₁.s G₂.s ∘ splitAt fG₁.e ∘ to) x
+ ≡⟨ [,]-map ((map G₁.s G₂.s ∘ splitAt fG₁.e ∘ to) x) ⟩
+ ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ map G₁.s G₂.s ∘ splitAt fG₁.e ∘ to) x
+ ≡⟨ cong [ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] (splitAt-join n m (map G₁.s G₂.s (splitAt fG₁.e (to x)))) ⟨
+ ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ splitAt n ∘ join n m ∘ map G₁.s G₂.s ∘ splitAt fG₁.e ∘ to) x
≡⟨⟩
- ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ splitAt n ∘ ≡G₁+G₂.s′ ∘ ≡fG₁+gG₂.to) x ∎
+ ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ splitAt n ∘ G₁+G₂.s ∘ to) x ∎
target-commute
- : ≡fG₁+gG₂.t
+ : fG₁+gG₂.t
≗ [ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ splitAt n
- ∘ ≡G₁+G₂.t′
- ∘ ≡fG₁+gG₂.to
+ ∘ G₁+G₂.t
+ ∘ to
target-commute x = begin
- ≡fG₁+gG₂.t x
- ≡⟨ ≡fG₁+gG₂.≗t x ⟩
- (≡fG₁+gG₂.t′ ∘ ≡fG₁+gG₂.to) x
+ fG₁+gG₂.t x
≡⟨⟩
- (join n′ m′ ∘ map ≡fG₁.t′ ≡fG₂.t′ ∘ splitAt ≡G₁.e′ ∘ ≡fG₁+gG₂.to) x
- ≡⟨ cong (join n′ m′) (map-map ((splitAt ≡G₁.e′ ∘ ≡fG₁+gG₂.to) x)) ⟨
- (join n′ m′ ∘ map f g ∘ map ≡G₁.t′ ≡G₂.t′ ∘ splitAt ≡G₁.e′ ∘ ≡fG₁+gG₂.to) x
- ≡⟨ [,]-map ((map ≡G₁.t′ ≡G₂.t′ ∘ splitAt ≡G₁.e′ ∘ ≡fG₁+gG₂.to) x) ⟩
- ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ map ≡G₁.t′ ≡G₂.t′ ∘ splitAt ≡G₁.e′ ∘ ≡fG₁+gG₂.to) x
- ≡⟨ cong [ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] (splitAt-join n m (map ≡G₁.t′ ≡G₂.t′ (splitAt ≡G₁.e′ (≡fG₁+gG₂.to x)))) ⟨
- ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ splitAt n ∘ join n m ∘ map ≡G₁.t′ ≡G₂.t′ ∘ splitAt ≡G₁.e′ ∘ ≡fG₁+gG₂.to) x
+ (join n′ m′ ∘ map fG₁.t gG₂.t ∘ splitAt G₁.e ∘ to) x
+ ≡⟨ cong (join n′ m′) (map-map ((splitAt G₁.e ∘ to) x)) ⟨
+ (join n′ m′ ∘ map f g ∘ map G₁.t G₂.t ∘ splitAt fG₁.e ∘ to) x
+ ≡⟨ [,]-map ((map G₁.t G₂.t ∘ splitAt fG₁.e ∘ to) x) ⟩
+ ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ map G₁.t G₂.t ∘ splitAt fG₁.e ∘ to) x
+ ≡⟨ cong [ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] (splitAt-join n m (map G₁.t G₂.t (splitAt fG₁.e (to x)))) ⟨
+ ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ splitAt n ∘ join n m ∘ map G₁.t G₂.t ∘ splitAt fG₁.e ∘ to) x
≡⟨⟩
- ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ splitAt n ∘ ≡G₁+G₂.t′ ∘ ≡fG₁+gG₂.to) x ∎
+ ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ splitAt n ∘ G₁+G₂.t ∘ to) x ∎
⊗-homomorphism : NaturalTransformation (-×- ∘′ (F ⁂ F)) (F ∘′ -+-)
-⊗-homomorphism = record
+⊗-homomorphism = ntHelper record
{ η = λ { (n , m) → η {n} {m} }
- ; commute = λ { (f , g) (≡G₁ , ≡G₂) → commute f g ≡G₁ ≡G₂ }
- ; sym-commute = λ { (f , g) (≡G₁ , ≡G₂) → Graph-same-sym (commute f g (Graph-same-sym ≡G₁) (Graph-same-sym ≡G₂)) }
+ ; commute = λ { (f , g) {G₁ , G₂} → commute {G₁ = G₁} {G₂ = G₂} f g }
}
where
η : Func (×-setoid (Graph-setoid n) (Graph-setoid m)) (Graph-setoid (n + m))
@@ -406,155 +365,150 @@ commute {n} {n′} {m} {m′} f g ≡G₁ ≡G₂ = record
associativity
: {X Y Z : ℕ}
- → {G₁ G₁′ : Graph X}
- → {G₂ G₂′ : Graph Y}
- → {G₃ G₃′ : Graph Z}
- → Graph-same G₁ G₁′
- → Graph-same G₂ G₂′
- → Graph-same G₃ G₃′
+ → (G₁ : Graph X)
+ → (G₂ : Graph Y)
+ → (G₃ : Graph Z)
→ Graph-same
(map-nodes (Inverse.to (+-assoc-↔ X Y Z)) (together (together G₁ G₂) G₃))
- (together G₁′ (together G₂′ G₃′))
-associativity {X} {Y} {Z} ≡G₁ ≡G₂ ≡G₃ = record
+ (together G₁ (together G₂ G₃))
+associativity {X} {Y} {Z} G₁ G₂ G₃ = record
{ ↔e = ↔e
; ≗s = ≗s
; ≗t = ≗t
}
where
- module ≡G₁ = Graph-same ≡G₁
- module ≡G₂ = Graph-same ≡G₂
- module ≡G₃ = Graph-same ≡G₃
- module ≡G₂+G₃ = Graph-same (together-resp-same ≡G₂ ≡G₃)
- module ≡G₁+[G₂+G₃] = Graph-same (together-resp-same ≡G₁ (together-resp-same ≡G₂ ≡G₃))
- module ≡G₁+G₂+G₃ = Graph-same (together-resp-same (together-resp-same ≡G₁ ≡G₂) ≡G₃)
- ↔e : Fin (≡G₁.e + ≡G₂.e + ≡G₃.e) ↔ Fin (≡G₁.e′ + (≡G₂.e′ + ≡G₃.e′))
- ↔e = +-resp-↔ ≡G₁.↔e (+-resp-↔ ≡G₂.↔e ≡G₃.↔e) ↔-∘ (+-assoc-↔ ≡G₁.e ≡G₂.e ≡G₃.e)
+ module G₁ = Graph G₁
+ module G₂ = Graph G₂
+ module G₃ = Graph G₃
+ module G₂+G₃ = Graph (together G₂ G₃)
+ module G₁+[G₂+G₃] = Graph (together G₁ (together G₂ G₃))
+ module G₁+G₂+G₃ = Graph (together (together G₁ G₂) G₃)
+ ↔e : Fin (G₁.e + G₂.e + G₃.e) ↔ Fin (G₁.e + (G₂.e + G₃.e))
+ ↔e = +-assoc-↔ G₁.e G₂.e G₃.e
open ≡-Reasoning
open Inverse
- ≗s : to (+-assoc-↔ X Y Z) ∘ ≡G₁+G₂+G₃.s ≗ ≡G₁+[G₂+G₃].s′ ∘ ≡G₁+[G₂+G₃].to ∘ to (+-assoc-↔ ≡G₁.e ≡G₂.e ≡G₃.e)
+ ≗s : to (+-assoc-↔ X Y Z) ∘ G₁+G₂+G₃.s ≗ G₁+[G₂+G₃].s ∘ to ↔e
≗s x = begin
- (to (+-assoc-↔ X Y Z) ∘ ≡G₁+G₂+G₃.s) x ≡⟨⟩
- ([ [ join X (Y + Z) ∘ inj₁ , join X (Y + Z) ∘ inj₂ ∘ _ ] ∘ splitAt X , _ ] ∘ splitAt (X + Y) ∘ ≡G₁+G₂+G₃.s) x
- ≡⟨ [-,]-cong ([,]-∘ (join X (Y + Z)) ∘ splitAt X) (splitAt (X + Y) (≡G₁+G₂+G₃.s x)) ⟨
- ([ join X (Y + Z) ∘ map id _ ∘ splitAt X , join X (Y + Z) ∘ inj₂ ∘ _ ] ∘ splitAt (X + Y) ∘ ≡G₁+G₂+G₃.s) x
- ≡⟨ [,]-∘ (join X (Y + Z)) (splitAt (X + Y) (≡G₁+G₂+G₃.s x)) ⟨
- (join X (Y + Z) ∘ [ map id _ ∘ splitAt X , inj₂ ∘ join Y Z ∘ inj₂ ] ∘ splitAt (X + Y) ∘ ≡G₁+G₂+G₃.s) x ≡⟨⟩
- (join X (Y + Z) ∘ [ map id _ ∘ splitAt X , inj₂ ∘ join Y Z ∘ inj₂ ] ∘ splitAt (X + Y) ∘ join (X + Y) Z ∘ map _ ≡G₃.s ∘ splitAt _) x
+ (to (+-assoc-↔ X Y Z) ∘ G₁+G₂+G₃.s) x ≡⟨⟩
+ ([ [ join X (Y + Z) ∘ inj₁ , join X (Y + Z) ∘ inj₂ ∘ _ ] ∘ splitAt X , _ ] ∘ splitAt (X + Y) ∘ G₁+G₂+G₃.s) x
+ ≡⟨ [-,]-cong ([,]-∘ (join X (Y + Z)) ∘ splitAt X) (splitAt (X + Y) (G₁+G₂+G₃.s x)) ⟨
+ ([ join X (Y + Z) ∘ map id _ ∘ splitAt X , join X (Y + Z) ∘ inj₂ ∘ _ ] ∘ splitAt (X + Y) ∘ G₁+G₂+G₃.s) x
+ ≡⟨ [,]-∘ (join X (Y + Z)) (splitAt (X + Y) (G₁+G₂+G₃.s x)) ⟨
+ (join X (Y + Z) ∘ [ map id _ ∘ splitAt X , inj₂ ∘ join Y Z ∘ inj₂ ] ∘ splitAt (X + Y) ∘ G₁+G₂+G₃.s) x ≡⟨⟩
+ (join X (Y + Z) ∘ [ map id _ ∘ splitAt X , inj₂ ∘ join Y Z ∘ inj₂ ] ∘ splitAt (X + Y) ∘ join (X + Y) Z ∘ map _ G₃.s ∘ splitAt _) x
≡⟨ cong
(join X (Y + Z) ∘ [ map id _ ∘ splitAt X , inj₂ ∘ join Y Z ∘ inj₂ ])
- (splitAt-join (X + Y) Z (map _ ≡G₃.s (splitAt _ x))) ⟩
- (join X (Y + Z) ∘ [ map id _ ∘ splitAt X , inj₂ ∘ join Y Z ∘ inj₂ ] ∘ map _ ≡G₃.s ∘ splitAt _) x
- ≡⟨ cong (join X (Y + Z)) ([,]-map (splitAt (≡G₁.e + ≡G₂.e) x)) ⟩
- (join X (Y + Z) ∘ [ map id _ ∘ splitAt X ∘ join X Y ∘ map ≡G₁.s ≡G₂.s ∘ splitAt _ , inj₂ ∘ join Y Z ∘ inj₂ ∘ ≡G₃.s ] ∘ splitAt _) x
+ (splitAt-join (X + Y) Z (map _ G₃.s (splitAt _ x))) ⟩
+ (join X (Y + Z) ∘ [ map id _ ∘ splitAt X , inj₂ ∘ join Y Z ∘ inj₂ ] ∘ map _ G₃.s ∘ splitAt _) x
+ ≡⟨ cong (join X (Y + Z)) ([,]-map (splitAt (G₁.e + G₂.e) x)) ⟩
+ (join X (Y + Z) ∘ [ map id _ ∘ splitAt X ∘ join X Y ∘ map G₁.s G₂.s ∘ splitAt _ , inj₂ ∘ join Y Z ∘ inj₂ ∘ G₃.s ] ∘ splitAt _) x
≡⟨ cong
(join X (Y + Z))
([-,]-cong
- (cong (map id (_↑ˡ Z)) ∘ splitAt-join X Y ∘ map ≡G₁.s ≡G₂.s ∘ splitAt ≡G₁.e)
- (splitAt (≡G₁.e + ≡G₂.e) x)) ⟩
- (join X (Y + Z) ∘ [ map id _ ∘ map ≡G₁.s ≡G₂.s ∘ splitAt _ , inj₂ ∘ join Y Z ∘ inj₂ ∘ ≡G₃.s ] ∘ splitAt _) x
- ≡⟨ cong (join X (Y + Z)) ([-,]-cong (map-map ∘ splitAt ≡G₁.e) (splitAt _ x)) ⟩
- (join X (Y + Z) ∘ [ map ≡G₁.s (join Y Z ∘ inj₁ ∘ ≡G₂.s) ∘ splitAt _ , inj₂ ∘ _ ] ∘ splitAt _) x ≡⟨⟩
- (join X (Y + Z) ∘ [ map ≡G₁.s (join Y Z ∘ map ≡G₂.s ≡G₃.s ∘ inj₁) ∘ splitAt _ , _ ] ∘ splitAt _) x
+ (cong (map id (_↑ˡ Z)) ∘ splitAt-join X Y ∘ map G₁.s G₂.s ∘ splitAt G₁.e)
+ (splitAt (G₁.e + G₂.e) x)) ⟩
+ (join X (Y + Z) ∘ [ map id _ ∘ map G₁.s G₂.s ∘ splitAt _ , inj₂ ∘ join Y Z ∘ inj₂ ∘ G₃.s ] ∘ splitAt _) x
+ ≡⟨ cong (join X (Y + Z)) ([-,]-cong (map-map ∘ splitAt G₁.e) (splitAt _ x)) ⟩
+ (join X (Y + Z) ∘ [ map G₁.s (join Y Z ∘ inj₁ ∘ G₂.s) ∘ splitAt _ , inj₂ ∘ _ ] ∘ splitAt _) x ≡⟨⟩
+ (join X (Y + Z) ∘ [ map G₁.s (join Y Z ∘ map G₂.s G₃.s ∘ inj₁) ∘ splitAt _ , _ ] ∘ splitAt _) x
≡⟨ cong
(join X (Y + Z))
([-,]-cong
- (map-cong (cong ≡G₁.s ∘ erefl) (cong (join Y Z ∘ map ≡G₂.s ≡G₃.s) ∘ splitAt-join ≡G₂.e ≡G₃.e ∘ inj₁) ∘ splitAt _)
- (splitAt (≡G₁.e + ≡G₂.e) x)) ⟨
- (join X (Y + Z) ∘ [ map ≡G₁.s (join Y Z ∘ map ≡G₂.s ≡G₃.s ∘ splitAt ≡G₂.e ∘ _) ∘ splitAt _ , _ ] ∘ splitAt _) x ≡⟨⟩
- (join X (Y + Z) ∘ [ map ≡G₁.s (≡G₂+G₃.s ∘ _) ∘ splitAt _ , inj₂ ∘ join Y Z ∘ inj₂ ∘ ≡G₃.s ] ∘ splitAt _) x ≡⟨⟩
- (join X (Y + Z) ∘ [ map ≡G₁.s (≡G₂+G₃.s ∘ _) ∘ splitAt _ , inj₂ ∘ join Y Z ∘ map ≡G₂.s ≡G₃.s ∘ inj₂ ] ∘ splitAt _) x
+ (map-cong (cong G₁.s ∘ erefl) (cong (join Y Z ∘ map G₂.s G₃.s) ∘ splitAt-join G₂.e G₃.e ∘ inj₁) ∘ splitAt _)
+ (splitAt (G₁.e + G₂.e) x)) ⟨
+ (join X (Y + Z) ∘ [ map G₁.s (join Y Z ∘ map G₂.s G₃.s ∘ splitAt G₂.e ∘ _) ∘ splitAt _ , _ ] ∘ splitAt _) x ≡⟨⟩
+ (join X (Y + Z) ∘ [ map G₁.s (G₂+G₃.s ∘ _) ∘ splitAt _ , inj₂ ∘ join Y Z ∘ inj₂ ∘ G₃.s ] ∘ splitAt _) x ≡⟨⟩
+ (join X (Y + Z) ∘ [ map G₁.s (G₂+G₃.s ∘ _) ∘ splitAt _ , inj₂ ∘ join Y Z ∘ map G₂.s G₃.s ∘ inj₂ ] ∘ splitAt _) x
≡⟨ cong
(join X (Y + Z))
([,-]-cong
- (cong (inj₂ ∘ join Y Z ∘ map ≡G₂.s ≡G₃.s) ∘ splitAt-join ≡G₂.e ≡G₃.e ∘ inj₂)
- (splitAt (≡G₁.e + ≡G₂.e) x)) ⟨
- (join X (Y + Z) ∘ [ map ≡G₁.s _ ∘ splitAt _ , inj₂ ∘ join Y Z ∘ map ≡G₂.s ≡G₃.s ∘ splitAt ≡G₂.e ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x ≡⟨⟩
- (join X (Y + Z) ∘ [ map ≡G₁.s _ ∘ splitAt _ , inj₂ ∘ ≡G₂+G₃.s ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x ≡⟨⟩
- (join X (Y + Z) ∘ [ map ≡G₁.s _ ∘ splitAt _ , map ≡G₁.s ≡G₂+G₃.s ∘ inj₂ ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x
+ (cong (inj₂ ∘ join Y Z ∘ map G₂.s G₃.s) ∘ splitAt-join G₂.e G₃.e ∘ inj₂)
+ (splitAt (G₁.e + G₂.e) x)) ⟨
+ (join X (Y + Z) ∘ [ map G₁.s _ ∘ splitAt _ , inj₂ ∘ join Y Z ∘ map G₂.s G₃.s ∘ splitAt G₂.e ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x ≡⟨⟩
+ (join X (Y + Z) ∘ [ map G₁.s _ ∘ splitAt _ , inj₂ ∘ G₂+G₃.s ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x ≡⟨⟩
+ (join X (Y + Z) ∘ [ map G₁.s _ ∘ splitAt _ , map G₁.s G₂+G₃.s ∘ inj₂ ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x
≡⟨ cong
(join X (Y + Z))
([-,]-cong
- (map-map ∘ splitAt ≡G₁.e)
- (splitAt (≡G₁.e + ≡G₂.e) x)) ⟨
- (join X (Y + Z) ∘ [ map ≡G₁.s ≡G₂+G₃.s ∘ map id (_↑ˡ ≡G₃.e) ∘ splitAt _ , map ≡G₁.s ≡G₂+G₃.s ∘ inj₂ ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x
- ≡⟨ cong (join X (Y + Z)) ([,]-∘ (map ≡G₁.s ≡G₂+G₃.s) (splitAt (≡G₁.e + ≡G₂.e) x)) ⟨
- (join X (Y + Z) ∘ map ≡G₁.s ≡G₂+G₃.s ∘ [ map id (_↑ˡ ≡G₃.e) ∘ splitAt _ , inj₂ ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x
+ (map-map ∘ splitAt G₁.e)
+ (splitAt (G₁.e + G₂.e) x)) ⟨
+ (join X (Y + Z) ∘ [ map G₁.s G₂+G₃.s ∘ map id (_↑ˡ G₃.e) ∘ splitAt _ , map G₁.s G₂+G₃.s ∘ inj₂ ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x
+ ≡⟨ cong (join X (Y + Z)) ([,]-∘ (map G₁.s G₂+G₃.s) (splitAt (G₁.e + G₂.e) x)) ⟨
+ (join X (Y + Z) ∘ map G₁.s G₂+G₃.s ∘ [ map id (_↑ˡ G₃.e) ∘ splitAt _ , inj₂ ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x
≡⟨ cong
- (join X (Y + Z) ∘ map ≡G₁.s ≡G₂+G₃.s)
- (splitAt-join ≡G₁.e ≡G₂+G₃.e (([ map id _ ∘ splitAt _ , inj₂ ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x)) ⟨
- (join X (Y + Z) ∘ map ≡G₁.s ≡G₂+G₃.s ∘ splitAt ≡G₁.e ∘ join ≡G₁.e ≡G₂+G₃.e ∘ [ map id _ ∘ splitAt _ , inj₂ ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x ≡⟨⟩
- (≡G₁+[G₂+G₃].s ∘ join ≡G₁.e ≡G₂+G₃.e ∘ [ map id _ ∘ splitAt _ , inj₂ ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x
- ≡⟨ cong ≡G₁+[G₂+G₃].s ([,]-∘ (join ≡G₁.e ≡G₂+G₃.e) (splitAt (≡G₁.e + ≡G₂.e) x)) ⟩
- (≡G₁+[G₂+G₃].s ∘ [ join ≡G₁.e ≡G₂+G₃.e ∘ map id (_↑ˡ ≡G₃.e) ∘ splitAt _ , join ≡G₁.e ≡G₂+G₃.e ∘ inj₂ ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x
- ≡⟨ cong ≡G₁+[G₂+G₃].s ([-,]-cong ([,]-map ∘ splitAt ≡G₁.e) (splitAt (≡G₁.e + ≡G₂.e) x)) ⟩
- (≡G₁+[G₂+G₃].s ∘ [ [ _↑ˡ ≡G₂.e + ≡G₃.e , (≡G₁.e ↑ʳ_) ∘ (_↑ˡ ≡G₃.e) ] ∘ splitAt ≡G₁.e , (≡G₁.e ↑ʳ_) ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x ≡⟨⟩
- (≡G₁+[G₂+G₃].s ∘ to (+-assoc-↔ ≡G₁.e ≡G₂.e ≡G₃.e)) x ≡⟨ ≡G₁+[G₂+G₃].≗s (to (+-assoc-↔ ≡G₁.e ≡G₂.e ≡G₃.e) x) ⟩
- (≡G₁+[G₂+G₃].s′ ∘ ≡G₁+[G₂+G₃].to ∘ to (+-assoc-↔ ≡G₁.e ≡G₂.e ≡G₃.e)) x ∎
- ≗t : to (+-assoc-↔ X Y Z) ∘ ≡G₁+G₂+G₃.t ≗ ≡G₁+[G₂+G₃].t′ ∘ ≡G₁+[G₂+G₃].to ∘ to (+-assoc-↔ ≡G₁.e ≡G₂.e ≡G₃.e)
+ (join X (Y + Z) ∘ map G₁.s G₂+G₃.s)
+ (splitAt-join G₁.e G₂+G₃.e (([ map id _ ∘ splitAt _ , inj₂ ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x)) ⟨
+ (join X (Y + Z) ∘ map G₁.s G₂+G₃.s ∘ splitAt G₁.e ∘ join G₁.e G₂+G₃.e ∘ [ map id _ ∘ splitAt _ , inj₂ ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x ≡⟨⟩
+ (G₁+[G₂+G₃].s ∘ join G₁.e G₂+G₃.e ∘ [ map id _ ∘ splitAt _ , inj₂ ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x
+ ≡⟨ cong G₁+[G₂+G₃].s ([,]-∘ (join G₁.e G₂+G₃.e) (splitAt (G₁.e + G₂.e) x)) ⟩
+ (G₁+[G₂+G₃].s ∘ [ join G₁.e G₂+G₃.e ∘ map id (_↑ˡ G₃.e) ∘ splitAt _ , join G₁.e G₂+G₃.e ∘ inj₂ ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x
+ ≡⟨ cong G₁+[G₂+G₃].s ([-,]-cong ([,]-map ∘ splitAt G₁.e) (splitAt (G₁.e + G₂.e) x)) ⟩
+ (G₁+[G₂+G₃].s ∘ [ [ _↑ˡ G₂.e + G₃.e , (G₁.e ↑ʳ_) ∘ (_↑ˡ G₃.e) ] ∘ splitAt G₁.e , (G₁.e ↑ʳ_) ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x ≡⟨⟩
+ (G₁+[G₂+G₃].s ∘ to (+-assoc-↔ G₁.e G₂.e G₃.e)) x ∎
+ ≗t : to (+-assoc-↔ X Y Z) ∘ G₁+G₂+G₃.t ≗ G₁+[G₂+G₃].t ∘ to ↔e
≗t x = begin
- (to (+-assoc-↔ X Y Z) ∘ ≡G₁+G₂+G₃.t) x ≡⟨⟩
- ([ [ join X (Y + Z) ∘ inj₁ , join X (Y + Z) ∘ inj₂ ∘ _ ] ∘ splitAt X , _ ] ∘ splitAt (X + Y) ∘ ≡G₁+G₂+G₃.t) x
- ≡⟨ [-,]-cong ([,]-∘ (join X (Y + Z)) ∘ splitAt X) (splitAt (X + Y) (≡G₁+G₂+G₃.t x)) ⟨
- ([ join X (Y + Z) ∘ map id _ ∘ splitAt X , join X (Y + Z) ∘ inj₂ ∘ _ ] ∘ splitAt (X + Y) ∘ ≡G₁+G₂+G₃.t) x
- ≡⟨ [,]-∘ (join X (Y + Z)) (splitAt (X + Y) (≡G₁+G₂+G₃.t x)) ⟨
- (join X (Y + Z) ∘ [ map id _ ∘ splitAt X , inj₂ ∘ join Y Z ∘ inj₂ ] ∘ splitAt (X + Y) ∘ ≡G₁+G₂+G₃.t) x ≡⟨⟩
- (join X (Y + Z) ∘ [ map id _ ∘ splitAt X , inj₂ ∘ join Y Z ∘ inj₂ ] ∘ splitAt (X + Y) ∘ join (X + Y) Z ∘ map _ ≡G₃.t ∘ splitAt _) x
+ (to (+-assoc-↔ X Y Z) ∘ G₁+G₂+G₃.t) x ≡⟨⟩
+ ([ [ join X (Y + Z) ∘ inj₁ , join X (Y + Z) ∘ inj₂ ∘ _ ] ∘ splitAt X , _ ] ∘ splitAt (X + Y) ∘ G₁+G₂+G₃.t) x
+ ≡⟨ [-,]-cong ([,]-∘ (join X (Y + Z)) ∘ splitAt X) (splitAt (X + Y) (G₁+G₂+G₃.t x)) ⟨
+ ([ join X (Y + Z) ∘ map id _ ∘ splitAt X , join X (Y + Z) ∘ inj₂ ∘ _ ] ∘ splitAt (X + Y) ∘ G₁+G₂+G₃.t) x
+ ≡⟨ [,]-∘ (join X (Y + Z)) (splitAt (X + Y) (G₁+G₂+G₃.t x)) ⟨
+ (join X (Y + Z) ∘ [ map id _ ∘ splitAt X , inj₂ ∘ join Y Z ∘ inj₂ ] ∘ splitAt (X + Y) ∘ G₁+G₂+G₃.t) x ≡⟨⟩
+ (join X (Y + Z) ∘ [ map id _ ∘ splitAt X , inj₂ ∘ join Y Z ∘ inj₂ ] ∘ splitAt (X + Y) ∘ join (X + Y) Z ∘ map _ G₃.t ∘ splitAt _) x
≡⟨ cong
(join X (Y + Z) ∘ [ map id _ ∘ splitAt X , inj₂ ∘ join Y Z ∘ inj₂ ])
- (splitAt-join (X + Y) Z (map _ ≡G₃.t (splitAt _ x))) ⟩
- (join X (Y + Z) ∘ [ map id _ ∘ splitAt X , inj₂ ∘ join Y Z ∘ inj₂ ] ∘ map _ ≡G₃.t ∘ splitAt _) x
- ≡⟨ cong (join X (Y + Z)) ([,]-map (splitAt (≡G₁.e + ≡G₂.e) x)) ⟩
- (join X (Y + Z) ∘ [ map id _ ∘ splitAt X ∘ join X Y ∘ map ≡G₁.t ≡G₂.t ∘ splitAt _ , inj₂ ∘ join Y Z ∘ inj₂ ∘ ≡G₃.t ] ∘ splitAt _) x
+ (splitAt-join (X + Y) Z (map _ G₃.t (splitAt _ x))) ⟩
+ (join X (Y + Z) ∘ [ map id _ ∘ splitAt X , inj₂ ∘ join Y Z ∘ inj₂ ] ∘ map _ G₃.t ∘ splitAt _) x
+ ≡⟨ cong (join X (Y + Z)) ([,]-map (splitAt (G₁.e + G₂.e) x)) ⟩
+ (join X (Y + Z) ∘ [ map id _ ∘ splitAt X ∘ join X Y ∘ map G₁.t G₂.t ∘ splitAt _ , inj₂ ∘ join Y Z ∘ inj₂ ∘ G₃.t ] ∘ splitAt _) x
≡⟨ cong
(join X (Y + Z))
([-,]-cong
- (cong (map id (_↑ˡ Z)) ∘ splitAt-join X Y ∘ map ≡G₁.t ≡G₂.t ∘ splitAt ≡G₁.e)
- (splitAt (≡G₁.e + ≡G₂.e) x)) ⟩
- (join X (Y + Z) ∘ [ map id _ ∘ map ≡G₁.t ≡G₂.t ∘ splitAt _ , inj₂ ∘ join Y Z ∘ inj₂ ∘ ≡G₃.t ] ∘ splitAt _) x
- ≡⟨ cong (join X (Y + Z)) ([-,]-cong (map-map ∘ splitAt ≡G₁.e) (splitAt _ x)) ⟩
- (join X (Y + Z) ∘ [ map ≡G₁.t (join Y Z ∘ inj₁ ∘ ≡G₂.t) ∘ splitAt _ , inj₂ ∘ _ ] ∘ splitAt _) x ≡⟨⟩
- (join X (Y + Z) ∘ [ map ≡G₁.t (join Y Z ∘ map ≡G₂.t ≡G₃.t ∘ inj₁) ∘ splitAt _ , _ ] ∘ splitAt _) x
+ (cong (map id (_↑ˡ Z)) ∘ splitAt-join X Y ∘ map G₁.t G₂.t ∘ splitAt G₁.e)
+ (splitAt (G₁.e + G₂.e) x)) ⟩
+ (join X (Y + Z) ∘ [ map id _ ∘ map G₁.t G₂.t ∘ splitAt _ , inj₂ ∘ join Y Z ∘ inj₂ ∘ G₃.t ] ∘ splitAt _) x
+ ≡⟨ cong (join X (Y + Z)) ([-,]-cong (map-map ∘ splitAt G₁.e) (splitAt _ x)) ⟩
+ (join X (Y + Z) ∘ [ map G₁.t (join Y Z ∘ inj₁ ∘ G₂.t) ∘ splitAt _ , inj₂ ∘ _ ] ∘ splitAt _) x ≡⟨⟩
+ (join X (Y + Z) ∘ [ map G₁.t (join Y Z ∘ map G₂.t G₃.t ∘ inj₁) ∘ splitAt _ , _ ] ∘ splitAt _) x
≡⟨ cong
(join X (Y + Z))
([-,]-cong
- (map-cong (cong ≡G₁.t ∘ erefl) (cong (join Y Z ∘ map ≡G₂.t ≡G₃.t) ∘ splitAt-join ≡G₂.e ≡G₃.e ∘ inj₁) ∘ splitAt _)
- (splitAt (≡G₁.e + ≡G₂.e) x)) ⟨
- (join X (Y + Z) ∘ [ map ≡G₁.t (join Y Z ∘ map ≡G₂.t ≡G₃.t ∘ splitAt ≡G₂.e ∘ _) ∘ splitAt _ , _ ] ∘ splitAt _) x ≡⟨⟩
- (join X (Y + Z) ∘ [ map ≡G₁.t (≡G₂+G₃.t ∘ _) ∘ splitAt _ , inj₂ ∘ join Y Z ∘ inj₂ ∘ ≡G₃.t ] ∘ splitAt _) x ≡⟨⟩
- (join X (Y + Z) ∘ [ map ≡G₁.t (≡G₂+G₃.t ∘ _) ∘ splitAt _ , inj₂ ∘ join Y Z ∘ map ≡G₂.t ≡G₃.t ∘ inj₂ ] ∘ splitAt _) x
+ (map-cong (cong G₁.t ∘ erefl) (cong (join Y Z ∘ map G₂.t G₃.t) ∘ splitAt-join G₂.e G₃.e ∘ inj₁) ∘ splitAt _)
+ (splitAt (G₁.e + G₂.e) x)) ⟨
+ (join X (Y + Z) ∘ [ map G₁.t (join Y Z ∘ map G₂.t G₃.t ∘ splitAt G₂.e ∘ _) ∘ splitAt _ , _ ] ∘ splitAt _) x ≡⟨⟩
+ (join X (Y + Z) ∘ [ map G₁.t (G₂+G₃.t ∘ _) ∘ splitAt _ , inj₂ ∘ join Y Z ∘ inj₂ ∘ G₃.t ] ∘ splitAt _) x ≡⟨⟩
+ (join X (Y + Z) ∘ [ map G₁.t (G₂+G₃.t ∘ _) ∘ splitAt _ , inj₂ ∘ join Y Z ∘ map G₂.t G₃.t ∘ inj₂ ] ∘ splitAt _) x
≡⟨ cong
(join X (Y + Z))
([,-]-cong
- (cong (inj₂ ∘ join Y Z ∘ map ≡G₂.t ≡G₃.t) ∘ splitAt-join ≡G₂.e ≡G₃.e ∘ inj₂)
- (splitAt (≡G₁.e + ≡G₂.e) x)) ⟨
- (join X (Y + Z) ∘ [ map ≡G₁.t _ ∘ splitAt _ , inj₂ ∘ join Y Z ∘ map ≡G₂.t ≡G₃.t ∘ splitAt ≡G₂.e ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x ≡⟨⟩
- (join X (Y + Z) ∘ [ map ≡G₁.t _ ∘ splitAt _ , inj₂ ∘ ≡G₂+G₃.t ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x ≡⟨⟩
- (join X (Y + Z) ∘ [ map ≡G₁.t _ ∘ splitAt _ , map ≡G₁.t ≡G₂+G₃.t ∘ inj₂ ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x
+ (cong (inj₂ ∘ join Y Z ∘ map G₂.t G₃.t) ∘ splitAt-join G₂.e G₃.e ∘ inj₂)
+ (splitAt (G₁.e + G₂.e) x)) ⟨
+ (join X (Y + Z) ∘ [ map G₁.t _ ∘ splitAt _ , inj₂ ∘ join Y Z ∘ map G₂.t G₃.t ∘ splitAt G₂.e ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x ≡⟨⟩
+ (join X (Y + Z) ∘ [ map G₁.t _ ∘ splitAt _ , inj₂ ∘ G₂+G₃.t ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x ≡⟨⟩
+ (join X (Y + Z) ∘ [ map G₁.t _ ∘ splitAt _ , map G₁.t G₂+G₃.t ∘ inj₂ ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x
≡⟨ cong
(join X (Y + Z))
([-,]-cong
- (map-map ∘ splitAt ≡G₁.e)
- (splitAt (≡G₁.e + ≡G₂.e) x)) ⟨
- (join X (Y + Z) ∘ [ map ≡G₁.t ≡G₂+G₃.t ∘ map id (_↑ˡ ≡G₃.e) ∘ splitAt _ , map ≡G₁.t ≡G₂+G₃.t ∘ inj₂ ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x
- ≡⟨ cong (join X (Y + Z)) ([,]-∘ (map ≡G₁.t ≡G₂+G₃.t) (splitAt (≡G₁.e + ≡G₂.e) x)) ⟨
- (join X (Y + Z) ∘ map ≡G₁.t ≡G₂+G₃.t ∘ [ map id (_↑ˡ ≡G₃.e) ∘ splitAt _ , inj₂ ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x
+ (map-map ∘ splitAt G₁.e)
+ (splitAt (G₁.e + G₂.e) x)) ⟨
+ (join X (Y + Z) ∘ [ map G₁.t G₂+G₃.t ∘ map id (_↑ˡ G₃.e) ∘ splitAt _ , map G₁.t G₂+G₃.t ∘ inj₂ ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x
+ ≡⟨ cong (join X (Y + Z)) ([,]-∘ (map G₁.t G₂+G₃.t) (splitAt (G₁.e + G₂.e) x)) ⟨
+ (join X (Y + Z) ∘ map G₁.t G₂+G₃.t ∘ [ map id (_↑ˡ G₃.e) ∘ splitAt _ , inj₂ ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x
≡⟨ cong
- (join X (Y + Z) ∘ map ≡G₁.t ≡G₂+G₃.t)
- (splitAt-join ≡G₁.e ≡G₂+G₃.e (([ map id _ ∘ splitAt _ , inj₂ ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x)) ⟨
- (join X (Y + Z) ∘ map ≡G₁.t ≡G₂+G₃.t ∘ splitAt ≡G₁.e ∘ join ≡G₁.e ≡G₂+G₃.e ∘ [ map id _ ∘ splitAt _ , inj₂ ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x ≡⟨⟩
- (≡G₁+[G₂+G₃].t ∘ join ≡G₁.e ≡G₂+G₃.e ∘ [ map id _ ∘ splitAt _ , inj₂ ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x
- ≡⟨ cong ≡G₁+[G₂+G₃].t ([,]-∘ (join ≡G₁.e ≡G₂+G₃.e) (splitAt (≡G₁.e + ≡G₂.e) x)) ⟩
- (≡G₁+[G₂+G₃].t ∘ [ join ≡G₁.e ≡G₂+G₃.e ∘ map id (_↑ˡ ≡G₃.e) ∘ splitAt _ , join ≡G₁.e ≡G₂+G₃.e ∘ inj₂ ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x
- ≡⟨ cong ≡G₁+[G₂+G₃].t ([-,]-cong ([,]-map ∘ splitAt ≡G₁.e) (splitAt (≡G₁.e + ≡G₂.e) x)) ⟩
- (≡G₁+[G₂+G₃].t ∘ [ [ _↑ˡ ≡G₂.e + ≡G₃.e , (≡G₁.e ↑ʳ_) ∘ (_↑ˡ ≡G₃.e) ] ∘ splitAt ≡G₁.e , (≡G₁.e ↑ʳ_) ∘ (≡G₂.e ↑ʳ_) ] ∘ splitAt _) x ≡⟨⟩
- (≡G₁+[G₂+G₃].t ∘ to (+-assoc-↔ ≡G₁.e ≡G₂.e ≡G₃.e)) x ≡⟨ ≡G₁+[G₂+G₃].≗t (to (+-assoc-↔ ≡G₁.e ≡G₂.e ≡G₃.e) x) ⟩
- (≡G₁+[G₂+G₃].t′ ∘ ≡G₁+[G₂+G₃].to ∘ to (+-assoc-↔ ≡G₁.e ≡G₂.e ≡G₃.e)) x ∎
-
-unitaryˡ : Graph-same G G′ → Graph-same (together empty-graph G) G′
-unitaryˡ ≡G = ≡G
-
-n+0↔0 : ∀ n → Fin (n + 0) ↔ Fin n
-n+0↔0 n = record
+ (join X (Y + Z) ∘ map G₁.t G₂+G₃.t)
+ (splitAt-join G₁.e G₂+G₃.e (([ map id _ ∘ splitAt _ , inj₂ ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x)) ⟨
+ (join X (Y + Z) ∘ map G₁.t G₂+G₃.t ∘ splitAt G₁.e ∘ join G₁.e G₂+G₃.e ∘ [ map id _ ∘ splitAt _ , inj₂ ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x ≡⟨⟩
+ (G₁+[G₂+G₃].t ∘ join G₁.e G₂+G₃.e ∘ [ map id _ ∘ splitAt _ , inj₂ ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x
+ ≡⟨ cong G₁+[G₂+G₃].t ([,]-∘ (join G₁.e G₂+G₃.e) (splitAt (G₁.e + G₂.e) x)) ⟩
+ (G₁+[G₂+G₃].t ∘ [ join G₁.e G₂+G₃.e ∘ map id (_↑ˡ G₃.e) ∘ splitAt _ , join G₁.e G₂+G₃.e ∘ inj₂ ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x
+ ≡⟨ cong G₁+[G₂+G₃].t ([-,]-cong ([,]-map ∘ splitAt G₁.e) (splitAt (G₁.e + G₂.e) x)) ⟩
+ (G₁+[G₂+G₃].t ∘ [ [ _↑ˡ G₂.e + G₃.e , (G₁.e ↑ʳ_) ∘ (_↑ˡ G₃.e) ] ∘ splitAt G₁.e , (G₁.e ↑ʳ_) ∘ (G₂.e ↑ʳ_) ] ∘ splitAt _) x ≡⟨⟩
+ (G₁+[G₂+G₃].t ∘ to (+-assoc-↔ G₁.e G₂.e G₃.e)) x ∎
+
+unitaryˡ : Graph-same (together (discrete {0}) G) G
+unitaryˡ = Graph-same-refl
+
+n+0↔n : ∀ n → Fin (n + 0) ↔ Fin n
+n+0↔n n = record
{ to = to
; from = from
; to-cong = λ { refl → refl }
@@ -562,63 +516,33 @@ n+0↔0 n = record
; inverse = (λ { refl → to∘from _ }) , λ { refl → from∘to _ }
}
where
- to : ∀ {n} → Fin (n + 0) → Fin n
- to {ℕ.suc ℕ.zero} n = n
- to {ℕ.suc (ℕ.suc n)} zero = zero
- to {ℕ.suc (ℕ.suc n)} (suc z) = suc (to z)
- from : ∀ {n} → Fin n → Fin (n + 0)
- from {ℕ.suc ℕ.zero} n = n
- from {ℕ.suc (ℕ.suc n)} zero = zero
- from {ℕ.suc (ℕ.suc n)} (suc z) = suc (from z)
- from∘to : ∀ {n} → ∀ (x : Fin (n + 0)) → from (to x) ≡ x
- from∘to {ℕ.suc ℕ.zero} zero = refl
- from∘to {ℕ.suc (ℕ.suc n)} zero = refl
- from∘to {ℕ.suc (ℕ.suc n)} (suc x) = cong suc (from∘to x)
- to∘from : ∀ {n} → ∀ (x : Fin n) → to (from x) ≡ x
- to∘from {ℕ.suc ℕ.zero} zero = refl
- to∘from {ℕ.suc (ℕ.suc n)} zero = refl
- to∘from {ℕ.suc (ℕ.suc n)} (suc x) = cong suc (to∘from x)
+ to : Fin (n + 0) → Fin n
+ to x with inj₁ x₁ ← splitAt n x = x₁
+ from : Fin n → Fin (n + 0)
+ from x = x ↑ˡ 0
+ from∘to : (x : Fin (n + 0)) → from (to x) ≡ x
+ from∘to x with inj₁ x₁ ← splitAt n x in eq = splitAt⁻¹-↑ˡ eq
+ to∘from : (x : Fin n) → to (from x) ≡ x
+ to∘from x rewrite splitAt-↑ˡ n x 0 = refl
unitaryʳ
- : {G G′ : Graph n}
- → Graph-same G G′
- → Graph-same (map-nodes ([ (λ x → x) , (λ ()) ] ∘ splitAt n) (together G empty-graph)) G′
-unitaryʳ {n} {G} {G′} ≡G = record
- { ↔e = e+0↔e′
+ : {G : Graph n}
+ → Graph-same (map-nodes ([ (λ x → x) , (λ ()) ] ∘ splitAt n) (together G discrete)) G
+unitaryʳ {n} {G} = record
+ { ↔e = e+0↔e
; ≗s = ≗s+0
; ≗t = ≗t+0
}
where
- open Graph-same ≡G
+ open Graph G
open ≡-Reasoning
- e+0↔e′ : Fin (e + 0) ↔ Fin e′
- e+0↔e′ = ↔e ↔-∘ n+0↔0 e
- module e+0↔e′ = Inverse e+0↔e′
- open Inverse
- ↑ˡ-0 : ∀ e → (x : Fin e) → x ≡ to (n+0↔0 e) (x ↑ˡ 0)
- ↑ˡ-0 (ℕ.suc ℕ.zero) zero = refl
- ↑ˡ-0 (ℕ.suc (ℕ.suc e)) zero = refl
- ↑ˡ-0 (ℕ.suc (ℕ.suc e)) (suc x) = cong suc (↑ˡ-0 (ℕ.suc e) x)
- ≗s+0 : [ id , (λ ()) ] ∘ splitAt n ∘ join n 0 ∘ map s (λ ()) ∘ splitAt e ≗ s′ ∘ e+0↔e′.to
- ≗s+0 x+0 with splitAt e x+0 in eq
- ... | inj₁ x = begin
- [ id , (λ ()) ] (splitAt n (join n 0 (inj₁ (s x)))) ≡⟨ cong [ id , (λ ()) ] (splitAt-join n 0 (inj₁ (s x))) ⟩
- s x ≡⟨ cong s (↑ˡ-0 e x) ⟩
- s (to (n+0↔0 e) (x ↑ˡ 0)) ≡⟨⟩
- s (to (n+0↔0 e) (join e 0 (inj₁ x))) ≡⟨ cong (s ∘ to (n+0↔0 e) ∘ join e 0) eq ⟨
- s (to (n+0↔0 e) (join e 0 (splitAt e x+0))) ≡⟨ cong (s ∘ to (n+0↔0 e)) (join-splitAt e 0 x+0) ⟩
- s (to (n+0↔0 e) x+0) ≡⟨ ≗s (to (n+0↔0 e) x+0) ⟩
- s′ (e+0↔e′.to x+0) ∎
- ≗t+0 : [ id , (λ ()) ] ∘ splitAt n ∘ join n 0 ∘ map t (λ ()) ∘ splitAt e ≗ t′ ∘ e+0↔e′.to
- ≗t+0 x+0 with splitAt e x+0 in eq
- ... | inj₁ x = begin
- [ id , (λ ()) ] (splitAt n (join n 0 (inj₁ (t x)))) ≡⟨ cong [ id , (λ ()) ] (splitAt-join n 0 (inj₁ (t x))) ⟩
- t x ≡⟨ cong t (↑ˡ-0 e x) ⟩
- t (to (n+0↔0 e) (x ↑ˡ 0)) ≡⟨⟩
- t (to (n+0↔0 e) (join e 0 (inj₁ x))) ≡⟨ cong (t ∘ to (n+0↔0 e) ∘ join e 0) eq ⟨
- t (to (n+0↔0 e) (join e 0 (splitAt e x+0))) ≡⟨ cong (t ∘ to (n+0↔0 e)) (join-splitAt e 0 x+0) ⟩
- t (to (n+0↔0 e) x+0) ≡⟨ ≗t (to (n+0↔0 e) x+0) ⟩
- t′ (e+0↔e′.to x+0) ∎
+ e+0↔e : Fin (e + 0) ↔ Fin e
+ e+0↔e = n+0↔n e
+ module e+0↔e = Inverse e+0↔e
+ ≗s+0 : [ id , (λ ()) ] ∘ splitAt n ∘ join n 0 ∘ map s (λ ()) ∘ splitAt e ≗ s ∘ e+0↔e.to
+ ≗s+0 x+0 with inj₁ x ← splitAt e x+0 = cong [ id , (λ ()) ] (splitAt-↑ˡ n (s x) 0)
+ ≗t+0 : [ id , (λ ()) ] ∘ splitAt n ∘ join n 0 ∘ map t (λ ()) ∘ splitAt e ≗ t ∘ e+0↔e.to
+ ≗t+0 x+0 with inj₁ x ← splitAt e x+0 = cong [ id , (λ ()) ] (splitAt-↑ˡ n (t x) 0)
+-comm-↔ : ∀ (n m : ℕ) → Fin (n + m) ↔ Fin (m + n)
+-comm-↔ n m = record
@@ -655,85 +579,68 @@ join-swap (inj₁ x) = refl
join-swap (inj₂ y) = refl
braiding
- : {G₁ G₁′ : Graph n}
- → {G₂ G₂′ : Graph m}
- → Graph-same G₁ G₁′
- → Graph-same G₂ G₂′
- → Graph-same (map-nodes ([ m ↑ʳ_ , _↑ˡ n ] ∘ splitAt n) (together G₁ G₂)) (together G₂′ G₁′)
-braiding {n} {m} ≡G₁ ≡G₂ = record
- { ↔e = +-comm-↔ ≡G₁.e′ ≡G₂.e′ ↔-∘ +-resp-↔ ≡G₁.↔e ≡G₂.↔e
+ : {G₁ : Graph n}
+ → {G₂ : Graph m}
+ → Graph-same (map-nodes ([ m ↑ʳ_ , _↑ˡ n ] ∘ splitAt n) (together G₁ G₂)) (together G₂ G₁)
+braiding {n} {m} {G₁} {G₂} = record
+ { ↔e = +-comm-↔ G₁.e G₂.e
; ≗s = ≗s
; ≗t = ≗t
}
where
open ≡-Reasoning
- module ≡G₁ = Graph-same ≡G₁
- module ≡G₂ = Graph-same ≡G₂
+ module G₁ = Graph G₁
+ module G₂ = Graph G₂
≗s : [ m ↑ʳ_ , _↑ˡ n ] ∘ splitAt n
- ∘ join n m ∘ map ≡G₁.s ≡G₂.s ∘ splitAt ≡G₁.e
- ≗ join m n ∘ map ≡G₂.s′ ≡G₁.s′ ∘ splitAt ≡G₂.e′
- ∘ join ≡G₂.e′ ≡G₁.e′ ∘ swap ∘ splitAt ≡G₁.e′
- ∘ join ≡G₁.e′ ≡G₂.e′ ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e
+ ∘ join n m ∘ map G₁.s G₂.s ∘ splitAt G₁.e
+ ≗ join m n ∘ map G₂.s G₁.s ∘ splitAt G₂.e
+ ∘ Inverse.to (+-comm-↔ G₁.e G₂.e)
≗s x = begin
- ([ m ↑ʳ_ , _↑ˡ n ] ∘ splitAt n ∘ join n m ∘ map ≡G₁.s ≡G₂.s ∘ splitAt ≡G₁.e) x
- ≡⟨ (join-swap ∘ splitAt n ∘ join n m ∘ map ≡G₁.s ≡G₂.s ∘ splitAt ≡G₁.e) x ⟨
- (join m n ∘ swap ∘ splitAt n ∘ join n m ∘ map ≡G₁.s ≡G₂.s ∘ splitAt ≡G₁.e) x
- ≡⟨ (cong (join m n ∘ swap) ∘ splitAt-join n m ∘ map ≡G₁.s ≡G₂.s ∘ splitAt ≡G₁.e) x ⟩
- (join m n ∘ swap ∘ map ≡G₁.s ≡G₂.s ∘ splitAt ≡G₁.e) x
- ≡⟨ (cong (join m n ∘ swap) ∘ map-cong ≡G₁.≗s ≡G₂.≗s ∘ splitAt ≡G₁.e) x ⟩
- (join m n ∘ swap ∘ map (≡G₁.s′ ∘ ≡G₁.to) (≡G₂.s′ ∘ ≡G₂.to) ∘ splitAt ≡G₁.e) x
- ≡⟨ (cong (join m n ∘ swap) ∘ map-map ∘ splitAt ≡G₁.e) x ⟨
- (join m n ∘ swap ∘ map ≡G₁.s′ ≡G₂.s′ ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e) x
- ≡⟨ (cong (join m n) ∘ swap-map ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e) x ⟩
- (join m n ∘ map ≡G₂.s′ ≡G₁.s′ ∘ swap ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e) x
- ≡⟨ (cong (join m n ∘ map ≡G₂.s′ ≡G₁.s′ ∘ swap) ∘ splitAt-join ≡G₁.e′ ≡G₂.e′ ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e) x ⟨
- (join m n ∘ map ≡G₂.s′ ≡G₁.s′ ∘ swap ∘ splitAt ≡G₁.e′ ∘ join ≡G₁.e′ ≡G₂.e′ ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e) x
- ≡⟨ (cong (join m n ∘ map ≡G₂.s′ ≡G₁.s′) ∘ splitAt-join ≡G₂.e′ ≡G₁.e′ ∘ swap ∘ splitAt ≡G₁.e′ ∘ join ≡G₁.e′ ≡G₂.e′ ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e) x ⟨
- (join m n ∘ map ≡G₂.s′ ≡G₁.s′ ∘ splitAt ≡G₂.e′ ∘ join ≡G₂.e′ ≡G₁.e′ ∘ swap ∘ splitAt ≡G₁.e′ ∘ join ≡G₁.e′ ≡G₂.e′ ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e) x ∎
+ ([ m ↑ʳ_ , _↑ˡ n ] ∘ splitAt n ∘ join n m ∘ map G₁.s G₂.s ∘ splitAt G₁.e) x
+ ≡⟨ (join-swap ∘ splitAt n ∘ join n m ∘ map G₁.s G₂.s ∘ splitAt G₁.e) x ⟨
+ (join m n ∘ swap ∘ splitAt n ∘ join n m ∘ map G₁.s G₂.s ∘ splitAt G₁.e) x
+ ≡⟨ (cong (join m n ∘ swap) ∘ splitAt-join n m ∘ map G₁.s G₂.s ∘ splitAt G₁.e) x ⟩
+ (join m n ∘ swap ∘ map G₁.s G₂.s ∘ splitAt G₁.e) x
+ ≡⟨ (cong (join m n) ∘ swap-map ∘ splitAt G₁.e) x ⟩
+ (join m n ∘ map G₂.s G₁.s ∘ swap ∘ splitAt G₁.e) x
+ ≡⟨ (cong (join m n ∘ map G₂.s G₁.s) ∘ splitAt-join G₂.e G₁.e ∘ swap ∘ splitAt G₁.e) x ⟨
+ (join m n ∘ map G₂.s G₁.s ∘ splitAt G₂.e ∘ join G₂.e G₁.e ∘ swap ∘ splitAt G₁.e) x ∎
≗t : [ m ↑ʳ_ , _↑ˡ n ] ∘ splitAt n
- ∘ join n m ∘ map ≡G₁.t ≡G₂.t ∘ splitAt ≡G₁.e
- ≗ join m n ∘ map ≡G₂.t′ ≡G₁.t′ ∘ splitAt ≡G₂.e′
- ∘ join ≡G₂.e′ ≡G₁.e′ ∘ swap ∘ splitAt ≡G₁.e′
- ∘ join ≡G₁.e′ ≡G₂.e′ ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e
+ ∘ join n m ∘ map G₁.t G₂.t ∘ splitAt G₁.e
+ ≗ join m n ∘ map G₂.t G₁.t ∘ splitAt G₂.e
+ ∘ Inverse.to (+-comm-↔ G₁.e G₂.e)
≗t x = begin
- ([ m ↑ʳ_ , _↑ˡ n ] ∘ splitAt n ∘ join n m ∘ map ≡G₁.t ≡G₂.t ∘ splitAt ≡G₁.e) x
- ≡⟨ (join-swap ∘ splitAt n ∘ join n m ∘ map ≡G₁.t ≡G₂.t ∘ splitAt ≡G₁.e) x ⟨
- (join m n ∘ swap ∘ splitAt n ∘ join n m ∘ map ≡G₁.t ≡G₂.t ∘ splitAt ≡G₁.e) x
- ≡⟨ (cong (join m n ∘ swap) ∘ splitAt-join n m ∘ map ≡G₁.t ≡G₂.t ∘ splitAt ≡G₁.e) x ⟩
- (join m n ∘ swap ∘ map ≡G₁.t ≡G₂.t ∘ splitAt ≡G₁.e) x
- ≡⟨ (cong (join m n ∘ swap) ∘ map-cong ≡G₁.≗t ≡G₂.≗t ∘ splitAt ≡G₁.e) x ⟩
- (join m n ∘ swap ∘ map (≡G₁.t′ ∘ ≡G₁.to) (≡G₂.t′ ∘ ≡G₂.to) ∘ splitAt ≡G₁.e) x
- ≡⟨ (cong (join m n ∘ swap) ∘ map-map ∘ splitAt ≡G₁.e) x ⟨
- (join m n ∘ swap ∘ map ≡G₁.t′ ≡G₂.t′ ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e) x
- ≡⟨ (cong (join m n) ∘ swap-map ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e) x ⟩
- (join m n ∘ map ≡G₂.t′ ≡G₁.t′ ∘ swap ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e) x
- ≡⟨ (cong (join m n ∘ map ≡G₂.t′ ≡G₁.t′ ∘ swap) ∘ splitAt-join ≡G₁.e′ ≡G₂.e′ ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e) x ⟨
- (join m n ∘ map ≡G₂.t′ ≡G₁.t′ ∘ swap ∘ splitAt ≡G₁.e′ ∘ join ≡G₁.e′ ≡G₂.e′ ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e) x
- ≡⟨ (cong (join m n ∘ map ≡G₂.t′ ≡G₁.t′) ∘ splitAt-join ≡G₂.e′ ≡G₁.e′ ∘ swap ∘ splitAt ≡G₁.e′ ∘ join ≡G₁.e′ ≡G₂.e′ ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e) x ⟨
- (join m n ∘ map ≡G₂.t′ ≡G₁.t′ ∘ splitAt ≡G₂.e′ ∘ join ≡G₂.e′ ≡G₁.e′ ∘ swap ∘ splitAt ≡G₁.e′ ∘ join ≡G₁.e′ ≡G₂.e′ ∘ map ≡G₁.to ≡G₂.to ∘ splitAt ≡G₁.e) x ∎
-
-graph : SymmetricMonoidalFunctor Nat-smc (Setoids-× {0ℓ})
-graph = record
- { F = F
- ; isBraidedMonoidal = record
- { isMonoidal = record
- { ε = ε
- ; ⊗-homo = ⊗-homomorphism
- ; associativity = λ { ((≡G₁ , ≡G₂) , ≡G₃) → associativity ≡G₁ ≡G₂ ≡G₃ }
- ; unitaryˡ = λ { (lift tt , ≡G) → unitaryˡ ≡G }
- ; unitaryʳ = λ { (≡G , lift tt) → unitaryʳ ≡G }
- }
- ; braiding-compat = λ { (≡G₁ , ≡G₂) → braiding ≡G₁ ≡G₂ }
- }
- }
+ ([ m ↑ʳ_ , _↑ˡ n ] ∘ splitAt n ∘ join n m ∘ map G₁.t G₂.t ∘ splitAt G₁.e) x
+ ≡⟨ (join-swap ∘ splitAt n ∘ join n m ∘ map G₁.t G₂.t ∘ splitAt G₁.e) x ⟨
+ (join m n ∘ swap ∘ splitAt n ∘ join n m ∘ map G₁.t G₂.t ∘ splitAt G₁.e) x
+ ≡⟨ (cong (join m n ∘ swap) ∘ splitAt-join n m ∘ map G₁.t G₂.t ∘ splitAt G₁.e) x ⟩
+ (join m n ∘ swap ∘ map G₁.t G₂.t ∘ splitAt G₁.e) x
+ ≡⟨ (cong (join m n) ∘ swap-map ∘ splitAt G₁.e) x ⟩
+ (join m n ∘ map G₂.t G₁.t ∘ swap ∘ splitAt G₁.e) x
+ ≡⟨ (cong (join m n ∘ map G₂.t G₁.t) ∘ splitAt-join G₂.e G₁.e ∘ swap ∘ splitAt G₁.e) x ⟨
+ (join m n ∘ map G₂.t G₁.t ∘ splitAt G₂.e ∘ join G₂.e G₁.e ∘ swap ∘ splitAt G₁.e) x ∎
+
+opaque
+ unfolding ×-symmetric′
+ graph : SymmetricMonoidalFunctor Nat-smc Setoids-×
+ graph = record
+ { F = F
+ ; isBraidedMonoidal = record
+ { isMonoidal = record
+ { ε = ε
+ ; ⊗-homo = ⊗-homomorphism
+ ; associativity = λ { {x} {y} {z} {(G₁ , G₂) , G₃} → associativity G₁ G₂ G₃ }
+ ; unitaryˡ = unitaryˡ
+ ; unitaryʳ = unitaryʳ
+ }
+ ; braiding-compat = λ { {x} {y} {G₁ , G₂} → braiding {G₁ = G₁} {G₂ = G₂} }
+ }
+ }
module F = SymmetricMonoidalFunctor graph
-and-gate : Func (SingletonSetoid {0ℓ} {0ℓ}) (F.₀ 3)
-and-gate = record
- { to = λ { (lift tt) → and-graph }
- ; cong = λ { (lift tt) → Graph-same-refl }
- }
+and-gate : Func ⊤ₛ (Graph-setoid 3)
+and-gate = Const ⊤ₛ (Graph-setoid 3) and-graph
where
and-graph : Graph 3
and-graph = record
diff --git a/DecorationFunctor/Hypergraph.agda b/DecorationFunctor/Hypergraph.agda
new file mode 100644
index 0000000..2f61bc3
--- /dev/null
+++ b/DecorationFunctor/Hypergraph.agda
@@ -0,0 +1,653 @@
+{-# OPTIONS --without-K --safe #-}
+
+module DecorationFunctor.Hypergraph where
+
+import Categories.Morphism as Morphism
+open import Level using (0ℓ)
+
+open import Categories.Category.BinaryProducts using (module BinaryProducts)
+open import Categories.Category.Cartesian using (Cartesian)
+open import Categories.Category.Core using (Category)
+open import Categories.Category.Instance.Nat using (Nat)
+open import Categories.Category.Instance.Setoids using (Setoids)
+open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian)
+open import Categories.Category.Product using (_⁂_)
+open import Categories.Functor using () renaming (_∘F_ to _∘′_)
+open import Categories.Functor.Core using (Functor)
+open import Categories.Functor.Monoidal.Symmetric using (module Lax)
+open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
+open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)
+open import Category.Instance.Nat.FinitelyCocomplete using (Nat-FinitelyCocomplete)
+open import Category.Instance.Setoids.SymmetricMonoidal {0ℓ} {0ℓ} using (Setoids-×; ×-symmetric′)
+open import Data.Empty using (⊥-elim)
+open import Data.Fin using (#_; Fin; splitAt; join; zero; suc; _↑ˡ_; _↑ʳ_; toℕ; cast)
+open import Data.Fin.Patterns using (0F; 1F; 2F)
+open import Data.Fin.Properties using (splitAt-join; join-splitAt; cast-is-id; cast-trans; toℕ-cast; subst-is-cast; splitAt-↑ˡ; splitAt-↑ʳ; splitAt⁻¹-↑ˡ; ↑ˡ-injective)
+open import Data.Nat using (ℕ; _+_)
+open import Data.Product.Base using (_,_; Σ)
+open import Data.Setoid using (∣_∣)
+open import Data.Setoid.Unit {0ℓ} {0ℓ} using (⊤ₛ)
+open import Data.Sum using (_⊎_; map; inj₁; inj₂; swap; map₂) renaming ([_,_]′ to [_,_])
+open import Data.Sum.Properties using (map-map; [,]-map; [,]-∘; [-,]-cong; [,-]-cong; [,]-cong; map-cong; swap-involutive)
+open import Data.Unit using (tt)
+open import Function using (_∘_; id; const; Func; Inverse; _↔_; mk↔; _⟨$⟩_)
+open import Function.Construct.Composition using (_↔-∘_)
+open import Function.Construct.Constant using () renaming (function to Const)
+open import Function.Construct.Identity using (↔-id) renaming (function to Id)
+open import Function.Construct.Symmetry using (↔-sym)
+open import Relation.Binary using (Setoid)
+open import Relation.Binary.PropositionalEquality.Core using (_≗_; _≡_; erefl; refl; sym; trans; cong; cong₂; subst; cong-app)
+open import Relation.Binary.PropositionalEquality.Properties using (isEquivalence; module ≡-Reasoning; dcong₂; subst-∘)
+open import Relation.Nullary.Negation.Core using (¬_)
+
+open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using (products)
+open FinitelyCocompleteCategory Nat-FinitelyCocomplete
+ using (-+-; _+₁_)
+ renaming (symmetricMonoidalCategory to Nat-smc; +-assoc to Nat-+-assoc)
+open Morphism (Setoids 0ℓ 0ℓ) using (_≅_)
+open Lax using (SymmetricMonoidalFunctor)
+
+open BinaryProducts products using (-×-)
+
+record Hypergraph (v : ℕ) : Set where
+
+ field
+ h : ℕ
+ a : Fin h → ℕ
+
+ arity : Fin h → ℕ
+ arity = ℕ.suc ∘ a
+
+ field
+ j : ∀ (e : Fin h) → Fin (arity e) → Fin v
+
+record Hypergraph-same {n : ℕ} (H H′ : Hypergraph n) : Set where
+
+ open Hypergraph H public
+ open Hypergraph H′ renaming (h to h′; a to a′; arity to arity′; j to j′) public
+
+ field
+ ↔h : Fin h ↔ Fin h′
+
+ open Inverse ↔h public
+
+ field
+ ≗a : a ≗ a′ ∘ to
+
+ ≗arity : arity ≗ arity′ ∘ to
+ ≗arity e = cong ℕ.suc (≗a e)
+
+ field
+ ≗j : (e : Fin h)
+ (i : Fin (arity e))
+ → j e i
+ ≡ j′ (to e) (cast (≗arity e) i)
+
+private
+
+ variable
+ n n′ m m′ o : ℕ
+ H H′ H″ H₁ H₁′ : Hypergraph n
+ H₂ H₂′ : Hypergraph m
+ H₃ : Hypergraph o
+
+Hypergraph-same-refl : Hypergraph-same H H
+Hypergraph-same-refl {_} {H} = record
+ { ↔h = ↔-id (Fin h)
+ ; ≗a = cong a ∘ erefl
+ ; ≗j = λ e i → cong (j e) (sym (cast-is-id refl i))
+ }
+ where
+ open Hypergraph H
+
+Hypergraph-same-sym : Hypergraph-same H H′ → Hypergraph-same H′ H
+Hypergraph-same-sym {V} {H} {H′} ≡H = record
+ { ↔h = ↔-sym ↔h
+ ; ≗a = sym ∘ a∘from≗a′
+ ; ≗j = ≗j′
+ }
+ where
+ open Hypergraph-same ≡H
+ open ≡-Reasoning
+ a∘from≗a′ : a ∘ from ≗ a′
+ a∘from≗a′ x = begin
+ (a ∘ from) x ≡⟨ (≗a ∘ from) x ⟩
+ (a′ ∘ to ∘ from) x ≡⟨ (cong a′ ∘ inverseˡ ∘ erefl ∘ from) x ⟩
+ a′ x ∎
+ id≗to∘from : id ≗ to ∘ from
+ id≗to∘from e = sym (inverseˡ refl)
+ ≗arity′ : arity′ ≗ arity ∘ from
+ ≗arity′ e = cong ℕ.suc (sym (a∘from≗a′ e))
+ ≗arity- : arity′ ≗ arity′ ∘ to ∘ from
+ ≗arity- e = cong arity′ (id≗to∘from e)
+ ≗j′ : (e : Fin h′) (i : Fin (arity′ e)) → j′ e i ≡ j (from e) (cast (≗arity′ e) i)
+ ≗j′ e i = begin
+ j′ e i ≡⟨ dcong₂ j′ (id≗to∘from e) (subst-∘ (id≗to∘from e)) ⟩
+ j′ (to (from e)) (subst Fin (cong arity′ (id≗to∘from e)) i) ≡⟨ cong (j′ (to (from e))) (subst-is-cast (cong arity′ (id≗to∘from e)) i) ⟩
+ j′ (to (from e)) (cast (cong arity′ (id≗to∘from e)) i) ≡⟨⟩
+ j′ (to (from e)) (cast (trans (≗arity′ e) (≗arity (from e))) i) ≡⟨ cong (j′ (to (from e))) (cast-trans (≗arity′ e) (≗arity (from e)) i) ⟨
+ j′ (to (from e)) (cast (≗arity (from e)) (cast (≗arity′ e) i)) ≡⟨ ≗j (from e) (cast (≗arity′ e) i) ⟨
+ j (from e) (cast (≗arity′ e) i) ∎
+
+Hypergraph-same-trans : Hypergraph-same H H′ → Hypergraph-same H′ H″ → Hypergraph-same H H″
+Hypergraph-same-trans ≡H₁ ≡H₂ = record
+ { ↔h = ↔h ≡H₂ ↔-∘ ↔h ≡H₁
+ ; ≗a = λ { x → trans (≗a ≡H₁ x) (≗a ≡H₂ (to (↔h ≡H₁) x)) }
+ ; ≗j = λ { e i → trans (≗j ≡H₁ e i) (≗j₂ e i) }
+ }
+ where
+ open Hypergraph-same
+ open Inverse
+ open ≡-Reasoning
+ ≗j₂ : (e : Fin (h ≡H₁))
+ (i : Fin (arity ≡H₁ e))
+ → j ≡H₂ (to (↔h ≡H₁) e) (cast (≗arity ≡H₁ e) i)
+ ≡ j′ ≡H₂ (to (↔h ≡H₂) (to (↔h ≡H₁) e)) (cast (trans (≗arity ≡H₁ e) (≗arity ≡H₂ (to (↔h ≡H₁) e))) i)
+ ≗j₂ e i = begin
+ j ≡H₂ (to (↔h ≡H₁) e) (cast (≗arity ≡H₁ e) i)
+ ≡⟨ ≗j ≡H₂ (to (↔h ≡H₁) e) (cast (≗arity ≡H₁ e) i) ⟩
+ j′ ≡H₂ (to (↔h ≡H₂) (to (↔h ≡H₁) e)) (cast (≗arity ≡H₂ (to (↔h ≡H₁) e)) (cast (≗arity ≡H₁ e) i))
+ ≡⟨ cong (j′ ≡H₂ (to (↔h ≡H₂) (to (↔h ≡H₁) e))) (cast-trans (≗arity ≡H₁ e) (≗arity ≡H₂ (to (↔h ≡H₁) e)) i) ⟩
+ j′ ≡H₂ (to (↔h ≡H₂) (to (↔h ≡H₁) e)) (cast (trans (≗arity ≡H₁ e) (≗arity ≡H₂ (to (↔h ≡H₁) e))) i) ∎
+
+Hypergraphₛ : ℕ → Setoid 0ℓ 0ℓ
+Hypergraphₛ p = record
+ { Carrier = Hypergraph p
+ ; _≈_ = Hypergraph-same
+ ; isEquivalence = record
+ { refl = Hypergraph-same-refl
+ ; sym = Hypergraph-same-sym
+ ; trans = Hypergraph-same-trans
+ }
+ }
+
+map-nodes : (Fin n → Fin m) → Hypergraph n → Hypergraph m
+map-nodes f H = record
+ { h = h
+ ; a = a
+ ; j = λ e i → f (j e i)
+ }
+ where
+ open Hypergraph H
+
+Hypergraph-same-cong
+ : (f : Fin n → Fin m)  
+ → Hypergraph-same H H′
+ → Hypergraph-same (map-nodes f H) (map-nodes f H′)
+Hypergraph-same-cong f ≡H = record
+ { ↔h = ↔h
+ ; ≗a = ≗a
+ ; ≗j = λ e i → cong f (≗j e i)
+ }
+ where
+ open Hypergraph-same ≡H
+
+Hypergraph-Func : (Fin n → Fin m) → Func (Hypergraphₛ n) (Hypergraphₛ m)
+Hypergraph-Func f = record
+ { to = map-nodes f
+ ; cong = Hypergraph-same-cong f
+ }
+
+F-resp-≈
+ : {f g : Fin n → Fin m}
+ → f ≗ g
+ → Hypergraph-same (map-nodes f H) (map-nodes g H)
+F-resp-≈ {g = g} f≗g = record
+ { ↔h = ↔h
+ ; ≗a = ≗a
+ ; ≗j = λ { e i → trans (f≗g (j e i)) (cong g (≗j e i)) }
+ }
+ where
+ open Hypergraph-same Hypergraph-same-refl
+
+homomorphism
+ : (f : Fin n → Fin m)
+ → (g : Fin m → Fin o)
+ → Hypergraph-same (map-nodes (g ∘ f) H) (map-nodes g (map-nodes f H))
+homomorphism {n} {m} {o} {H} f g = record
+ { ↔h = ↔h
+ ; ≗a = ≗a
+ ; ≗j = λ e i → cong (g ∘ f) (≗j e i)
+ }
+ where
+ open Hypergraph-same Hypergraph-same-refl
+
+F : Functor Nat (Setoids 0ℓ 0ℓ)
+F = record
+ { F₀ = Hypergraphₛ
+ ; F₁ = Hypergraph-Func
+ ; identity = λ { {n} {H} → Hypergraph-same-refl {H = H} }
+ ; homomorphism = λ { {f = f} {g = g} → homomorphism f g }
+ ; F-resp-≈ = λ f≗g → F-resp-≈ f≗g
+ }
+
+-- monoidal structure
+
+discrete : {n : ℕ} → Hypergraph n
+discrete {n} = record
+ { h = 0
+ ; a = λ ()
+ ; j = λ ()
+ }
+
+opaque
+ unfolding ×-symmetric′
+
+ ε : Func Setoids-×.unit (Hypergraphₛ 0)
+ ε = Const ⊤ₛ (Hypergraphₛ 0) discrete
+
+module _ (H₁ : Hypergraph n) (H₂ : Hypergraph m) where
+ private
+ module H₁ = Hypergraph H₁
+ module H₂ = Hypergraph H₂
+ j+j : (e : Fin (H₁.h + H₂.h))
+ → Fin (ℕ.suc ([ H₁.a , H₂.a ] (splitAt H₁.h e)))
+ → Fin (n + m)
+ j+j e i with splitAt H₁.h e
+ ... | inj₁ e₁ = H₁.j e₁ i ↑ˡ m
+ ... | inj₂ e₂ = n ↑ʳ H₂.j e₂ i
+
+together : Hypergraph n → Hypergraph m → Hypergraph (n + m)
+together {n} {m} H₁ H₂ = record
+ { h = h H₁ + h H₂
+ ; a = [ a H₁ , a H₂ ] ∘ splitAt (h H₁)
+ ; j = j+j H₁ H₂
+ }
+ where
+ open Hypergraph
+
++-resp-↔
+ : {n n′ m m′ : ℕ}
+ → Fin n ↔ Fin n′
+ → Fin m ↔ Fin m′
+ → Fin (n + m) ↔ Fin (n′ + m′)
++-resp-↔ {n} {n′} {m} {m′} ↔n ↔m = record
+ { to = join n′ m′ ∘ map ↔n.to ↔m.to ∘ splitAt n
+ ; from = join n m ∘ map ↔n.from ↔m.from ∘ splitAt n′
+ ; to-cong = cong (join n′ m′ ∘ map ↔n.to ↔m.to ∘ splitAt n)
+ ; from-cong = cong (join n m ∘ map ↔n.from ↔m.from ∘ splitAt n′)
+ ; inverse = (λ { refl → to∘from _ }) , λ { refl → from∘to _ }
+ }
+ where
+ module ↔n = Inverse ↔n
+ module ↔m = Inverse ↔m
+ open ≡-Reasoning
+ to∘from : join n′ m′ ∘ map ↔n.to ↔m.to ∘ splitAt n ∘ join n m ∘ map ↔n.from ↔m.from ∘ splitAt n′ ≗ id
+ to∘from x = begin
+ (join n′ m′ ∘ map ↔n.to ↔m.to ∘ splitAt n ∘ join n m ∘ map ↔n.from ↔m.from ∘ splitAt n′) x
+ ≡⟨ cong
+ (join n′ m′ ∘ map ↔n.to ↔m.to)
+ (splitAt-join n m (map ↔n.from ↔m.from (splitAt n′ x))) ⟩
+ (join n′ m′ ∘ map ↔n.to ↔m.to ∘ map ↔n.from ↔m.from ∘ splitAt n′) x
+ ≡⟨ cong (join n′ m′) (map-map (splitAt n′ x)) ⟩
+ (join n′ m′ ∘ map (↔n.to ∘ ↔n.from) (↔m.to ∘ ↔m.from) ∘ splitAt n′) x
+ ≡⟨ cong
+ (join n′ m′)
+ (map-cong
+ (λ _ → ↔n.inverseˡ refl)
+ (λ _ → ↔m.inverseˡ refl)
+ (splitAt n′ x)) ⟩
+ (join n′ m′ ∘ map id id ∘ splitAt n′) x ≡⟨ [,]-map (splitAt n′ x) ⟩
+ (join n′ m′ ∘ splitAt n′) x ≡⟨ join-splitAt n′ m′ x ⟩
+ x ∎
+ from∘to : join n m ∘ map ↔n.from ↔m.from ∘ splitAt n′ ∘ join n′ m′ ∘ map ↔n.to ↔m.to ∘ splitAt n ≗ id
+ from∘to x = begin
+ (join n m ∘ map ↔n.from ↔m.from ∘ splitAt n′ ∘ join n′ m′ ∘ map ↔n.to ↔m.to ∘ splitAt n) x
+ ≡⟨ cong
+ (join n m ∘ map ↔n.from ↔m.from)
+ (splitAt-join n′ m′ (map ↔n.to ↔m.to (splitAt n x))) ⟩
+ (join n m ∘ map ↔n.from ↔m.from ∘ map ↔n.to ↔m.to ∘ splitAt n) x
+ ≡⟨ cong (join n m) (map-map (splitAt n x)) ⟩
+ (join n m ∘ map (↔n.from ∘ ↔n.to) (↔m.from ∘ ↔m.to) ∘ splitAt n) x
+ ≡⟨ cong
+ (join n m)
+ (map-cong
+ (λ _ → ↔n.inverseʳ refl)
+ (λ _ → ↔m.inverseʳ refl)
+ (splitAt n x)) ⟩
+ (join n m ∘ map id id ∘ splitAt n) x ≡⟨ [,]-map (splitAt n x) ⟩
+ (join n m ∘ splitAt n) x ≡⟨ join-splitAt n m x ⟩
+ x ∎
+
+together-resp-same
+ : Hypergraph-same H₁ H₁′
+ → Hypergraph-same H₂ H₂′
+ → Hypergraph-same (together H₁ H₂) (together H₁′ H₂′)
+together-resp-same {n} {H₁} {H₁′} {m} {H₂} {H₂′} ≡H₁ ≡H₂ = record
+ { ↔h = +-resp-↔ ≡H₁.↔h ≡H₂.↔h
+ ; ≗a = ≗a
+ ; ≗j = ≗j
+ }
+ where
+ module ≡H₁ = Hypergraph-same ≡H₁
+ module ≡H₂ = Hypergraph-same ≡H₂
+ module H₁+H₂ = Hypergraph (together H₁ H₂)
+ module H₁+H₂′ = Hypergraph (together H₁′ H₂′)
+ open ≡-Reasoning
+ open Inverse
+ open Hypergraph
+ ≗a : [ ≡H₁.a , ≡H₂.a ] ∘ splitAt ≡H₁.h
+ ≗ [ ≡H₁.a′ , ≡H₂.a′ ] ∘ splitAt ≡H₁.h′
+ ∘ join ≡H₁.h′ ≡H₂.h′ ∘ map ≡H₁.to ≡H₂.to ∘ splitAt ≡H₁.h
+   ≗a e = begin
+ [ ≡H₁.a , ≡H₂.a ] (splitAt ≡H₁.h e) ≡⟨ [,]-cong ≡H₁.≗a ≡H₂.≗a (splitAt ≡H₁.h e) ⟩
+ ([ ≡H₁.a′ ∘ ≡H₁.to , ≡H₂.a′ ∘ ≡H₂.to ] ∘ splitAt ≡H₁.h) e ≡⟨ [,]-map (splitAt ≡H₁.h e) ⟨
+ ([ ≡H₁.a′ , ≡H₂.a′ ] ∘ map ≡H₁.to ≡H₂.to ∘ splitAt ≡H₁.h) e ≡⟨ (cong [ ≡H₁.a′ , ≡H₂.a′ ] ∘ splitAt-join ≡H₁.h′ ≡H₂.h′ ∘ map ≡H₁.to ≡H₂.to ∘ splitAt ≡H₁.h) e ⟨
+ ([ ≡H₁.a′ , ≡H₂.a′ ] ∘ splitAt ≡H₁.h′ ∘ join ≡H₁.h′ ≡H₂.h′ ∘ map ≡H₁.to ≡H₂.to ∘ splitAt ≡H₁.h) e ∎
+ ≗arity : H₁+H₂.arity ≗ H₁+H₂′.arity ∘ join ≡H₁.h′ ≡H₂.h′ ∘ map ≡H₁.to ≡H₂.to ∘ splitAt ≡H₁.h
+ ≗arity = cong ℕ.suc ∘ ≗a
+ ≗j : (e : Fin H₁+H₂.h)
+ (i : Fin (H₁+H₂.arity e))
+ → H₁+H₂.j e i
+ ≡ H₁+H₂′.j (to (+-resp-↔ ≡H₁.↔h ≡H₂.↔h) e) (cast (cong ℕ.suc (≗a e)) i)
+ ≗j e i with splitAt ≡H₁.h e
+ ... | inj₁ e₁ rewrite splitAt-↑ˡ ≡H₁.h′ (≡H₁.to e₁) ≡H₂.h′ = cong (_↑ˡ m) (≡H₁.≗j e₁ i)
+ ... | inj₂ e₂ rewrite splitAt-↑ʳ ≡H₁.h′ ≡H₂.h′ (≡H₂.to e₂) = cong (n ↑ʳ_) (≡H₂.≗j e₂ i)
+
+commute
+ : (f : Fin n → Fin n′)
+ → (g : Fin m → Fin m′)
+ → Hypergraph-same
+ (together (map-nodes f H₁) (map-nodes g H₂))
+ (map-nodes (f +₁ g) (together H₁ H₂))
+commute {n} {n′} {m} {m′} {H₁} {H₂} f g = record
+ { ↔h = ≡H₁+H₂.↔h
+ ; ≗a = ≡H₁+H₂.≗a
+ ; ≗j = ≗j
+ }
+ where
+ module H₁ = Hypergraph H₁
+ module H₂ = Hypergraph H₂
+ module H₁+H₂ = Hypergraph (together H₁ H₂)
+ module ≡H₁+H₂ = Hypergraph-same {H = together H₁ H₂} Hypergraph-same-refl
+ open Hypergraph
+ open ≡-Reasoning
+ ≗j : (e : Fin (H₁.h + H₂.h))
+ (i : Fin ((ℕ.suc ∘ [ H₁.a , H₂.a ] ∘ splitAt H₁.h) e))
+ → j (together (map-nodes f H₁) (map-nodes g H₂)) e i
+ ≡ j (map-nodes (f +₁ g) (together H₁ H₂)) (≡H₁+H₂.to e) (cast refl i)
+ ≗j e i with splitAt H₁.h e
+ ... | inj₁ e₁ rewrite splitAt-↑ˡ n (H₁.j e₁ (cast refl i)) m = cong ((_↑ˡ m′) ∘ f ∘ H₁.j e₁) (sym (cast-is-id refl i))
+ ... | inj₂ e₂ rewrite splitAt-↑ʳ n m (H₂.j e₂ (cast refl i)) = cong ((n′ ↑ʳ_) ∘ g ∘ H₂.j e₂) (sym (cast-is-id refl i))
+
+open Setoids-× using (_⊗₀_; _⊗₁_)
+opaque
+ unfolding ×-symmetric′
+ η : Func (Hypergraphₛ n ⊗₀ Hypergraphₛ m) (Hypergraphₛ (n + m))
+ η = record
+ { to = λ (H₁ , H₂) → together H₁ H₂
+ ; cong = λ (≡H₁ , ≡H₂) → together-resp-same ≡H₁ ≡H₂
+ }
+
+opaque
+ unfolding η
+ commute′
+ : (f : Fin n → Fin n′)
+ → (g : Fin m → Fin m′)
+ → {x : ∣ Hypergraphₛ n ⊗₀ Hypergraphₛ m ∣}
+ → Hypergraph-same
+ (η ⟨$⟩ (Hypergraph-Func f ⊗₁ Hypergraph-Func g ⟨$⟩ x))
+ (map-nodes (f +₁ g) (η ⟨$⟩ x))
+ commute′ f g {H₁ , H₂} = commute {H₁ = H₁} {H₂} f g
+
+⊗-homomorphism : NaturalTransformation (Setoids-×.⊗ ∘′ (F ⁂ F)) (F ∘′ -+-)
+⊗-homomorphism = ntHelper record
+ { η = λ (n , m) → η {n} {m}
+ ; commute = λ (f , g) → commute′ f g
+ }
+
++-assoc-↔ : ∀ (x y z : ℕ) → Fin (x + y + z) ↔ Fin (x + (y + z))
++-assoc-↔ x y z = record
+ { to = to
+ ; from = from
+ ; to-cong = λ { refl → refl }
+ ; from-cong = λ { refl → refl }
+ ; inverse = (λ { refl → isoˡ _ }) , λ { refl → isoʳ _ }
+ }
+ where
+ module Nat = Morphism Nat
+ open Nat._≅_ (Nat-+-assoc {x} {y} {z})
+
+associativity
+ : {X Y Z : ℕ}
+ → (H₁ : Hypergraph X)
+ → (H₂ : Hypergraph Y)
+ → (H₃ : Hypergraph Z)
+ → Hypergraph-same
+ (map-nodes (Inverse.to (+-assoc-↔ X Y Z)) (together (together H₁ H₂) H₃))
+ (together H₁ (together H₂ H₃))
+associativity {X} {Y} {Z} H₁ H₂ H₃ = record
+ { ↔h = ↔h
+ ; ≗a = ≗a
+ ; ≗j = ≗j
+ }
+ where
+ module H₁ = Hypergraph H₁
+ module H₂ = Hypergraph H₂
+ module H₃ = Hypergraph H₃
+ open ≡-Reasoning
+ open Hypergraph
+ ↔h : Fin (H₁.h + H₂.h + H₃.h) ↔ Fin (H₁.h + (H₂.h + H₃.h))
+ ↔h = +-assoc-↔ H₁.h H₂.h H₃.h
+ ≗a : (x : Fin (H₁.h + H₂.h + H₃.h))
+ → [ [ H₁.a , H₂.a ] ∘ splitAt H₁.h , H₃.a ] (splitAt (H₁.h + H₂.h) x)
+ ≡ [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] (splitAt H₁.h ([ [ _↑ˡ H₂.h + H₃.h , (H₁.h ↑ʳ_) ∘ (_↑ˡ H₃.h) ] ∘ splitAt H₁.h , (H₁.h ↑ʳ_) ∘ (H₂.h ↑ʳ_) ] (splitAt (H₁.h + H₂.h) x)))
+ ≗a x = begin
+ ([ [ H₁.a , H₂.a ] ∘ splitAt H₁.h , H₃.a ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨⟩
+ ([ [ H₁.a , [ H₂.a , H₃.a ] ∘ inj₁ ] ∘ splitAt H₁.h , H₃.a ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨ [-,]-cong ([,-]-cong (cong [ H₂.a , H₃.a ] ∘ (λ i → splitAt-↑ˡ H₂.h i H₃.h)) ∘ splitAt H₁.h) (splitAt (H₁.h + H₂.h) x) ⟨
+ ([ [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ∘ (_↑ˡ H₃.h) ] ∘ splitAt H₁.h , H₃.a ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨ [-,]-cong ([,]-∘ [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ splitAt H₁.h) (splitAt (H₁.h + H₂.h) x) ⟨
+ ([ [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h , H₃.a ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨⟩
+ ([ [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h , [ H₂.a , H₃.a ] ∘ inj₂ ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨ [,-]-cong (cong [ H₂.a , H₃.a ] ∘ splitAt-↑ʳ H₂.h H₃.h) (splitAt (H₁.h + H₂.h) x) ⟨
+ ([ [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ∘ (H₂.h ↑ʳ_) ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨⟩
+ ([ [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h , [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ inj₂ ∘ (H₂.h ↑ʳ_) ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨ [,]-∘ [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] (splitAt (H₁.h + H₂.h) x) ⟨
+ ([ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ [ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h , inj₂ ∘ (H₂.h ↑ʳ_) ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨ cong [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ([,-]-cong (splitAt-↑ʳ H₁.h (H₂.h + H₃.h) ∘ (H₂.h ↑ʳ_)) (splitAt (H₁.h + H₂.h) x)) ⟨
+ ([ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ [ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h , splitAt H₁.h ∘ (H₁.h ↑ʳ_) ∘ (H₂.h ↑ʳ_) ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨ cong [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ([-,]-cong (splitAt-join H₁.h (H₂.h + H₃.h) ∘ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h) (splitAt (H₁.h + H₂.h) x)) ⟨
+ ([ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ [ splitAt H₁.h ∘ join H₁.h (H₂.h + H₃.h) ∘ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h , splitAt H₁.h ∘ (H₁.h ↑ʳ_) ∘ (H₂.h ↑ʳ_) ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨ cong [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ([,]-∘ (splitAt H₁.h) (splitAt (H₁.h + H₂.h) x)) ⟨
+ ([ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ splitAt H₁.h ∘ [ join H₁.h (H₂.h + H₃.h) ∘ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h , (H₁.h ↑ʳ_) ∘ (H₂.h ↑ʳ_) ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨⟩
+ ([ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ splitAt H₁.h ∘ [ [ _↑ˡ H₂.h + H₃.h , H₁.h ↑ʳ_ ] ∘ [ inj₁ , inj₂ ∘ (_↑ˡ H₃.h) ] ∘ splitAt H₁.h , (H₁.h ↑ʳ_) ∘ (H₂.h ↑ʳ_) ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨ cong ([ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ splitAt H₁.h) ([-,]-cong ([,]-∘ [ _↑ˡ H₂.h + H₃.h , H₁.h ↑ʳ_ ] ∘ splitAt H₁.h) (splitAt (H₁.h + H₂.h) x)) ⟩
+ ([ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ splitAt H₁.h ∘ [ [ _↑ˡ H₂.h + H₃.h , (H₁.h ↑ʳ_) ∘ (_↑ˡ H₃.h) ] ∘ splitAt H₁.h , (H₁.h ↑ʳ_) ∘ (H₂.h ↑ʳ_) ] ∘ splitAt (H₁.h + H₂.h)) x ∎
+
+ ≗j : (e : Fin (H₁.h + H₂.h + H₃.h))
+ (i : Fin (ℕ.suc ([ [ H₁.a , H₂.a ] ∘ splitAt H₁.h , H₃.a ] (splitAt (H₁.h + H₂.h) e))))
+ → Inverse.to (+-assoc-↔ X Y Z) (j+j (together H₁ H₂) H₃ e i)
+ ≡ j+j H₁ (together H₂ H₃) (Inverse.to ↔h e) (cast (cong ℕ.suc (≗a e)) i)
+ ≗j e i with splitAt (H₁.h + H₂.h) e
+ ≗j e i | inj₁ e₁₂ with splitAt H₁.h e₁₂
+ ≗j e i | inj₁ e₁₂ | inj₁ e₁
+ rewrite splitAt-↑ˡ H₁.h e₁ (H₂.h + H₃.h)
+ rewrite splitAt-↑ˡ (X + Y) (H₁.j e₁ i ↑ˡ Y) Z
+ rewrite splitAt-↑ˡ X (H₁.j e₁ i) Y = cong ((_↑ˡ Y + Z) ∘ H₁.j e₁) (sym (cast-is-id refl i))
+ ≗j e i | inj₁ e₁₂ | inj₂ e₂
+ rewrite splitAt-↑ʳ H₁.h (H₂.h + H₃.h) (e₂ ↑ˡ H₃.h)
+ rewrite splitAt-↑ˡ H₂.h e₂ H₃.h
+ rewrite splitAt-↑ˡ (X + Y) (X ↑ʳ H₂.j e₂ i) Z
+ rewrite splitAt-↑ʳ X Y (H₂.j e₂ i) = cong ((X ↑ʳ_) ∘ (_↑ˡ Z) ∘ H₂.j e₂) (sym (cast-is-id refl i))
+ ≗j e i | inj₂ e₃
+ rewrite splitAt-↑ʳ H₁.h (H₂.h + H₃.h) (H₂.h ↑ʳ e₃)
+ rewrite splitAt-↑ʳ H₂.h H₃.h e₃
+ rewrite splitAt-↑ʳ (X + Y) Z (H₃.j e₃ i) = cong ((X ↑ʳ_) ∘ (Y ↑ʳ_) ∘ H₃.j e₃) (sym (cast-is-id refl i))
+
+n+0↔n : ∀ n → Fin (n + 0) ↔ Fin n
+n+0↔n n = record
+ { to = to
+ ; from = from
+ ; to-cong = λ { refl → refl }
+ ; from-cong = λ { refl → refl }
+ ; inverse = (λ { refl → to∘from _ }) , λ { refl → from∘to _ }
+ }
+ where
+ to : Fin (n + 0) → Fin n
+ to x with inj₁ x₁ ← splitAt n x = x₁
+ from : Fin n → Fin (n + 0)
+ from x = x ↑ˡ 0
+ from∘to : (x : Fin (n + 0)) → from (to x) ≡ x
+ from∘to x with inj₁ x₁ ← splitAt n x in eq = splitAt⁻¹-↑ˡ eq
+ to∘from : (x : Fin n) → to (from x) ≡ x
+ to∘from x rewrite splitAt-↑ˡ n x 0 = refl
+
+unitaryʳ : Hypergraph-same (map-nodes ([ id , (λ ()) ] ∘ splitAt n) (together H discrete)) H
+unitaryʳ {n} {H} = record
+ { ↔h = h+0↔h
+ ; ≗a = ≗a
+ ; ≗j = ≗j
+ }
+ where
+ module H = Hypergraph H
+ module H+0 = Hypergraph (together {n} {0} H discrete)
+ h+0↔h : Fin H+0.h ↔ Fin H.h
+ h+0↔h = n+0↔n H.h
+ ≗a : (e : Fin (H.h + 0)) → [ H.a , (λ ()) ] (splitAt H.h e) ≡ H.a (Inverse.to h+0↔h e)
+ ≗a e with inj₁ e₁ ← splitAt H.h e in eq = refl
+ ≗j : (e : Fin (H.h + 0))
+ (i : Fin (ℕ.suc ([ H.a , (λ ()) ] (splitAt H.h e))))
+ → [ (λ x → x) , (λ ()) ] (splitAt n (j+j H discrete e i))
+ ≡ H.j (Inverse.to h+0↔h e) (cast (cong ℕ.suc (≗a e)) i)
+ ≗j e i = ≗j-aux (splitAt H.h e) refl (j+j H discrete e) refl (≗a e) i
+ where
+ ≗j-aux
+ : (w : Fin H.h ⊎ Fin 0)
+ → (eq₁ : splitAt H.h e ≡ w)
+ → (w₁ : Fin (ℕ.suc ([ H.a , (λ ()) ] w)) → Fin (n + 0))
+ → j+j H discrete e ≡ subst (λ hole → Fin (ℕ.suc ([ H.a , (λ ()) ] hole)) → Fin (n + 0)) (sym eq₁) w₁
+ → (w₂ : [ H.a , (λ ()) ] w ≡ H.a (Inverse.to h+0↔h e))
+ (i : Fin (ℕ.suc ([ H.a , (λ ()) ] w)))
+ → [ (λ x → x) , (λ ()) ] (splitAt n (w₁ i))
+ ≡ H.j (Inverse.to h+0↔h e) (cast (cong ℕ.suc w₂) i)
+ ≗j-aux (inj₁ e₁) eq w₁ eq₁ w₂ i
+ with (inj₁ x) ← splitAt n (w₁ i) in eq₂
+ rewrite eq = trans
+ (↑ˡ-injective 0 x (H.j e₁ i) (trans (splitAt⁻¹-↑ˡ eq₂) (sym (cong-app eq₁ i))))
+ (cong (H.j e₁) (sym (cast-is-id refl i)))
+
++-comm-↔ : ∀ (n m : ℕ) → Fin (n + m) ↔ Fin (m + n)
++-comm-↔ n m = record
+ { to = join m n ∘ swap ∘ splitAt n
+ ; from = join n m ∘ swap ∘ splitAt m
+ ; to-cong = λ { refl → refl }
+ ; from-cong = λ { refl → refl }
+ ; inverse = (λ { refl → to∘from _ }) , λ { refl → from∘to _ }
+ }
+ where
+ open ≡-Reasoning
+ to∘from : join m n ∘ swap ∘ splitAt n ∘ join n m ∘ swap ∘ splitAt m ≗ id
+ to∘from x = begin
+ (join m n ∘ swap ∘ splitAt n ∘ join n m ∘ swap ∘ splitAt m) x ≡⟨ (cong (join m n ∘ swap) ∘ splitAt-join n m ∘ swap ∘ splitAt m) x ⟩
+ (join m n ∘ swap ∘ swap ∘ splitAt m) x ≡⟨ (cong (join m n) ∘ swap-involutive ∘ splitAt m) x ⟩
+ (join m n ∘ splitAt m) x ≡⟨ join-splitAt m n x ⟩
+ x ∎
+ from∘to : join n m ∘ swap ∘ splitAt m ∘ join m n ∘ swap ∘ splitAt n ≗ id
+ from∘to x = begin
+ (join n m ∘ swap ∘ splitAt m ∘ join m n ∘ swap ∘ splitAt n) x ≡⟨ (cong (join n m ∘ swap) ∘ splitAt-join m n ∘ swap ∘ splitAt n) x ⟩
+ (join n m ∘ swap ∘ swap ∘ splitAt n) x ≡⟨ (cong (join n m) ∘ swap-involutive ∘ splitAt n) x ⟩
+ (join n m ∘ splitAt n) x ≡⟨ join-splitAt n m x ⟩
+ x ∎
+
+[,]∘swap : {A B C : Set} {f : A → C} {g : B → C} → [ f , g ] ∘ swap ≗ [ g , f ]
+[,]∘swap (inj₁ x) = refl
+[,]∘swap (inj₂ y) = refl
+
+braiding
+ : {n m : ℕ}
+ {H₁ : Hypergraph n}
+ {H₂ : Hypergraph m}
+ → Hypergraph-same (map-nodes ([ m ↑ʳ_ , _↑ˡ n ] ∘ splitAt n) (together H₁ H₂)) (together H₂ H₁)
+braiding {n} {m} {H₁} {H₂} = record
+ { ↔h = +-comm-↔ H₁.h H₂.h
+ ; ≗a = ≗a
+ ; ≗j = ≗j
+ }
+ where
+ open ≡-Reasoning
+ module H₁ = Hypergraph H₁
+ module H₂ = Hypergraph H₂
+ ≗a : (e : Fin (H₁.h + H₂.h))
+ → [ H₁.a , H₂.a ] (splitAt H₁.h e)
+ ≡ [ H₂.a , H₁.a ] (splitAt H₂.h (join H₂.h H₁.h (swap (splitAt H₁.h e))))
+ ≗a e = begin
+ [ H₁.a , H₂.a ] (splitAt H₁.h e) ≡⟨ [,]∘swap (splitAt H₁.h e) ⟨
+ [ H₂.a , H₁.a ] (swap (splitAt H₁.h e)) ≡⟨ cong [ H₂.a , H₁.a ] (splitAt-join H₂.h H₁.h (swap (splitAt H₁.h e))) ⟨
+ [ H₂.a , H₁.a ] (splitAt H₂.h (join H₂.h H₁.h (swap (splitAt H₁.h e)))) ∎
+ ≗j : (e : Fin (Hypergraph.h (map-nodes ([ m ↑ʳ_ , _↑ˡ n ] ∘ splitAt n) (together H₁ H₂))))
+ (i : Fin (Hypergraph.arity (map-nodes ([ m ↑ʳ_ , _↑ˡ n ] ∘ splitAt n) (together H₁ H₂)) e))
+ → Hypergraph.j (map-nodes ([ _↑ʳ_ m , _↑ˡ n ] ∘ splitAt n) (together H₁ H₂)) e i
+ ≡ Hypergraph.j (together H₂ H₁) (Inverse.to (+-comm-↔ H₁.h H₂.h) e) (cast (cong ℕ.suc (≗a e)) i)
+ ≗j e i with splitAt H₁.h e
+ ≗j e i | inj₁ e₁
+ rewrite splitAt-↑ˡ n (H₁.j e₁ i) m
+ rewrite splitAt-↑ʳ H₂.h H₁.h e₁ = cong ((m ↑ʳ_) ∘ H₁.j e₁) (sym (cast-is-id refl i))
+ ≗j e i | inj₂ e₂
+ rewrite splitAt-↑ʳ n m (H₂.j e₂ i)
+ rewrite splitAt-↑ˡ H₂.h e₂ H₁.h = cong ((_↑ˡ n) ∘ H₂.j e₂) (sym (cast-is-id refl i))
+
+opaque
+ unfolding η ε
+
+ associativity′
+ : {n m o : ℕ}
+ → {x : ∣ (Hypergraphₛ n ⊗₀ Hypergraphₛ m) ⊗₀ Hypergraphₛ o ∣}
+ → Hypergraph-same
+ (map-nodes (Inverse.to (+-assoc-↔ n m o)) (η {n + m} {o} ⟨$⟩ ((η {n} {m} ⊗₁ (Id _)) ⟨$⟩ x)))
+ (η {n} {m + o} ⟨$⟩ ((Id _ ⊗₁ η {m} {o}) ⟨$⟩ (Setoids-×.associator.from ⟨$⟩ x)))
+ associativity′ {n} {m} {o} {(x , y) , z} = associativity x y z
+
+ unitaryˡ′
+ : {X : ∣ Setoids-×.unit ⊗₀ Hypergraphₛ n ∣}
+ → Hypergraph-same (η {0} {n} ⟨$⟩ ((ε ⊗₁ Id _) ⟨$⟩ X)) (Setoids-×.unitorˡ.from ⟨$⟩ X)
+ unitaryˡ′ = Hypergraph-same-refl
+
+ unitaryʳ′
+ : {X : ∣ Hypergraphₛ n ⊗₀ Setoids-×.unit ∣}
+ → Hypergraph-same (map-nodes ([ id , (λ ()) ] ∘ splitAt n) (η {n} {0} ⟨$⟩ ((Id _ ⊗₁ ε) ⟨$⟩ X))) (Setoids-×.unitorʳ.from ⟨$⟩ X)
+ unitaryʳ′ = unitaryʳ
+
+ braiding-compat
+ : {n m : ℕ}
+ → {X : ∣ Hypergraphₛ n ⊗₀ Hypergraphₛ m ∣}
+ → Hypergraph-same
+ (map-nodes ([ m ↑ʳ_ , _↑ˡ n ] ∘ splitAt n) (η {n} {m} ⟨$⟩ X))
+ (η {m} {n} ⟨$⟩ (Setoids-×.braiding.⇒.η (Hypergraphₛ n , Hypergraphₛ m) ⟨$⟩ X))
+ braiding-compat {n} {m} {H₁ , H₂} = braiding {n} {m} {H₁} {H₂}
+
+hypergraph : SymmetricMonoidalFunctor Nat-smc Setoids-×
+hypergraph = record
+ { F = F
+ ; isBraidedMonoidal = record
+ { isMonoidal = record
+ { ε = ε
+ ; ⊗-homo = ⊗-homomorphism
+ ; associativity = associativity′
+ ; unitaryˡ = unitaryˡ′
+ ; unitaryʳ = unitaryʳ′
+ }
+ ; braiding-compat = braiding-compat
+ }
+ }
+
+module F = SymmetricMonoidalFunctor hypergraph
+
+and-gate : Func ⊤ₛ (F.₀ 3)
+and-gate = Const ⊤ₛ (Hypergraphₛ 3) and-graph
+ where
+ and-graph : Hypergraph 3
+ and-graph = record
+ { h = 1
+ ; a = λ { 0F → 2 }
+ ; j = λ { 0F → id }
+ }
+ where
+ edge-0-nodes : Fin 3 → Fin 3
+ edge-0-nodes 0F = # 0
+ edge-0-nodes 1F = # 1
+ edge-0-nodes 2F = # 2
diff --git a/DecorationFunctor/Hypergraph/Labeled.agda b/DecorationFunctor/Hypergraph/Labeled.agda
new file mode 100644
index 0000000..31402b1
--- /dev/null
+++ b/DecorationFunctor/Hypergraph/Labeled.agda
@@ -0,0 +1,689 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Level using (Level)
+
+module DecorationFunctor.Hypergraph.Labeled {c ℓ : Level} where
+
+import Categories.Morphism as Morphism
+
+open import Categories.Category.BinaryProducts using (module BinaryProducts)
+open import Categories.Category.Cartesian using (Cartesian)
+open import Categories.Category.Core using (Category)
+open import Categories.Category.Instance.Nat using (Nat)
+open import Categories.Category.Instance.Setoids using (Setoids)
+open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian)
+open import Categories.Category.Product using (_⁂_)
+open import Categories.Functor using () renaming (_∘F_ to _∘′_)
+open import Categories.Functor.Core using (Functor)
+open import Categories.Functor.Monoidal.Symmetric using (module Lax)
+open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
+open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)
+open import Category.Instance.Nat.FinitelyCocomplete using (Nat-FinitelyCocomplete)
+open import Category.Instance.Setoids.SymmetricMonoidal {c} {ℓ} using (Setoids-×; ×-symmetric′)
+open import Data.Fin using (#_; Fin; splitAt; join; zero; suc; _↑ˡ_; _↑ʳ_; cast)
+open import Data.Fin.Patterns using (0F; 1F; 2F)
+open import Data.Fin.Properties
+ using
+ ( splitAt-join ; join-splitAt
+ ; cast-is-id ; cast-trans ; subst-is-cast
+ ; splitAt-↑ˡ ; splitAt-↑ʳ
+ ; splitAt⁻¹-↑ˡ ; ↑ˡ-injective
+ )
+open import Data.Nat using (ℕ; _+_)
+open import Data.Product.Base using (_,_; Σ)
+open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
+open import Data.Setoid.Unit {c} {ℓ} using (⊤ₛ)
+open import Data.Sum.Base using (_⊎_; map; inj₁; inj₂; swap; map₂) renaming ([_,_]′ to [_,_])
+open import Data.Sum.Properties using (map-map; [,]-map; [,]-∘; [-,]-cong; [,-]-cong; [,]-cong; map-cong; swap-involutive)
+open import Data.Unit.Properties using () renaming (≡-setoid to ⊤-setoid)
+open import Function using (_∘_; id; const; Func; Inverse; _↔_; mk↔; _⟶ₛ_)
+open import Function.Construct.Composition using (_↔-∘_)
+open import Function.Construct.Constant using () renaming (function to Const)
+open import Function.Construct.Identity using (↔-id)
+open import Function.Construct.Symmetry using (↔-sym)
+open import Relation.Binary using (Setoid)
+open import Relation.Binary.PropositionalEquality using (_≗_; _≡_; erefl; refl; sym; trans; cong; cong₂; subst; cong-app)
+open import Relation.Binary.PropositionalEquality.Properties using (isEquivalence; module ≡-Reasoning; dcong; dcong₂; subst-∘; subst-subst; sym-cong; subst-subst-sym; trans-cong; cong-∘; trans-reflʳ)
+open import Relation.Nullary.Negation.Core using (¬_)
+
+open Cartesian (Setoids-Cartesian {c} {ℓ}) using (products)
+open FinitelyCocompleteCategory Nat-FinitelyCocomplete
+ using (-+-)
+ renaming (symmetricMonoidalCategory to Nat-smc; +-assoc to Nat-+-assoc)
+open import Category.Monoidal.Instance.Nat using (Nat,+,0)
+open Morphism (Setoids c ℓ) using (_≅_)
+open Lax using (SymmetricMonoidalFunctor)
+
+open BinaryProducts products using (-×-)
+
+open import Data.Circuit.Gate using (Gate; cast-gate; cast-gate-trans; cast-gate-is-id; subst-is-cast-gate)
+
+record Hypergraph (v : ℕ) : Set c where
+
+ field
+ h : ℕ
+ a : Fin h → ℕ
+ j : (e : Fin h) → Fin (a e) → Fin v
+ l : (e : Fin h) → Gate (a e)
+
+record Hypergraph-same {n : ℕ} (H H′ : Hypergraph n) : Set ℓ where
+
+ open Hypergraph H public
+ open Hypergraph H′ renaming (h to h′; a to a′; j to j′; l to l′) public
+
+ field
+ ↔h : Fin h ↔ Fin h′
+
+ open Inverse ↔h public
+
+ field
+ ≗a : a ≗ a′ ∘ to
+ ≗j : (e : Fin h)
+ (i : Fin (a e))
+ → j e i
+ ≡ j′ (to e) (cast (≗a e) i)
+ ≗l : (e : Fin h)
+ → l e
+ ≡ cast-gate (sym (≗a e)) (l′ (to e))
+
+private
+
+ variable
+ n n′ m m′ o : ℕ
+ H H′ H″ H₁ H₁′ : Hypergraph n
+ H₂ H₂′ : Hypergraph m
+ H₃ : Hypergraph o
+
+Hypergraph-same-refl : Hypergraph-same H H
+Hypergraph-same-refl {_} {H} = record
+ { ↔h = ↔-id (Fin h)
+ ; ≗a = cong a ∘ erefl
+ ; ≗j = λ e i → cong (j e) (sym (cast-is-id refl i))
+ ; ≗l = λ { e → sym (cast-gate-is-id refl (l e)) }
+ }
+ where
+ open Hypergraph H
+
+sym-sym : {A : Set} {x y : A} (p : x ≡ y) → sym (sym p) ≡ p
+sym-sym refl = refl
+
+Hypergraph-same-sym : Hypergraph-same H H′ → Hypergraph-same H′ H
+Hypergraph-same-sym {V} {H} {H′} ≡H = record
+ { ↔h = ↔-sym ↔h
+ ; ≗a = sym ∘ a∘from≗a′
+ ; ≗j = ≗j′
+ ; ≗l = ≗l′
+ }
+ where
+ open Hypergraph-same ≡H
+ open ≡-Reasoning
+ a∘from≗a′ : a ∘ from ≗ a′
+ a∘from≗a′ x = begin
+ (a ∘ from) x ≡⟨ (≗a ∘ from) x ⟩
+ (a′ ∘ to ∘ from) x ≡⟨ (cong a′ ∘ inverseˡ ∘ erefl ∘ from) x ⟩
+ a′ x ∎
+ id≗to∘from : id ≗ to ∘ from
+ id≗to∘from e = sym (inverseˡ refl)
+ ≗arity′ : a′ ≗ a ∘ from
+ ≗arity′ e = sym (a∘from≗a′ e)
+ ≗arity- : a′ ≗ a′ ∘ to ∘ from
+ ≗arity- e = cong a′ (id≗to∘from e)
+
+ ≗j′ : (e : Fin h′) (i : Fin (a′ e)) → j′ e i ≡ j (from e) (cast (≗arity′ e) i)
+ ≗j′ e i = begin
+ j′ e i ≡⟨ dcong₂ j′ (id≗to∘from e) (subst-∘ (id≗to∘from e)) ⟩
+ j′ (to (from e)) (subst Fin (cong a′ (id≗to∘from e)) i) ≡⟨ cong (j′ (to (from e))) (subst-is-cast (cong a′ (id≗to∘from e)) i) ⟩
+ j′ (to (from e)) (cast (cong a′ (id≗to∘from e)) i) ≡⟨⟩
+ j′ (to (from e)) (cast (trans (≗arity′ e) (≗a (from e))) i) ≡⟨ cong (j′ (to (from e))) (cast-trans (≗arity′ e) (≗a (from e)) i) ⟨
+ j′ (to (from e)) (cast (≗a (from e)) (cast (≗arity′ e) i)) ≡⟨ ≗j (from e) (cast (≗arity′ e) i) ⟨
+ j (from e) (cast (≗arity′ e) i) ∎
+
+ ≗l′ : (e : Fin h′) → l′ e ≡ cast-gate (sym (sym (a∘from≗a′ e))) (l (from e))
+ ≗l′ e = begin
+ l′ e ≡⟨ dcong l′ (sym (id≗to∘from e)) ⟨
+ subst (Gate ∘ a′) (sym (id≗to∘from e)) (l′ (to (from e))) ≡⟨ subst-∘ (sym (id≗to∘from e)) ⟩
+ subst Gate (cong a′ (sym (id≗to∘from e))) (l′ (to (from e))) ≡⟨ subst-is-cast-gate (cong a′ (sym (id≗to∘from e))) (l′ (to (from e))) ⟩
+ cast-gate _ (l′ (to (from e))) ≡⟨ cast-gate-trans _ (sym (sym (a∘from≗a′ e))) (l′ (to (from e))) ⟨
+ cast-gate (sym (sym (a∘from≗a′ e))) (cast-gate _ (l′ (to (from e)))) ≡⟨ cong (cast-gate (sym (sym (a∘from≗a′ e)))) (≗l (from e)) ⟨
+ cast-gate (sym (sym (a∘from≗a′ e))) (l (from e)) ∎
+
+Hypergraph-same-trans : Hypergraph-same H H′ → Hypergraph-same H′ H″ → Hypergraph-same H H″
+Hypergraph-same-trans ≡H₁ ≡H₂ = record
+ { ↔h = ↔h ≡H₂ ↔-∘ ↔h ≡H₁
+ ; ≗a = λ { x → trans (≗a ≡H₁ x) (≗a ≡H₂ (to (↔h ≡H₁) x)) }
+ ; ≗j = λ { e i → trans (≗j ≡H₁ e i) (≗j₂ e i) }
+ ; ≗l = λ { e → trans (≗l ≡H₁ e) (≗l₂ e) }
+ }
+ where
+ open Hypergraph-same
+ open Inverse
+ open ≡-Reasoning
+ ≗j₂ : (e : Fin (h ≡H₁))
+ (i : Fin (a ≡H₁ e))
+ → j ≡H₂ (to (↔h ≡H₁) e) (cast (≗a ≡H₁ e) i)
+ ≡ j′ ≡H₂ (to (↔h ≡H₂) (to (↔h ≡H₁) e)) (cast (trans (≗a ≡H₁ e) (≗a ≡H₂ (to (↔h ≡H₁) e))) i)
+ ≗j₂ e i = begin
+ j ≡H₂ (to (↔h ≡H₁) e) (cast (≗a ≡H₁ e) i)
+ ≡⟨ ≗j ≡H₂ (to (↔h ≡H₁) e) (cast (≗a ≡H₁ e) i) ⟩
+ j′ ≡H₂ (to (↔h ≡H₂) (to (↔h ≡H₁) e)) (cast (≗a ≡H₂ (to (↔h ≡H₁) e)) (cast (≗a ≡H₁ e) i))
+ ≡⟨ cong (j′ ≡H₂ (to (↔h ≡H₂) (to (↔h ≡H₁) e))) (cast-trans (≗a ≡H₁ e) (≗a ≡H₂ (to (↔h ≡H₁) e)) i) ⟩
+ j′ ≡H₂ (to (↔h ≡H₂) (to (↔h ≡H₁) e)) (cast (trans (≗a ≡H₁ e) (≗a ≡H₂ (to (↔h ≡H₁) e))) i) ∎
+ ≗l₂ : (e : Fin (h ≡H₁)) → cast-gate _ (l′ ≡H₁ (to ≡H₁ e)) ≡ cast-gate _ (l′ ≡H₂ (to ≡H₂ (to ≡H₁ e)))
+ ≗l₂ e = trans (cong (cast-gate _) (≗l ≡H₂ (to ≡H₁ e))) (cast-gate-trans _ (sym (≗a ≡H₁ e)) (l′ ≡H₂ (to ≡H₂ (to ≡H₁ e))))
+
+Hypergraph-setoid : ℕ → Setoid c ℓ
+Hypergraph-setoid p = record
+ { Carrier = Hypergraph p
+ ; _≈_ = Hypergraph-same
+ ; isEquivalence = record
+ { refl = Hypergraph-same-refl
+ ; sym = Hypergraph-same-sym
+ ; trans = Hypergraph-same-trans
+ }
+ }
+
+map-nodes : (Fin n → Fin m) → Hypergraph n → Hypergraph m
+map-nodes f H = record
+ { h = h
+ ; a = a
+ ; j = λ e i → f (j e i)
+ ; l = l
+ }
+ where
+ open Hypergraph H
+
+Hypergraph-same-cong
+ : (f : Fin n → Fin m)  
+ → Hypergraph-same H H′
+ → Hypergraph-same (map-nodes f H) (map-nodes f H′)
+Hypergraph-same-cong f ≡H = record
+ { ↔h = ↔h
+ ; ≗a = ≗a
+ ; ≗j = λ { e i → cong f (≗j e i) }
+ ; ≗l = ≗l
+ }
+ where
+ open Hypergraph-same ≡H
+
+Hypergraph-Func : (Fin n → Fin m) → Hypergraph-setoid n ⟶ₛ Hypergraph-setoid m
+Hypergraph-Func f = record
+ { to = map-nodes f
+ ; cong = Hypergraph-same-cong f
+ }
+
+F-resp-≈
+ : {f g : Fin n → Fin m}
+ → f ≗ g
+ → Hypergraph-same (map-nodes f H) (map-nodes g H)
+F-resp-≈ {g = g} f≗g = record
+ { ↔h = ↔h
+ ; ≗a = ≗a
+ ; ≗j = λ { e i → trans (f≗g (j e i)) (cong g (≗j e i)) }
+ ; ≗l = ≗l
+ }
+ where
+ open Hypergraph-same Hypergraph-same-refl
+
+homomorphism
+ : (f : Fin n → Fin m)
+ → (g : Fin m → Fin o)
+ → Hypergraph-same (map-nodes (g ∘ f) H) (map-nodes g (map-nodes f H))
+homomorphism {n} {m} {o} {H} f g = record
+ { ↔h = ↔h
+ ; ≗a = ≗a
+ ; ≗j = λ e i → cong (g ∘ f) (≗j e i)
+ ; ≗l = ≗l
+ }
+ where
+ open Hypergraph-same Hypergraph-same-refl
+
+F : Functor Nat (Setoids c ℓ)
+F = record
+ { F₀ = λ n → Hypergraph-setoid n
+ ; F₁ = Hypergraph-Func
+ ; identity = λ { {n} {H} → Hypergraph-same-refl {H = H} }
+ ; homomorphism = λ { {f = f} {g = g} → homomorphism f g }
+ ; F-resp-≈ = λ f≗g → F-resp-≈ f≗g
+ }
+
+-- monoidal structure
+
+discrete : {n : ℕ} → Hypergraph n
+discrete = record
+ { h = 0
+ ; a = λ ()
+ ; j = λ ()
+ ; l = λ ()
+ }
+
+ε : ⊤ₛ ⟶ₛ Hypergraph-setoid 0
+ε = Const ⊤ₛ (Hypergraph-setoid 0) discrete
+
+module _ (H₁ : Hypergraph n) (H₂ : Hypergraph m) where
+ private
+ module H₁ = Hypergraph H₁
+ module H₂ = Hypergraph H₂
+ j+j : (e : Fin (H₁.h + H₂.h))
+ → Fin ([ H₁.a , H₂.a ] (splitAt H₁.h e))
+ → Fin (n + m)
+ j+j e i with splitAt H₁.h e
+ ... | inj₁ e₁ = H₁.j e₁ i ↑ˡ m
+ ... | inj₂ e₂ = n ↑ʳ H₂.j e₂ i
+ l+l : (e : Fin (H₁.h + H₂.h)) → Gate ([ H₁.a , H₂.a ] (splitAt H₁.h e))
+ l+l e with splitAt H₁.h e
+ ... | inj₁ e₁ = H₁.l e₁
+ ... | inj₂ e₂ = H₂.l e₂
+
+together : Hypergraph n → Hypergraph m → Hypergraph (n + m)
+together {n} {m} H₁ H₂ = record
+ { h = h H₁ + h H₂
+ ; a = [ a H₁ , a H₂ ] ∘ splitAt (h H₁)
+ ; j = j+j H₁ H₂
+ ; l = l+l H₁ H₂
+ }
+ where
+ open Hypergraph
+
++-resp-↔
+ : {n n′ m m′ : ℕ}
+ → Fin n ↔ Fin n′
+ → Fin m ↔ Fin m′
+ → Fin (n + m) ↔ Fin (n′ + m′)
++-resp-↔ {n} {n′} {m} {m′} ↔n ↔m = record
+ { to = join n′ m′ ∘ map ↔n.to ↔m.to ∘ splitAt n
+ ; from = join n m ∘ map ↔n.from ↔m.from ∘ splitAt n′
+ ; to-cong = cong (join n′ m′ ∘ map ↔n.to ↔m.to ∘ splitAt n)
+ ; from-cong = cong (join n m ∘ map ↔n.from ↔m.from ∘ splitAt n′)
+ ; inverse = (λ { refl → to∘from _ }) , λ { refl → from∘to _ }
+ }
+ where
+ module ↔n = Inverse ↔n
+ module ↔m = Inverse ↔m
+ open ≡-Reasoning
+ to∘from : join n′ m′ ∘ map ↔n.to ↔m.to ∘ splitAt n ∘ join n m ∘ map ↔n.from ↔m.from ∘ splitAt n′ ≗ id
+ to∘from x = begin
+ (join n′ m′ ∘ map ↔n.to ↔m.to ∘ splitAt n ∘ join n m ∘ map ↔n.from ↔m.from ∘ splitAt n′) x
+ ≡⟨ cong
+ (join n′ m′ ∘ map ↔n.to ↔m.to)
+ (splitAt-join n m (map ↔n.from ↔m.from (splitAt n′ x))) ⟩
+ (join n′ m′ ∘ map ↔n.to ↔m.to ∘ map ↔n.from ↔m.from ∘ splitAt n′) x
+ ≡⟨ cong (join n′ m′) (map-map (splitAt n′ x)) ⟩
+ (join n′ m′ ∘ map (↔n.to ∘ ↔n.from) (↔m.to ∘ ↔m.from) ∘ splitAt n′) x
+ ≡⟨ cong
+ (join n′ m′)
+ (map-cong
+ (λ _ → ↔n.inverseˡ refl)
+ (λ _ → ↔m.inverseˡ refl)
+ (splitAt n′ x)) ⟩
+ (join n′ m′ ∘ map id id ∘ splitAt n′) x ≡⟨ [,]-map (splitAt n′ x) ⟩
+ (join n′ m′ ∘ splitAt n′) x ≡⟨ join-splitAt n′ m′ x ⟩
+ x ∎
+ from∘to : join n m ∘ map ↔n.from ↔m.from ∘ splitAt n′ ∘ join n′ m′ ∘ map ↔n.to ↔m.to ∘ splitAt n ≗ id
+ from∘to x = begin
+ (join n m ∘ map ↔n.from ↔m.from ∘ splitAt n′ ∘ join n′ m′ ∘ map ↔n.to ↔m.to ∘ splitAt n) x
+ ≡⟨ cong
+ (join n m ∘ map ↔n.from ↔m.from)
+ (splitAt-join n′ m′ (map ↔n.to ↔m.to (splitAt n x))) ⟩
+ (join n m ∘ map ↔n.from ↔m.from ∘ map ↔n.to ↔m.to ∘ splitAt n) x
+ ≡⟨ cong (join n m) (map-map (splitAt n x)) ⟩
+ (join n m ∘ map (↔n.from ∘ ↔n.to) (↔m.from ∘ ↔m.to) ∘ splitAt n) x
+ ≡⟨ cong
+ (join n m)
+ (map-cong
+ (λ _ → ↔n.inverseʳ refl)
+ (λ _ → ↔m.inverseʳ refl)
+ (splitAt n x)) ⟩
+ (join n m ∘ map id id ∘ splitAt n) x ≡⟨ [,]-map (splitAt n x) ⟩
+ (join n m ∘ splitAt n) x ≡⟨ join-splitAt n m x ⟩
+ x ∎
+
+together-resp-same
+ : Hypergraph-same H₁ H₁′
+ → Hypergraph-same H₂ H₂′
+ → Hypergraph-same (together H₁ H₂) (together H₁′ H₂′)
+together-resp-same {n} {H₁} {H₁′} {m} {H₂} {H₂′} ≡H₁ ≡H₂ = record
+ { ↔h = +-resp-↔ ≡H₁.↔h ≡H₂.↔h
+ ; ≗a = ≗a
+ ; ≗j = ≗j
+ ; ≗l = ≗l
+ }
+ where
+ module ≡H₁ = Hypergraph-same ≡H₁
+ module ≡H₂ = Hypergraph-same ≡H₂
+ module H₁+H₂ = Hypergraph (together H₁ H₂)
+ module H₁+H₂′ = Hypergraph (together H₁′ H₂′)
+ open ≡-Reasoning
+ open Inverse
+ open Hypergraph
+ ≗a : [ ≡H₁.a , ≡H₂.a ] ∘ splitAt ≡H₁.h
+ ≗ [ ≡H₁.a′ , ≡H₂.a′ ] ∘ splitAt ≡H₁.h′
+ ∘ join ≡H₁.h′ ≡H₂.h′ ∘ map ≡H₁.to ≡H₂.to ∘ splitAt ≡H₁.h
+   ≗a e = begin
+ [ ≡H₁.a , ≡H₂.a ] (splitAt ≡H₁.h e) ≡⟨ [,]-cong ≡H₁.≗a ≡H₂.≗a (splitAt ≡H₁.h e) ⟩
+ ([ ≡H₁.a′ ∘ ≡H₁.to , ≡H₂.a′ ∘ ≡H₂.to ] ∘ splitAt ≡H₁.h) e ≡⟨ [,]-map (splitAt ≡H₁.h e) ⟨
+ ([ ≡H₁.a′ , ≡H₂.a′ ] ∘ map ≡H₁.to ≡H₂.to ∘ splitAt ≡H₁.h) e ≡⟨ (cong [ ≡H₁.a′ , ≡H₂.a′ ] ∘ splitAt-join ≡H₁.h′ ≡H₂.h′ ∘ map ≡H₁.to ≡H₂.to ∘ splitAt ≡H₁.h) e ⟨
+ ([ ≡H₁.a′ , ≡H₂.a′ ] ∘ splitAt ≡H₁.h′ ∘ join ≡H₁.h′ ≡H₂.h′ ∘ map ≡H₁.to ≡H₂.to ∘ splitAt ≡H₁.h) e ∎
+ ≗j : (e : Fin H₁+H₂.h)
+ (i : Fin (H₁+H₂.a e))
+ → H₁+H₂.j e i
+ ≡ H₁+H₂′.j (to (+-resp-↔ ≡H₁.↔h ≡H₂.↔h) e) (cast (≗a e) i)
+ ≗j e i with splitAt ≡H₁.h e
+ ... | inj₁ e₁ rewrite splitAt-↑ˡ ≡H₁.h′ (≡H₁.to e₁) ≡H₂.h′ = cong (_↑ˡ m) (≡H₁.≗j e₁ i)
+ ... | inj₂ e₂ rewrite splitAt-↑ʳ ≡H₁.h′ ≡H₂.h′ (≡H₂.to e₂) = cong (n ↑ʳ_) (≡H₂.≗j e₂ i)
+ ≗l : (e : Fin H₁+H₂.h) → l+l H₁ H₂ e ≡ cast-gate (sym (≗a e)) (l+l H₁′ H₂′ (to (+-resp-↔ ≡H₁.↔h ≡H₂.↔h) e))
+ ≗l e with splitAt ≡H₁.h e | .{≗a e}
+ ... | inj₁ e₁ rewrite splitAt-↑ˡ ≡H₁.h′ (≡H₁.to e₁) ≡H₂.h′ = ≡H₁.≗l e₁
+ ... | inj₂ e₂ rewrite splitAt-↑ʳ ≡H₁.h′ ≡H₂.h′ (≡H₂.to e₂) = ≡H₂.≗l e₂
+
+commute
+ : (f : Fin n → Fin n′)
+ → (g : Fin m → Fin m′)
+ → Hypergraph-same
+ (together (map-nodes f H₁) (map-nodes g H₂))
+ (map-nodes ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ splitAt n) (together H₁ H₂))
+commute {n} {n′} {m} {m′} {H₁} {H₂} f g = record
+ { ↔h = ≡H₁+H₂.↔h
+ ; ≗a = ≡H₁+H₂.≗a
+ ; ≗j = ≗j
+ ; ≗l = ≗l
+ }
+ where
+ module H₁ = Hypergraph H₁
+ module H₂ = Hypergraph H₂
+ module H₁+H₂ = Hypergraph (together H₁ H₂)
+ module ≡H₁+H₂ = Hypergraph-same {H = together H₁ H₂} Hypergraph-same-refl
+ open Hypergraph
+ open ≡-Reasoning
+ ≗j : (e : Fin (H₁.h + H₂.h))
+ (i : Fin (([ H₁.a , H₂.a ] ∘ splitAt H₁.h) e))
+ → j (together (map-nodes f H₁) (map-nodes g H₂)) e i
+ ≡ j (map-nodes ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ splitAt n) (together H₁ H₂)) (≡H₁+H₂.to e) (cast refl i)
+ ≗j e i rewrite (cast-is-id refl i) with splitAt H₁.h e
+ ... | inj₁ e₁ rewrite splitAt-↑ˡ n (H₁.j e₁ i) m = refl
+ ... | inj₂ e₂ rewrite splitAt-↑ʳ n m (H₂.j e₂ i) = refl
+ ≗l : (e : Fin (H₁.h + H₂.h))
+ → l+l (map-nodes f H₁) (map-nodes g H₂) e
+ ≡ cast-gate refl (l+l H₁ H₂ (≡H₁+H₂.to e))
+ ≗l e rewrite cast-gate-is-id refl (l+l H₁ H₂ (≡H₁+H₂.to e)) with splitAt H₁.h e
+ ... | inj₁ e₁ = refl
+ ... | inj₂ e₁ = refl
+
+⊗-homomorphism : NaturalTransformation (-×- ∘′ (F ⁂ F)) (F ∘′ -+-)
+⊗-homomorphism = record
+ { η = λ { (m , n) → η }
+ ; commute = λ { (f , g) {H₁ , H₂} → commute {H₁ = H₁} {H₂ = H₂} f g }
+ ; sym-commute = λ { (f , g) {H₁ , H₂} → Hypergraph-same-sym (commute {H₁ = H₁} {H₂ = H₂} f g) }
+ }
+ where
+ η : Hypergraph-setoid n ×ₛ Hypergraph-setoid m ⟶ₛ Hypergraph-setoid (n + m)
+ η = record
+ { to = λ { (H₁ , H₂) → together H₁ H₂ }
+ ; cong = λ { (≡H₁ , ≡H₂) → together-resp-same ≡H₁ ≡H₂ }
+ }
+
++-assoc-↔ : ∀ (x y z : ℕ) → Fin (x + y + z) ↔ Fin (x + (y + z))
++-assoc-↔ x y z = record
+ { to = to
+ ; from = from
+ ; to-cong = λ { refl → refl }
+ ; from-cong = λ { refl → refl }
+ ; inverse = (λ { refl → isoˡ _ }) , λ { refl → isoʳ _ }
+ }
+ where
+ module Nat = Morphism Nat
+ open Nat._≅_ (Nat-+-assoc {x} {y} {z})
+
+associativity
+ : {X Y Z : ℕ}
+ → {H₁ : Hypergraph X}
+ → {H₂ : Hypergraph Y}
+ → {H₃ : Hypergraph Z}
+ → Hypergraph-same
+ (map-nodes (Inverse.to (+-assoc-↔ X Y Z)) (together (together H₁ H₂) H₃))
+ (together H₁ (together H₂ H₃))
+associativity {X} {Y} {Z} {H₁} {H₂} {H₃} = record
+ { ↔h = ↔h
+ ; ≗a = ≗a
+ ; ≗j = ≗j
+ ; ≗l = ≗l
+ }
+ where
+ module H₁ = Hypergraph H₁
+ module H₂ = Hypergraph H₂
+ module H₃ = Hypergraph H₃
+ open ≡-Reasoning
+ open Hypergraph
+ ↔h : Fin (H₁.h + H₂.h + H₃.h) ↔ Fin (H₁.h + (H₂.h + H₃.h))
+ ↔h = +-assoc-↔ H₁.h H₂.h H₃.h
+ ≗a : (x : Fin (H₁.h + H₂.h + H₃.h))
+ → [ [ H₁.a , H₂.a ] ∘ splitAt H₁.h , H₃.a ] (splitAt (H₁.h + H₂.h) x)
+ ≡ [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] (splitAt H₁.h ([ [ _↑ˡ H₂.h + H₃.h , (H₁.h ↑ʳ_) ∘ (_↑ˡ H₃.h) ] ∘ splitAt H₁.h , (H₁.h ↑ʳ_) ∘ (H₂.h ↑ʳ_) ] (splitAt (H₁.h + H₂.h) x)))
+ ≗a x = begin
+ ([ [ H₁.a , H₂.a ] ∘ splitAt H₁.h , H₃.a ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨⟩
+ ([ [ H₁.a , [ H₂.a , H₃.a ] ∘ inj₁ ] ∘ splitAt H₁.h , H₃.a ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨ [-,]-cong ([,-]-cong (cong [ H₂.a , H₃.a ] ∘ (λ i → splitAt-↑ˡ H₂.h i H₃.h)) ∘ splitAt H₁.h) (splitAt (H₁.h + H₂.h) x) ⟨
+ ([ [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ∘ (_↑ˡ H₃.h) ] ∘ splitAt H₁.h , H₃.a ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨ [-,]-cong ([,]-∘ [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ splitAt H₁.h) (splitAt (H₁.h + H₂.h) x) ⟨
+ ([ [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h , H₃.a ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨⟩
+ ([ [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h , [ H₂.a , H₃.a ] ∘ inj₂ ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨ [,-]-cong (cong [ H₂.a , H₃.a ] ∘ splitAt-↑ʳ H₂.h H₃.h) (splitAt (H₁.h + H₂.h) x) ⟨
+ ([ [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ∘ (H₂.h ↑ʳ_) ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨⟩
+ ([ [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h , [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ inj₂ ∘ (H₂.h ↑ʳ_) ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨ [,]-∘ [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] (splitAt (H₁.h + H₂.h) x) ⟨
+ ([ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ [ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h , inj₂ ∘ (H₂.h ↑ʳ_) ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨ cong [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ([,-]-cong (splitAt-↑ʳ H₁.h (H₂.h + H₃.h) ∘ (H₂.h ↑ʳ_)) (splitAt (H₁.h + H₂.h) x)) ⟨
+ ([ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ [ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h , splitAt H₁.h ∘ (H₁.h ↑ʳ_) ∘ (H₂.h ↑ʳ_) ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨ cong [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ([-,]-cong (splitAt-join H₁.h (H₂.h + H₃.h) ∘ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h) (splitAt (H₁.h + H₂.h) x)) ⟨
+ ([ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ [ splitAt H₁.h ∘ join H₁.h (H₂.h + H₃.h) ∘ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h , splitAt H₁.h ∘ (H₁.h ↑ʳ_) ∘ (H₂.h ↑ʳ_) ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨ cong [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ([,]-∘ (splitAt H₁.h) (splitAt (H₁.h + H₂.h) x)) ⟨
+ ([ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ splitAt H₁.h ∘ [ join H₁.h (H₂.h + H₃.h) ∘ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h , (H₁.h ↑ʳ_) ∘ (H₂.h ↑ʳ_) ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨⟩
+ ([ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ splitAt H₁.h ∘ [ [ _↑ˡ H₂.h + H₃.h , H₁.h ↑ʳ_ ] ∘ [ inj₁ , inj₂ ∘ (_↑ˡ H₃.h) ] ∘ splitAt H₁.h , (H₁.h ↑ʳ_) ∘ (H₂.h ↑ʳ_) ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨ cong ([ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ splitAt H₁.h) ([-,]-cong ([,]-∘ [ _↑ˡ H₂.h + H₃.h , H₁.h ↑ʳ_ ] ∘ splitAt H₁.h) (splitAt (H₁.h + H₂.h) x)) ⟩
+ ([ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ splitAt H₁.h ∘ [ [ _↑ˡ H₂.h + H₃.h , (H₁.h ↑ʳ_) ∘ (_↑ˡ H₃.h) ] ∘ splitAt H₁.h , (H₁.h ↑ʳ_) ∘ (H₂.h ↑ʳ_) ] ∘ splitAt (H₁.h + H₂.h)) x ∎
+ ≗j : (e : Fin (H₁.h + H₂.h + H₃.h))
+ (i : Fin ([ [ H₁.a , H₂.a ] ∘ splitAt H₁.h , H₃.a ] (splitAt (H₁.h + H₂.h) e)))
+ → Inverse.to (+-assoc-↔ X Y Z) (j+j (together H₁ H₂) H₃ e i)
+ ≡ j+j H₁ (together H₂ H₃) (Inverse.to ↔h e) (cast (≗a e) i)
+ ≗j e i with splitAt (H₁.h + H₂.h) e
+ ≗j e i | inj₁ e₁₂ with splitAt H₁.h e₁₂
+ ≗j e i | inj₁ e₁₂ | inj₁ e₁
+ rewrite splitAt-↑ˡ H₁.h e₁ (H₂.h + H₃.h)
+ rewrite splitAt-↑ˡ (X + Y) (H₁.j e₁ i ↑ˡ Y) Z
+ rewrite splitAt-↑ˡ X (H₁.j e₁ i) Y = cong ((_↑ˡ Y + Z) ∘ H₁.j e₁) (sym (cast-is-id refl i))
+ ≗j e i | inj₁ e₁₂ | inj₂ e₂
+ rewrite splitAt-↑ʳ H₁.h (H₂.h + H₃.h) (e₂ ↑ˡ H₃.h)
+ rewrite splitAt-↑ˡ H₂.h e₂ H₃.h
+ rewrite splitAt-↑ˡ (X + Y) (X ↑ʳ H₂.j e₂ i) Z
+ rewrite splitAt-↑ʳ X Y (H₂.j e₂ i) = cong ((X ↑ʳ_) ∘ (_↑ˡ Z) ∘ H₂.j e₂) (sym (cast-is-id refl i))
+ ≗j e i | inj₂ e₃
+ rewrite splitAt-↑ʳ H₁.h (H₂.h + H₃.h) (H₂.h ↑ʳ e₃)
+ rewrite splitAt-↑ʳ H₂.h H₃.h e₃
+ rewrite splitAt-↑ʳ (X + Y) Z (H₃.j e₃ i) = cong ((X ↑ʳ_) ∘ (Y ↑ʳ_) ∘ H₃.j e₃) (sym (cast-is-id refl i))
+ ≗l : (e : Fin (H₁.h + H₂.h + H₃.h))
+ → l (map-nodes (Inverse.to (+-assoc-↔ X Y Z)) (together (together H₁ H₂) H₃)) e
+ ≡ cast-gate (sym (≗a e)) (l (together H₁ (together H₂ H₃)) (Inverse.to ↔h e))
+ ≗l e with splitAt (H₁.h + H₂.h) e
+ ≗l e | inj₁ e₁₂ with splitAt H₁.h e₁₂
+ ≗l e | inj₁ e₁₂ | inj₁ e₁
+ rewrite splitAt-↑ˡ H₁.h e₁ (H₂.h + H₃.h) = sym (cast-gate-is-id refl (H₁.l e₁))
+ ≗l e | inj₁ e₁₂ | inj₂ e₂
+ rewrite splitAt-↑ʳ H₁.h (H₂.h + H₃.h) (e₂ ↑ˡ H₃.h)
+ rewrite splitAt-↑ˡ H₂.h e₂ H₃.h = sym (cast-gate-is-id refl (H₂.l e₂))
+ ≗l e | inj₂ e₃
+ rewrite splitAt-↑ʳ H₁.h (H₂.h + H₃.h) (H₂.h ↑ʳ e₃)
+ rewrite splitAt-↑ʳ H₂.h H₃.h e₃ = sym (cast-gate-is-id refl (H₃.l e₃))
+
+n+0↔n : ∀ n → Fin (n + 0) ↔ Fin n
+n+0↔n n = record
+ { to = to
+ ; from = from
+ ; to-cong = λ { refl → refl }
+ ; from-cong = λ { refl → refl }
+ ; inverse = (λ { refl → to∘from _ }) , λ { refl → from∘to _ }
+ }
+ where
+ to : Fin (n + 0) → Fin n
+ to x with inj₁ x₁ ← splitAt n x = x₁
+ from : Fin n → Fin (n + 0)
+ from x = x ↑ˡ 0
+ from∘to : (x : Fin (n + 0)) → from (to x) ≡ x
+ from∘to x with inj₁ x₁ ← splitAt n x in eq = splitAt⁻¹-↑ˡ eq
+ to∘from : (x : Fin n) → to (from x) ≡ x
+ to∘from x rewrite splitAt-↑ˡ n x 0 = refl
+
+unitaryʳ : Hypergraph-same (map-nodes ([ id , (λ ()) ] ∘ splitAt n) (together H (discrete {0}))) H
+unitaryʳ {n} {H} = record
+ { ↔h = h+0↔h
+ ; ≗a = ≗a
+ ; ≗j = ≗j
+ ; ≗l = ≗l
+ }
+ where
+ module H = Hypergraph H
+ module H+0 = Hypergraph (together H (discrete {0}))
+ h+0↔h : Fin H+0.h ↔ Fin H.h
+ h+0↔h = n+0↔n H.h
+ ≗a : (e : Fin (H.h + 0)) → [ H.a , (λ ()) ] (splitAt H.h e) ≡ H.a (Inverse.to h+0↔h e)
+ ≗a e with inj₁ e₁ ← splitAt H.h e in eq = refl
+ ≗j : (e : Fin (H.h + 0))
+ (i : Fin ([ H.a , (λ ()) ] (splitAt H.h e)))
+ → [ (λ x → x) , (λ ()) ] (splitAt n (j+j H discrete e i))
+ ≡ H.j (Inverse.to h+0↔h e) (cast (≗a e) i)
+ ≗j e i = ≗j-aux (splitAt H.h e) refl (j+j H discrete e) refl (≗a e) i
+ where
+ ≗j-aux
+ : (w : Fin H.h ⊎ Fin 0)
+ → (eq₁ : splitAt H.h e ≡ w)
+ → (w₁ : Fin ([ H.a , (λ ()) ] w) → Fin (n + 0))
+ → j+j H discrete e ≡ subst (λ hole → Fin ([ H.a , (λ ()) ] hole) → Fin (n + 0)) (sym eq₁) w₁
+ → (w₂ : [ H.a , (λ ()) ] w ≡ H.a (Inverse.to h+0↔h e))
+ (i : Fin ([ H.a , (λ ()) ] w))
+ → [ (λ x → x) , (λ ()) ] (splitAt n (w₁ i))
+ ≡ H.j (Inverse.to h+0↔h e) (cast w₂ i)
+ ≗j-aux (inj₁ e₁) eq w₁ eq₁ w₂ i
+ with (inj₁ x) ← splitAt n (w₁ i) in eq₂
+ rewrite eq = trans
+ (↑ˡ-injective 0 x (H.j e₁ i) (trans (splitAt⁻¹-↑ˡ eq₂) (sym (cong-app eq₁ i))))
+ (cong (H.j e₁) (sym (cast-is-id refl i)))
+ ≗l : (e : Fin (H.h + 0))
+ → l+l H discrete e
+ ≡ cast-gate (sym (≗a e)) (H.l (Inverse.to h+0↔h e))
+ ≗l e with splitAt H.h e | {(≗a e)}
+ ... | inj₁ e₁ = sym (cast-gate-is-id refl (H.l e₁))
+
++-comm-↔ : ∀ (n m : ℕ) → Fin (n + m) ↔ Fin (m + n)
++-comm-↔ n m = record
+ { to = join m n ∘ swap ∘ splitAt n
+ ; from = join n m ∘ swap ∘ splitAt m
+ ; to-cong = λ { refl → refl }
+ ; from-cong = λ { refl → refl }
+ ; inverse = (λ { refl → to∘from _ }) , λ { refl → from∘to _ }
+ }
+ where
+ open ≡-Reasoning
+ to∘from : join m n ∘ swap ∘ splitAt n ∘ join n m ∘ swap ∘ splitAt m ≗ id
+ to∘from x = begin
+ (join m n ∘ swap ∘ splitAt n ∘ join n m ∘ swap ∘ splitAt m) x ≡⟨ (cong (join m n ∘ swap) ∘ splitAt-join n m ∘ swap ∘ splitAt m) x ⟩
+ (join m n ∘ swap ∘ swap ∘ splitAt m) x ≡⟨ (cong (join m n) ∘ swap-involutive ∘ splitAt m) x ⟩
+ (join m n ∘ splitAt m) x ≡⟨ join-splitAt m n x ⟩
+ x ∎
+ from∘to : join n m ∘ swap ∘ splitAt m ∘ join m n ∘ swap ∘ splitAt n ≗ id
+ from∘to x = begin
+ (join n m ∘ swap ∘ splitAt m ∘ join m n ∘ swap ∘ splitAt n) x ≡⟨ (cong (join n m ∘ swap) ∘ splitAt-join m n ∘ swap ∘ splitAt n) x ⟩
+ (join n m ∘ swap ∘ swap ∘ splitAt n) x ≡⟨ (cong (join n m) ∘ swap-involutive ∘ splitAt n) x ⟩
+ (join n m ∘ splitAt n) x ≡⟨ join-splitAt n m x ⟩
+ x ∎
+
+[,]∘swap : {A B C : Set} {f : A → C} {g : B → C} → [ f , g ] ∘ swap ≗ [ g , f ]
+[,]∘swap (inj₁ x) = refl
+[,]∘swap (inj₂ y) = refl
+
+braiding
+ : {n m : ℕ}
+ {H₁ : Hypergraph n}
+ {H₂ : Hypergraph m}
+ → Hypergraph-same (map-nodes ([ m ↑ʳ_ , _↑ˡ n ] ∘ splitAt n) (together H₁ H₂)) (together H₂ H₁)
+braiding {n} {m} {H₁} {H₂} = record
+ { ↔h = +-comm-↔ H₁.h H₂.h
+ ; ≗a = ≗a
+ ; ≗j = ≗j
+ ; ≗l = ≗l
+ }
+ where
+ open ≡-Reasoning
+ module H₁ = Hypergraph H₁
+ module H₂ = Hypergraph H₂
+ ≗a : (e : Fin (H₁.h + H₂.h))
+ → [ H₁.a , H₂.a ] (splitAt H₁.h e)
+ ≡ [ H₂.a , H₁.a ] (splitAt H₂.h (join H₂.h H₁.h (swap (splitAt H₁.h e))))
+ ≗a e = begin
+ [ H₁.a , H₂.a ] (splitAt H₁.h e) ≡⟨ [,]∘swap (splitAt H₁.h e) ⟨
+ [ H₂.a , H₁.a ] (swap (splitAt H₁.h e)) ≡⟨ cong [ H₂.a , H₁.a ] (splitAt-join H₂.h H₁.h (swap (splitAt H₁.h e))) ⟨
+ [ H₂.a , H₁.a ] (splitAt H₂.h (join H₂.h H₁.h (swap (splitAt H₁.h e)))) ∎
+ ≗j : (e : Fin (Hypergraph.h (map-nodes ([ m ↑ʳ_ , _↑ˡ n ] ∘ splitAt n) (together H₁ H₂))))
+ (i : Fin (Hypergraph.a (map-nodes ([ m ↑ʳ_ , _↑ˡ n ] ∘ splitAt n) (together H₁ H₂)) e))
+ → Hypergraph.j (map-nodes ([ _↑ʳ_ m , _↑ˡ n ] ∘ splitAt n) (together H₁ H₂)) e i
+ ≡ Hypergraph.j (together H₂ H₁) (Inverse.to (+-comm-↔ H₁.h H₂.h) e) (cast (≗a e) i)
+ ≗j e i with splitAt H₁.h e
+ ≗j e i | inj₁ e₁
+ rewrite splitAt-↑ˡ n (H₁.j e₁ i) m
+ rewrite splitAt-↑ʳ H₂.h H₁.h e₁ = cong ((m ↑ʳ_) ∘ H₁.j e₁) (sym (cast-is-id refl i))
+ ≗j e i | inj₂ e₂
+ rewrite splitAt-↑ʳ n m (H₂.j e₂ i)
+ rewrite splitAt-↑ˡ H₂.h e₂ H₁.h = cong ((_↑ˡ n) ∘ H₂.j e₂) (sym (cast-is-id refl i))
+ ≗l : (e : Fin (H₁.h + H₂.h))
+ → l+l H₁ H₂ e
+ ≡ cast-gate (sym (≗a e)) (l+l H₂ H₁ (Inverse.to (+-comm-↔ H₁.h H₂.h) e))
+ ≗l e with splitAt H₁.h e | .{≗a e}
+ ≗l e | inj₁ e₁ rewrite splitAt-↑ʳ H₂.h H₁.h e₁ = sym (cast-gate-is-id refl (H₁.l e₁))
+ ≗l e | inj₂ e₂ rewrite splitAt-↑ˡ H₂.h e₂ H₁.h = sym (cast-gate-is-id refl (H₂.l e₂))
+
+opaque
+ unfolding ×-symmetric′
+ Circ : SymmetricMonoidalFunctor Nat,+,0 Setoids-×
+ Circ = record
+ { F = F
+ ; isBraidedMonoidal = record
+ { isMonoidal = record
+ { ε = ε
+ ; ⊗-homo = ntHelper record
+ { η = λ { (m , n) → η }
+ ; commute = λ { (f , g) {H₁ , H₂} → commute {H₁ = H₁} {H₂ = H₂} f g }
+ }
+ ; associativity = λ { {X} {Y} {Z} {(H₁ , H₂) , H₃} → associativity {X} {Y} {Z} {H₁} {H₂} {H₃} }
+ ; unitaryˡ = Hypergraph-same-refl
+ ; unitaryʳ = unitaryʳ
+ }
+ ; braiding-compat = λ { {X} {Y} {H₁ , H₂} → braiding {X} {Y} {H₁} {H₂} }
+ }
+ }
+ where
+ η : Hypergraph-setoid n ×ₛ Hypergraph-setoid m ⟶ₛ Hypergraph-setoid (n + m)
+ η = record
+ { to = λ { (H₁ , H₂) → together H₁ H₂ }
+ ; cong = λ { (≡H₁ , ≡H₂) → together-resp-same ≡H₁ ≡H₂ }
+ }
+
+module F = SymmetricMonoidalFunctor Circ
+
+open Gate
+
+and-gate : ⊤ₛ ⟶ₛ Hypergraph-setoid 3
+and-gate = Const ⊤ₛ (Hypergraph-setoid 3) and-graph
+ where
+ and-graph : Hypergraph 3
+ and-graph = record
+ { h = 1
+ ; a = λ { 0F → 3 }
+ ; j = λ { 0F → edge-0-nodes }
+ ; l = λ { 0F → AND }
+ }
+ where
+ edge-0-nodes : Fin 3 → Fin 3
+ edge-0-nodes 0F = # 0
+ edge-0-nodes 1F = # 1
+ edge-0-nodes 2F = # 2
diff --git a/DecorationFunctor/Trivial.agda b/DecorationFunctor/Trivial.agda
index dee7c2e..6278d05 100644
--- a/DecorationFunctor/Trivial.agda
+++ b/DecorationFunctor/Trivial.agda
@@ -2,86 +2,70 @@
module DecorationFunctor.Trivial where
-import Categories.Morphism as Morphism
+open import Level using (0ℓ)
open import Categories.Category.BinaryProducts using (module BinaryProducts)
open import Categories.Category.Cartesian using (Cartesian)
-open import Categories.Category.Cocartesian using (Cocartesian; module BinaryCoproducts)
-open import Categories.Category.Core using (Category)
-open import Categories.Category.Instance.Nat using (Nat-Cocartesian)
open import Categories.Category.Instance.Nat using (Nat)
open import Categories.Category.Instance.Setoids using (Setoids)
-open import Categories.Category.Instance.SingletonSet using (SingletonSetoid)
open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian)
open import Categories.Category.Product using (_⁂_)
-open import Categories.Functor using () renaming (_∘F_ to _∘_)
-open import Categories.Functor.Core using (Functor)
+open import Categories.Functor using (Functor) renaming (_∘F_ to _∘_)
open import Categories.Functor.Monoidal.Symmetric using (module Lax)
-open import Categories.NaturalTransformation using (NaturalTransformation)
+open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)
-open import Category.Instance.Setoids.SymmetricMonoidal using (Setoids-×)
open import Category.Instance.Nat.FinitelyCocomplete using (Nat-FinitelyCocomplete)
-open import Data.Nat using (ℕ)
-open import Data.Product.Base using (_,_)
+open import Category.Instance.Setoids.SymmetricMonoidal {0ℓ} {0ℓ} using (Setoids-×; ×-symmetric′)
+open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
+open import Data.Setoid.Unit {0ℓ} {0ℓ} using (⊤ₛ)
open import Data.Unit using (tt)
-open import Data.Unit.Properties using () renaming (≡-setoid to ⊤-setoid)
-open import Function.Base using (const)
-open import Function.Bundles using (Func)
-open import Level using (0ℓ; suc; lift)
-open import Relation.Binary.Bundles using (Setoid)
+open import Data.Unit.Properties using () renaming (≡-setoid to ⊤-≡ₛ)
+open import Function using (Func; const)
+open import Function.Construct.Constant using () renaming (function to Const)
open import Relation.Binary.PropositionalEquality.Core using (refl)
open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using (products)
-open Cocartesian Nat-Cocartesian using (coproducts)
+open BinaryProducts products using (-×-)
open FinitelyCocompleteCategory Nat-FinitelyCocomplete
- using ()
- renaming (symmetricMonoidalCategory to Nat-smc)
-open Morphism (Setoids 0ℓ 0ℓ) using (_≅_)
+ using (-+-)
+ renaming (symmetricMonoidalCategory to Nat-smc)
open Lax using (SymmetricMonoidalFunctor)
-open BinaryProducts products using (-×-)
-open BinaryCoproducts coproducts using (-+-)
-
-
F : Functor Nat (Setoids 0ℓ 0ℓ)
F = record
- { F₀ = const (⊤-setoid)
- ; F₁ = const (record { to = const tt ; cong = const refl })
- ; identity = const refl
- ; homomorphism = const refl
- ; F-resp-≈ = const (const refl)
+ { F₀ = const ⊤-≡ₛ
+ ; F₁ = const (Const ⊤-≡ₛ ⊤-≡ₛ tt)
+ ; identity = refl
+ ; homomorphism = refl
+ ; F-resp-≈ = const refl
}
-ε : Func (SingletonSetoid {0ℓ} {0ℓ}) ⊤-setoid
-ε = record
- { to = const tt
- ; cong = const refl
- }
+ε : Func ⊤ₛ ⊤-≡ₛ
+ε = Const ⊤ₛ ⊤-≡ₛ tt
⊗-homomorphism : NaturalTransformation (-×- ∘ (F ⁂ F)) (F ∘ -+-)
-⊗-homomorphism = record
- { η = const (record { to = const tt ; cong = const refl })
- ; commute = const (const refl)
- ; sym-commute = const (const refl)
+⊗-homomorphism = ntHelper record
+ { η = const (Const (⊤-≡ₛ ×ₛ ⊤-≡ₛ) ⊤-≡ₛ tt)
+ ; commute = const refl
}
-trivial : SymmetricMonoidalFunctor Nat-smc (Setoids-× {0ℓ})
-trivial = record
- { F = F
- ; isBraidedMonoidal = record
- { isMonoidal = record
- { ε = ε
- ; ⊗-homo = ⊗-homomorphism
- ; associativity = const refl
- ; unitaryˡ = const refl
- ; unitaryʳ = const refl
- }
- ; braiding-compat = const refl
- }
- }
+opaque
+ unfolding ×-symmetric′
-and-gate : Func (SingletonSetoid {0ℓ} {0ℓ}) ⊤-setoid
-and-gate = record
- { to = const tt
- ; cong = const refl
- }
+ trivial : SymmetricMonoidalFunctor Nat-smc Setoids-×
+ trivial = record
+ { F = F
+ ; isBraidedMonoidal = record
+ { isMonoidal = record
+ { ε = ε
+ ; ⊗-homo = ⊗-homomorphism
+ ; associativity = refl
+ ; unitaryˡ = refl
+ ; unitaryʳ = refl
+ }
+ ; braiding-compat = refl
+ }
+ }
+
+and-gate : Func ⊤ₛ ⊤-≡ₛ
+and-gate = Const ⊤ₛ ⊤-≡ₛ tt
diff --git a/FinMerge.agda b/FinMerge.agda
index d7b3f0b..2210e2f 100644
--- a/FinMerge.agda
+++ b/FinMerge.agda
@@ -13,8 +13,9 @@ open import Relation.Binary.PropositionalEquality.Properties using (module ≡-R
open import Function using (id ; _∘_ ; _$_)
open import Data.Maybe.Base using (Maybe; just; nothing; fromMaybe; map)
-open import Util using (_<_<_; _<_≤_; toℕ<; Ordering; less; equal; greater; compare)
+open import FinMerge.Util using (_<_≤_; Ordering; compare)
+open Ordering
private
variable
diff --git a/FinMerge/Properties.agda b/FinMerge/Properties.agda
index 5f92905..6e9d53a 100644
--- a/FinMerge/Properties.agda
+++ b/FinMerge/Properties.agda
@@ -13,10 +13,11 @@ open import Data.Maybe.Base using (Maybe; map; nothing; just; fromMaybe)
open import Function using (id;  _∘_)
open import Relation.Binary.Definitions using (tri<; tri≈; tri>)
-open import Util using (_<_<_; _<_≤_; toℕ<; Ordering; less; equal; greater; compare)
+open import FinMerge.Util using (_<_≤_; Ordering; compare)
open import FinMerge using (merge; unmerge; pluck; glue-once; glue-unglue-once; glue-iter; unpluck)
+open Ordering
private
variable
diff --git a/Util.agda b/FinMerge/Util.agda
index d7053c5..6a7f7b4 100644
--- a/Util.agda
+++ b/FinMerge/Util.agda
@@ -1,5 +1,5 @@
{-# OPTIONS --without-K --safe #-}
-module Util where
+module FinMerge.Util where
open import Data.Fin using (Fin; toℕ)
open import Data.Nat using (ℕ; _≤_; _<_ ; z<s; s≤s)
diff --git a/Functor/Cartesian/Instance/Underlying/SymmetricMonoidal/FinitelyCocomplete.agda b/Functor/Cartesian/Instance/Underlying/SymmetricMonoidal/FinitelyCocomplete.agda
new file mode 100644
index 0000000..346999b
--- /dev/null
+++ b/Functor/Cartesian/Instance/Underlying/SymmetricMonoidal/FinitelyCocomplete.agda
@@ -0,0 +1,169 @@
+{-# OPTIONS --without-K --safe #-}
+{-# OPTIONS --lossy-unification #-}
+
+open import Level using (Level)
+
+module Functor.Cartesian.Instance.Underlying.SymmetricMonoidal.FinitelyCocomplete {o ℓ e : Level} where
+
+import Categories.Morphism.Reasoning as ⇒-Reasoning
+import Categories.Category.Monoidal.Utilities as ⊗-Util
+
+open import Categories.Category.Cartesian.Bundle using (CartesianCategory)
+open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory)
+open import Categories.Category.Product using (_※_)
+open import Categories.Category.Product.Properties using () renaming (project₁ to p₁; project₂ to p₂; unique to u)
+open import Categories.Functor.Core using (Functor)
+open import Categories.Functor.Cartesian using (CartesianF)
+open import Categories.Functor.Monoidal.Symmetric using (module Lax)
+open import Categories.NaturalTransformation.Core using (ntHelper)
+open import Categories.NaturalTransformation.NaturalIsomorphism.Monoidal.Symmetric using (module Lax)
+open import Categories.Object.Product using (IsProduct)
+open import Categories.Object.Terminal using (IsTerminal)
+open import Data.Product.Base using (_,_; <_,_>; proj₁; proj₂)
+
+open import Category.Cartesian.Instance.FinitelyCocompletes {o} {ℓ} {e} using (FinitelyCocompletes-CC)
+open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)
+open import Category.Cartesian.Instance.SymMonCat {o} {ℓ} {e} using (SymMonCat-CC)
+open import Functor.Instance.Underlying.SymmetricMonoidal.FinitelyCocomplete {o} {ℓ} {e} using () renaming (Underlying to U)
+
+module CartesianCategory′ {o ℓ e : Level} (C : CartesianCategory o ℓ e) where
+ module CC = CartesianCategory C
+ open import Categories.Object.Terminal using (Terminal)
+ open Terminal CC.terminal public
+ open import Categories.Category.BinaryProducts using (BinaryProducts)
+ open BinaryProducts CC.products public
+ open CC public
+
+module FC = CartesianCategory′ FinitelyCocompletes-CC
+module SMC = CartesianCategory′ SymMonCat-CC
+module U = Functor U
+
+F-resp-⊤ : IsTerminal SMC.U (U.₀ FC.⊤)
+F-resp-⊤ = _
+
+F-resp-× : {A B : FC.Obj} → IsProduct SMC.U (U.₁ (FC.π₁ {A} {B})) (U.₁ (FC.π₂ {A} {B}))
+F-resp-× {A} {B} = record
+ { ⟨_,_⟩ = pairing
+ ; project₁ = λ { {C} {F} {G} → project₁ {C} F G }
+ ; project₂ = λ { {C} {F} {G} → project₂ {C} F G }
+ ; unique = λ { {C} {H} {F} {G} ≃₁ ≃₂ → unique {C} F G H ≃₁ ≃₂ }
+ }
+ where
+ module _ {C : SMC.Obj} (F : Lax.SymmetricMonoidalFunctor C (U.₀ A)) (G : Lax.SymmetricMonoidalFunctor C (U.₀ B)) where
+ module F = Lax.SymmetricMonoidalFunctor F
+ module G = Lax.SymmetricMonoidalFunctor G
+ pairing : Lax.SymmetricMonoidalFunctor C (U.₀ (A FC.× B))
+ pairing = record
+ { F = F.F ※ G.F
+ ; isBraidedMonoidal = record
+ { isMonoidal = record
+ { ε = F.ε , G.ε
+ ; ⊗-homo = ntHelper record
+ { η = < F.⊗-homo.η , G.⊗-homo.η >
+ ; commute = < F.⊗-homo.commute , G.⊗-homo.commute >
+ }
+ ; associativity = F.associativity , G.associativity
+ ; unitaryˡ = F.unitaryˡ , G.unitaryˡ
+ ; unitaryʳ = F.unitaryʳ , G.unitaryʳ
+ }
+ ; braiding-compat = F.braiding-compat , G.braiding-compat
+ }
+ }
+ module pairing = Lax.SymmetricMonoidalFunctor pairing
+ module A = FinitelyCocompleteCategory A
+ module B = FinitelyCocompleteCategory B
+ module C = SymmetricMonoidalCategory C
+ module A′ = SymmetricMonoidalCategory (U.₀ A)
+ module B′ = SymmetricMonoidalCategory (U.₀ B)
+ project₁ : Lax.SymmetricMonoidalNaturalIsomorphism ((U.₁ (FC.π₁ {A} {B})) SMC.∘ pairing) F
+ project₁ = record
+ { U = p₁ {o} {ℓ} {e} {o} {ℓ} {e} {o} {ℓ} {e} {A.U} {B.U} {C.U} {F.F} {G.F}
+ ; F⇒G-isMonoidal = record
+ { ε-compat = ¡-unique₂ (id ∘ F.ε ∘ ¡) F.ε
+ ; ⊗-homo-compat = λ { {X} {Y} → identityˡ ○ refl⟩∘⟨ sym ([]-cong₂ identityʳ identityʳ) }
+ }
+ }
+ where
+ open FinitelyCocompleteCategory A
+ open HomReasoning
+ open Equiv
+ open ⇒-Reasoning A.U
+ project₂ : Lax.SymmetricMonoidalNaturalIsomorphism (U.₁ {A FC.× B} {B} FC.π₂ SMC.∘ pairing) G
+ project₂ = record
+ { U = p₂ {o} {ℓ} {e} {o} {ℓ} {e} {o} {ℓ} {e} {A.U} {B.U} {C.U} {F.F} {G.F}
+ ; F⇒G-isMonoidal = record
+ { ε-compat = ¡-unique₂ (id ∘ G.ε ∘ ¡) G.ε
+ ; ⊗-homo-compat = λ { {X} {Y} → identityˡ ○ refl⟩∘⟨ sym ([]-cong₂ identityʳ identityʳ) }
+ }
+ }
+ where
+ open FinitelyCocompleteCategory B
+ open HomReasoning
+ open Equiv
+ open ⇒-Reasoning B.U
+ unique
+ : (H : Lax.SymmetricMonoidalFunctor C (U.F₀ (A FC.× B)))
+ → Lax.SymmetricMonoidalNaturalIsomorphism (U.₁ {A FC.× B} {A} FC.π₁ SMC.∘ H) F
+ → Lax.SymmetricMonoidalNaturalIsomorphism (U.₁ {A FC.× B} {B} FC.π₂ SMC.∘ H) G
+ → Lax.SymmetricMonoidalNaturalIsomorphism pairing H
+ unique H ≃₁ ≃₂ = record
+ { U = u {o} {ℓ} {e} {o} {ℓ} {e} {o} {ℓ} {e} {A.U} {B.U} {C.U} {F.F} {G.F} {H.F} ≃₁.U ≃₂.U
+ ; F⇒G-isMonoidal = record
+ { ε-compat = ε-compat₁ , ε-compat₂
+ ; ⊗-homo-compat =
+ λ { {X} {Y} → ⊗-homo-compat₁ {X} {Y} , ⊗-homo-compat₂ {X} {Y} }
+ }
+ }
+ where
+ module H = Lax.SymmetricMonoidalFunctor H
+ module ≃₁ = Lax.SymmetricMonoidalNaturalIsomorphism ≃₁
+ module ≃₂ = Lax.SymmetricMonoidalNaturalIsomorphism ≃₂
+ ε-compat₁ : ≃₁.⇐.η C.unit A.∘ F.ε A.≈ proj₁ H.ε
+ ε-compat₁ = refl⟩∘⟨ sym ≃₁.ε-compat ○ cancelˡ (≃₁.iso.isoˡ C.unit) ○ ¡-unique₂ (proj₁ H.ε ∘ ¡) (proj₁ H.ε)
+ where
+ open A
+ open HomReasoning
+ open ⇒-Reasoning A.U
+ open Equiv
+ ε-compat₂ : ≃₂.⇐.η C.unit B.∘ G.ε B.≈ proj₂ H.ε
+ ε-compat₂ = refl⟩∘⟨ sym ≃₂.ε-compat ○ cancelˡ (≃₂.iso.isoˡ C.unit) ○ ¡-unique₂ (proj₂ H.ε ∘ ¡) (proj₂ H.ε)
+ where
+ open B
+ open HomReasoning
+ open ⇒-Reasoning B.U
+ open Equiv
+ ⊗-homo-compat₁
+ : {X Y : C.Obj}
+ → ≃₁.⇐.η (C.⊗.₀ (X , Y))
+ A.∘ F.⊗-homo.η (X , Y)
+ A.≈ proj₁ (H.⊗-homo.η (X , Y))
+ A.∘ (≃₁.⇐.η X A.+₁ ≃₁.⇐.η Y)
+ ⊗-homo-compat₁ {X} {Y} = switch-fromtoʳ (≃₁.FX≅GX ⊗ᵢ ≃₁.FX≅GX) (assoc ○ sym (switch-fromtoˡ ≃₁.FX≅GX (refl⟩∘⟨ introʳ A.+-η ○ ≃₁.⊗-homo-compat)))
+ where
+ open A
+ open HomReasoning
+ open Equiv
+ open ⇒-Reasoning A.U
+ open ⊗-Util A′.monoidal
+ ⊗-homo-compat₂
+ : {X Y : C.Obj}
+ → ≃₂.⇐.η (C.⊗.₀ (X , Y))
+ B.∘ G.⊗-homo.η (X , Y)
+ B.≈ proj₂ (H.⊗-homo.η (X , Y))
+ B.∘ (≃₂.⇐.η X B.+₁ ≃₂.⇐.η Y)
+ ⊗-homo-compat₂ = switch-fromtoʳ (≃₂.FX≅GX ⊗ᵢ ≃₂.FX≅GX) (assoc ○ sym (switch-fromtoˡ ≃₂.FX≅GX (refl⟩∘⟨ introʳ B.+-η ○ ≃₂.⊗-homo-compat)))
+ where
+ open B
+ open HomReasoning
+ open Equiv
+ open ⇒-Reasoning B.U
+ open ⊗-Util B′.monoidal
+
+Underlying : CartesianF FinitelyCocompletes-CC SymMonCat-CC
+Underlying = record
+ { F = U
+ ; isCartesian = record
+ { F-resp-⊤ = F-resp-⊤
+ ; F-resp-× = F-resp-×
+ }
+ }
diff --git a/Functor/Exact/Instance/Swap.agda b/Functor/Exact/Instance/Swap.agda
new file mode 100644
index 0000000..99a27c5
--- /dev/null
+++ b/Functor/Exact/Instance/Swap.agda
@@ -0,0 +1,79 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Level using (Level)
+open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)
+
+module Functor.Exact.Instance.Swap {o ℓ e : Level} (𝒞 𝒟 : FinitelyCocompleteCategory o ℓ e) where
+
+open import Categories.Category using (_[_,_])
+open import Categories.Category.BinaryProducts using (BinaryProducts)
+open import Categories.Category.Product using (Product) renaming (Swap to Swap′)
+open import Categories.Category.Cartesian using (Cartesian)
+open import Categories.Diagram.Coequalizer using (IsCoequalizer)
+open import Categories.Object.Initial using (IsInitial)
+open import Categories.Object.Coproduct using (IsCoproduct)
+open import Data.Product.Base using (_,_; proj₁; proj₂; swap)
+
+open import Category.Instance.FinitelyCocompletes {o} {ℓ} {e} using (FinitelyCocompletes-Cartesian)
+open import Functor.Exact using (RightExactFunctor)
+
+module FCC = Cartesian FinitelyCocompletes-Cartesian
+open BinaryProducts (FCC.products) using (_×_) -- ; π₁; π₂; _⁂_; assocˡ)
+
+
+module 𝒞 = FinitelyCocompleteCategory 𝒞
+module 𝒟 = FinitelyCocompleteCategory 𝒟
+
+swap-resp-⊥ : {A : 𝒞.Obj} {B : 𝒟.Obj} → IsInitial (Product 𝒞.U 𝒟.U) (A , B) → IsInitial (Product 𝒟.U 𝒞.U) (B , A)
+swap-resp-⊥ {A} {B} isInitial = record
+ { ! = swap !
+ ; !-unique = λ { (f , g) → swap (!-unique (g , f)) }
+ }
+ where
+ open IsInitial isInitial
+
+swap-resp-+
+ : {A₁ B₁ A+B₁ : 𝒞.Obj}
+ → {A₂ B₂ A+B₂ : 𝒟.Obj}
+ → {i₁₁ : 𝒞.U [ A₁ , A+B₁ ]}
+ → {i₂₁ : 𝒞.U [ B₁ , A+B₁ ]}
+ → {i₁₂ : 𝒟.U [ A₂ , A+B₂ ]}
+ → {i₂₂ : 𝒟.U [ B₂ , A+B₂ ]}
+ → IsCoproduct (Product 𝒞.U 𝒟.U) (i₁₁ , i₁₂) (i₂₁ , i₂₂)
+ → IsCoproduct (Product 𝒟.U 𝒞.U) (i₁₂ , i₁₁) (i₂₂ , i₂₁)
+swap-resp-+ {A₁} {B₁} {A+B₁} {A₂} {B₂} {A+B₂} {i₁₁} {i₂₁} {i₁₂} {i₂₂} isCoproduct = record
+ { [_,_] = λ { X Y → swap ([ swap X , swap Y ]) }
+ ; inject₁ = swap inject₁
+ ; inject₂ = swap inject₂
+ ; unique = λ { ≈₁ ≈₂ → swap (unique (swap ≈₁) (swap ≈₂)) }
+ }
+ where
+ open IsCoproduct isCoproduct
+
+swap-resp-coeq
+ : {A₁ B₁ C₁ : 𝒞.Obj} 
+ {A₂ B₂ C₂ : 𝒟.Obj}
+ {f₁ g₁ : 𝒞.U [ A₁ , B₁ ]}
+ {h₁ : 𝒞.U [ B₁ , C₁ ]}
+ {f₂ g₂ : 𝒟.U [ A₂ , B₂ ]}
+ {h₂ : 𝒟.U [ B₂ , C₂ ]}
+ → IsCoequalizer (Product 𝒞.U 𝒟.U) (f₁ , f₂) (g₁ , g₂) (h₁ , h₂)
+ → IsCoequalizer (Product 𝒟.U 𝒞.U) (f₂ , f₁) (g₂ , g₁) (h₂ , h₁)
+swap-resp-coeq isCoequalizer = record
+ { equality = swap equality
+ ; coequalize = λ { x → swap (coequalize (swap x)) }
+ ; universal = swap universal
+ ; unique = λ { x → swap (unique (swap x)) }
+ }
+ where
+ open IsCoequalizer isCoequalizer
+
+Swap : RightExactFunctor (𝒞 × 𝒟) (𝒟 × 𝒞)
+Swap = record
+ { F = Swap′
+ ; isRightExact = record
+ { F-resp-⊥ = swap-resp-⊥
+ ; F-resp-+ = swap-resp-+
+ ; F-resp-coeq = swap-resp-coeq
+ }
+ }
diff --git a/Functor/Forgetful/Instance/CMonoid.agda b/Functor/Forgetful/Instance/CMonoid.agda
new file mode 100644
index 0000000..fd8ecc1
--- /dev/null
+++ b/Functor/Forgetful/Instance/CMonoid.agda
@@ -0,0 +1,36 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Categories.Category using (Category)
+open import Categories.Category.Monoidal using (Monoidal)
+open import Categories.Category.Monoidal.Symmetric using (Symmetric)
+open import Level using (Level)
+
+module Functor.Forgetful.Instance.CMonoid
+ {o ℓ e : Level}
+ {S : Category o ℓ e}
+ {monoidal : Monoidal S}
+ (symmetric : Symmetric monoidal)
+ where
+
+open import Categories.Category.Construction.Monoids monoidal using (Monoids)
+open import Categories.Functor using (Functor)
+open import Category.Construction.CMonoids symmetric using (CMonoids)
+open import Function using (id)
+open import Object.Monoid.Commutative using (CommutativeMonoid; CommutativeMonoid⇒)
+
+private
+ module S = Category S
+
+open CommutativeMonoid
+open CommutativeMonoid⇒
+open Functor
+open S.Equiv using (refl)
+
+Forget : Functor CMonoids Monoids
+Forget .F₀ = monoid
+Forget .F₁ = monoid⇒
+Forget .identity = refl
+Forget .homomorphism = refl
+Forget .F-resp-≈ = id
+
+module Forget = Functor Forget
diff --git a/Functor/Forgetful/Instance/Monoid.agda b/Functor/Forgetful/Instance/Monoid.agda
new file mode 100644
index 0000000..2f9e4d8
--- /dev/null
+++ b/Functor/Forgetful/Instance/Monoid.agda
@@ -0,0 +1,29 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Categories.Category using (Category)
+open import Categories.Category.Monoidal using (Monoidal)
+open import Level using (Level)
+
+module Functor.Forgetful.Instance.Monoid {o ℓ e : Level} {S : Category o ℓ e} (monoidal : Monoidal S) where
+
+open import Categories.Category.Construction.Monoids using (Monoids)
+open import Categories.Functor using (Functor)
+open import Categories.Object.Monoid using (Monoid; Monoid⇒)
+open import Function using (id)
+
+private
+ module S = Category S
+
+open Monoid
+open Monoid⇒
+open S.Equiv using (refl)
+open Functor
+
+Forget : Functor (Monoids monoidal) S
+Forget .F₀ = Carrier
+Forget .F₁ = arr
+Forget .identity = refl
+Forget .homomorphism = refl
+Forget .F-resp-≈ = id
+
+module Forget = Functor Forget
diff --git a/Functor/Free/Instance/CMonoid.agda b/Functor/Free/Instance/CMonoid.agda
new file mode 100644
index 0000000..be9cb94
--- /dev/null
+++ b/Functor/Free/Instance/CMonoid.agda
@@ -0,0 +1,116 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Level using (Level; _⊔_)
+
+module Functor.Free.Instance.CMonoid {c ℓ : Level} where
+
+import Categories.Object.Monoid as MonoidObject
+import Object.Monoid.Commutative as CMonoidObject
+
+open import Categories.Category.Instance.Setoids using (Setoids)
+open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory)
+open import Categories.Functor using (Functor)
+open import Categories.NaturalTransformation using (NaturalTransformation)
+open import Category.Construction.CMonoids using (CMonoids)
+open import Category.Instance.Setoids.SymmetricMonoidal {c} {c ⊔ ℓ} using (Setoids-×; ×-symmetric′)
+open import Data.List.Relation.Binary.Permutation.Setoid.Properties using (++-assoc; ++-identityˡ; ++-identityʳ; ++-comm)
+open import Data.Product using (_,_)
+open import Data.Setoid using (∣_∣)
+open import Data.Opaque.Multiset using ([]ₛ; Multisetₛ; ++ₛ; mapₛ)
+open import Function using (_⟶ₛ_; _⟨$⟩_)
+open import Functor.Instance.Multiset {c} {ℓ} using (Multiset)
+open import NaturalTransformation.Instance.EmptyMultiset {c} {ℓ} using (⊤⇒[])
+open import NaturalTransformation.Instance.MultisetAppend {c} {ℓ} using (++)
+open import Relation.Binary using (Setoid)
+
+module ++ = NaturalTransformation ++
+module ⊤⇒[] = NaturalTransformation ⊤⇒[]
+
+open Functor
+open MonoidObject Setoids-×.monoidal using (Monoid; IsMonoid; Monoid⇒)
+open CMonoidObject Setoids-×.symmetric using (CommutativeMonoid; IsCommutativeMonoid; CommutativeMonoid⇒)
+open IsCommutativeMonoid
+open CommutativeMonoid using () renaming (μ to μ′; η to η′)
+open IsMonoid
+open CommutativeMonoid⇒
+open Monoid⇒
+
+module _ (X : Setoid c ℓ) where
+
+ open Setoid (Multiset.₀ X)
+
+ opaque
+
+ unfolding Multisetₛ
+
+ ++ₛ-assoc
+ : (x y z : ∣ Multisetₛ X ∣)
+ → ++ₛ ⟨$⟩ (++ₛ ⟨$⟩ (x , y) , z)
+ ≈ ++ₛ ⟨$⟩ (x , ++ₛ ⟨$⟩ (y , z))
+ ++ₛ-assoc x y z = ++-assoc X x y z
+
+ ++ₛ-identityˡ
+ : (x : ∣ Multisetₛ X ∣)
+ → x ≈ ++ₛ ⟨$⟩ ([]ₛ ⟨$⟩ _ , x)
+ ++ₛ-identityˡ x = ++-identityˡ X x
+
+ ++ₛ-identityʳ
+ : (x : ∣ Multisetₛ X ∣)
+ → x ≈ ++ₛ ⟨$⟩ (x , []ₛ ⟨$⟩ _)
+ ++ₛ-identityʳ x = sym (++-identityʳ X x)
+
+ ++ₛ-comm
+ : (x y : ∣ Multisetₛ X ∣)
+ → ++ₛ ⟨$⟩ (x , y) ≈ ++ₛ ⟨$⟩ (y , x)
+ ++ₛ-comm x y = ++-comm X x y
+
+ opaque
+ unfolding ×-symmetric′
+ MultisetCMonoid : IsCommutativeMonoid (Multiset.₀ X)
+ MultisetCMonoid .isMonoid .μ = ++.η X
+ MultisetCMonoid .isMonoid .η = ⊤⇒[].η X
+ MultisetCMonoid .isMonoid .assoc {(x , y) , z} = ++ₛ-assoc x y z
+ MultisetCMonoid .isMonoid .identityˡ {_ , x} = ++ₛ-identityˡ x
+ MultisetCMonoid .isMonoid .identityʳ {x , _} = ++ₛ-identityʳ x
+ MultisetCMonoid .commutative {x , y} = ++ₛ-comm x y
+
+Multisetₘ : (X : Setoid c ℓ) → CommutativeMonoid
+Multisetₘ X = record { isCommutativeMonoid = MultisetCMonoid X }
+
+open Setoids-× using (_⊗₀_; _⊗₁_)
+opaque
+ unfolding MultisetCMonoid
+ mapₛ-++ₛ
+ : {A B : Setoid c ℓ}
+ → (f : A ⟶ₛ B)
+ → {xy : ∣ Multisetₛ A ⊗₀ Multisetₛ A ∣}
+ → (open Setoid (Multisetₛ B))
+ → mapₛ f ⟨$⟩ (μ′ (Multisetₘ A) ⟨$⟩ xy)
+ ≈ μ′ (Multisetₘ B) ⟨$⟩ (mapₛ f ⊗₁ mapₛ f ⟨$⟩ xy)
+ mapₛ-++ₛ = ++.sym-commute
+
+opaque
+ unfolding MultisetCMonoid mapₛ
+ mapₛ-[]ₛ
+ : {A B : Setoid c ℓ}
+ → (f : A ⟶ₛ B)
+ → {x : ∣ Setoids-×.unit ∣}
+ → (open Setoid (Multisetₛ B))
+ → mapₛ f ⟨$⟩ (η′ (Multisetₘ A) ⟨$⟩ x)
+ ≈ η′ (Multisetₘ B) ⟨$⟩ x
+ mapₛ-[]ₛ = ⊤⇒[].commute
+
+mapₘ
+ : {A B : Setoid c ℓ}
+ (f : A ⟶ₛ B)
+ → CommutativeMonoid⇒ (Multisetₘ A) (Multisetₘ B)
+mapₘ f .monoid⇒ .arr = Multiset.₁ f
+mapₘ f .monoid⇒ .preserves-μ = mapₛ-++ₛ f
+mapₘ f .monoid⇒ .preserves-η = mapₛ-[]ₛ f
+
+Free : Functor (Setoids c ℓ) (CMonoids Setoids-×.symmetric)
+Free .F₀ = Multisetₘ
+Free .F₁ = mapₘ
+Free .identity {X} = Multiset.identity {X}
+Free .homomorphism {X} {Y} {Z} {f} {g} = Multiset.homomorphism {X} {Y} {Z} {f} {g}
+Free .F-resp-≈ {A} {B} {f} {g} = Multiset.F-resp-≈ {A} {B} {f} {g}
diff --git a/Functor/Free/Instance/Monoid.agda b/Functor/Free/Instance/Monoid.agda
new file mode 100644
index 0000000..c8450b9
--- /dev/null
+++ b/Functor/Free/Instance/Monoid.agda
@@ -0,0 +1,116 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Level using (Level; _⊔_; suc)
+
+module Functor.Free.Instance.Monoid {c ℓ : Level} where
+
+import Categories.Object.Monoid as MonoidObject
+
+open import Categories.Category using (Category)
+open import Categories.Category.Construction.Monoids using (Monoids)
+open import Categories.Category.Instance.Setoids using (Setoids)
+open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory)
+open import Categories.Functor using (Functor)
+open import Categories.NaturalTransformation using (NaturalTransformation)
+open import Category.Instance.Setoids.SymmetricMonoidal {c} {c ⊔ ℓ} using (Setoids-×; ×-monoidal′)
+open import Data.List.Properties using (++-assoc; ++-identityˡ; ++-identityʳ)
+open import Data.Opaque.List using ([]ₛ; Listₛ; ++ₛ; mapₛ)
+open import Data.Product using (_,_)
+open import Data.Setoid using (∣_∣)
+open import Function using (_⟶ₛ_; _⟨$⟩_)
+open import Functor.Instance.List {c} {ℓ} using (List)
+open import NaturalTransformation.Instance.EmptyList {c} {ℓ} using (⊤⇒[])
+open import NaturalTransformation.Instance.ListAppend {c} {ℓ} using (++)
+open import Relation.Binary using (Setoid)
+open import Relation.Binary.PropositionalEquality as ≡ using (_≡_)
+
+module ++ = NaturalTransformation ++
+module ⊤⇒[] = NaturalTransformation ⊤⇒[]
+
+open Functor
+open MonoidObject Setoids-×.monoidal using (Monoid; IsMonoid; Monoid⇒)
+
+open IsMonoid
+
+-- the functor sending a setoid A to the monoid List A
+
+module _ (X : Setoid c ℓ) where
+
+ open Setoid (List.₀ X)
+
+ opaque
+
+ unfolding []ₛ
+
+ ++ₛ-assoc
+ : (x y z : ∣ Listₛ X ∣)
+ → ++ₛ ⟨$⟩ (++ₛ ⟨$⟩ (x , y) , z)
+ ≈ ++ₛ ⟨$⟩ (x , ++ₛ ⟨$⟩ (y , z))
+ ++ₛ-assoc x y z = reflexive (++-assoc x y z)
+
+ ++ₛ-identityˡ
+ : (x : ∣ Listₛ X ∣)
+ → x ≈ ++ₛ ⟨$⟩ ([]ₛ ⟨$⟩ _ , x)
+ ++ₛ-identityˡ x = reflexive (++-identityˡ x)
+
+ ++ₛ-identityʳ
+ : (x : ∣ Listₛ X ∣)
+ → x ≈ ++ₛ ⟨$⟩ (x , []ₛ ⟨$⟩ _)
+ ++ₛ-identityʳ x = sym (reflexive (++-identityʳ x))
+
+ opaque
+
+ unfolding ×-monoidal′
+
+ ListMonoid : IsMonoid (List.₀ X)
+ ListMonoid = record
+ { μ = ++.η X
+ ; η = ⊤⇒[].η X
+ ; assoc = λ { {(x , y) , z} → ++ₛ-assoc x y z }
+ ; identityˡ = λ { {_ , x} → ++ₛ-identityˡ x }
+ ; identityʳ = λ { {x , _} → ++ₛ-identityʳ x }
+ }
+
+Listₘ : Setoid c ℓ → Monoid
+Listₘ X = record { isMonoid = ListMonoid X }
+
+opaque
+
+ unfolding ListMonoid
+
+ mapₘ
+ : {Aₛ Bₛ : Setoid c ℓ}
+ (f : Aₛ ⟶ₛ Bₛ)
+ → Monoid⇒ (Listₘ Aₛ) (Listₘ Bₛ)
+ mapₘ f = record
+ { arr = List.₁ f
+ ; preserves-μ = λ {x,y} → ++.sym-commute f {x,y}
+ ; preserves-η = ⊤⇒[].sym-commute f
+ }
+
+module U = Category Setoids-×.U
+open Monoid⇒ using (arr)
+open import Function.Construct.Identity using () renaming (function to Id)
+open import Function.Construct.Composition using () renaming (function to compose)
+opaque
+ unfolding mapₘ
+ Free-identity : {X : Setoid c ℓ} → arr (mapₘ (Id X)) U.≈ U.id
+ Free-identity = List.identity
+
+ Free-homomorphism : {X Y Z : Setoid c ℓ} {f : X ⟶ₛ Y} {g : Y ⟶ₛ Z} → arr (mapₘ (compose f g)) U.≈ arr (mapₘ g) U.∘ arr (mapₘ f)
+ Free-homomorphism = List.homomorphism
+
+ Free-resp-≈
+ : {X Y : Setoid c ℓ}
+ {f g : X ⟶ₛ Y}
+ (let module Y = Setoid Y)
+ → (∀ {x} → f ⟨$⟩ x Y.≈ g ⟨$⟩ x)
+ → arr (mapₘ f) U.≈ arr (mapₘ g)
+ Free-resp-≈ = List.F-resp-≈
+
+Free : Functor (Setoids c ℓ) (Monoids Setoids-×.monoidal)
+Free .F₀ = Listₘ
+Free .F₁ = mapₘ
+Free .identity = Free-identity
+Free .homomorphism = Free-homomorphism
+Free .F-resp-≈ = Free-resp-≈
diff --git a/Functor/Instance/Cospan/Embed.agda b/Functor/Instance/Cospan/Embed.agda
index 77f0361..6dbc04a 100644
--- a/Functor/Instance/Cospan/Embed.agda
+++ b/Functor/Instance/Cospan/Embed.agda
@@ -1,4 +1,5 @@
{-# OPTIONS --without-K --safe #-}
+{-# OPTIONS --hidden-argument-puns #-}
open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)
@@ -14,9 +15,10 @@ open import Categories.Category using (_[_,_]; _[_∘_]; _[_≈_])
open import Categories.Category.Core using (Category)
open import Categories.Functor.Core using (Functor)
open import Category.Instance.Cospans 𝒞 using (Cospans)
+open import Category.Diagram.Cospan 𝒞 using (cospan)
open import Data.Product.Base using (_,_)
open import Function.Base using (id)
-open import Functor.Instance.Cospan.Stack using (⊗)
+open import Functor.Instance.Cospan.Stack 𝒞 using (⊗)
module 𝒞 = FinitelyCocompleteCategory 𝒞
module Cospans = Category Cospans
@@ -28,24 +30,26 @@ open Morphism U using (module ≅; _≅_)
open PushoutProperties U using (up-to-iso)
open Pushout′ U using (pushout-id-g; pushout-f-id)
-L₁ : {A B : 𝒞.Obj} → U [ A , B ] → Cospans [ A , B ]
-L₁ f = record
- { f₁ = f
- ; f₂ = 𝒞.id
- }
+private
+ variable
+ A B C : 𝒞.Obj
+ W X Y Z : 𝒞.Obj
+
+L₁ : U [ A , B ] → Cospans [ A , B ]
+L₁ f = cospan f 𝒞.id
-L-identity : {A : 𝒞.Obj} → L₁ 𝒞.id ≈ Cospans.id {A}
+L-identity : L₁ 𝒞.id ≈ Cospans.id {A}
L-identity = record
{ ≅N = ≅.refl
- ; from∘f₁≈f₁′ = 𝒞.identity²
- ; from∘f₂≈f₂′ = 𝒞.identity²
+ ; from∘f₁≈f₁ = 𝒞.identity²
+ ; from∘f₂≈f₂ = 𝒞.identity²
}
-L-homomorphism : {X Y Z : 𝒞.Obj} {f : U [ X , Y ]} {g : U [ Y , Z ]} → L₁ (U [ g ∘ f ]) ≈ Cospans [ L₁ g ∘ L₁ f ]
+L-homomorphism : {f : U [ X , Y ]} {g : U [ Y , Z ]} → L₁ (U [ g ∘ f ]) ≈ Cospans [ L₁ g ∘ L₁ f ]
L-homomorphism {X} {Y} {Z} {f} {g} = record
{ ≅N = up-to-iso P′ P
- ; from∘f₁≈f₁′ = pullˡ (P′.universal∘i₁≈h₁ {eq = P.commute})
- ; from∘f₂≈f₂′ = P′.universal∘i₂≈h₂ {eq = P.commute} ○ sym 𝒞.identityʳ
+ ; from∘f₁≈f₁ = pullˡ (P′.universal∘i₁≈h₁ {eq = P.commute})
+ ; from∘f₂≈f₂ = P′.universal∘i₂≈h₂ {eq = P.commute} ○ sym 𝒞.identityʳ
}
where
open ⇒-Reasoning U
@@ -57,11 +61,11 @@ L-homomorphism {X} {Y} {Z} {f} {g} = record
module P = Pushout P
module P′ = Pushout P′
-L-resp-≈ : {A B : 𝒞.Obj} {f g : U [ A , B ]} → U [ f ≈ g ] → Cospans [ L₁ f ≈ L₁ g ]
+L-resp-≈ : {f g : U [ A , B ]} → U [ f ≈ g ] → Cospans [ L₁ f ≈ L₁ g ]
L-resp-≈ {A} {B} {f} {g} f≈g = record
{ ≅N = ≅.refl
- ; from∘f₁≈f₁′ = 𝒞.identityˡ ○ f≈g
- ; from∘f₂≈f₂′ = 𝒞.identity²
+ ; from∘f₁≈f₁ = 𝒞.identityˡ ○ f≈g
+ ; from∘f₂≈f₂ = 𝒞.identity²
}
where
open 𝒞.HomReasoning
@@ -75,24 +79,21 @@ L = record
; F-resp-≈ = L-resp-≈
}
-R₁ : {A B : 𝒞.Obj} → U [ B , A ] → Cospans [ A , B ]
-R₁ g = record
- { f₁ = 𝒞.id
- ; f₂ = g
- }
+R₁ : U [ B , A ] → Cospans [ A , B ]
+R₁ g = cospan 𝒞.id g
-R-identity : {A : 𝒞.Obj} → R₁ 𝒞.id ≈ Cospans.id {A}
+R-identity : R₁ 𝒞.id ≈ Cospans.id {A}
R-identity = record
{ ≅N = ≅.refl
- ; from∘f₁≈f₁′ = 𝒞.identity²
- ; from∘f₂≈f₂′ = 𝒞.identity²
+ ; from∘f₁≈f₁ = 𝒞.identity²
+ ; from∘f₂≈f₂ = 𝒞.identity²
}
-R-homomorphism : {X Y Z : 𝒞.Obj} {f : U [ Y , X ]} {g : U [ Z , Y ]} → R₁ (U [ f ∘ g ]) ≈ Cospans [ R₁ g ∘ R₁ f ]
-R-homomorphism {X} {Y} {Z} {f} {g} = record
+R-homomorphism : {f : U [ Y , X ]} {g : U [ Z , Y ]} → R₁ (U [ f ∘ g ]) ≈ Cospans [ R₁ g ∘ R₁ f ]
+R-homomorphism {f} {g} = record
{ ≅N = up-to-iso P′ P
- ; from∘f₁≈f₁′ = P′.universal∘i₁≈h₁ {eq = P.commute} ○ sym 𝒞.identityʳ
- ; from∘f₂≈f₂′ = pullˡ (P′.universal∘i₂≈h₂ {eq = P.commute})
+ ; from∘f₁≈f₁ = P′.universal∘i₁≈h₁ {eq = P.commute} ○ sym 𝒞.identityʳ
+ ; from∘f₂≈f₂ = pullˡ (P′.universal∘i₂≈h₂ {eq = P.commute})
}
where
open ⇒-Reasoning U
@@ -104,11 +105,11 @@ R-homomorphism {X} {Y} {Z} {f} {g} = record
module P = Pushout P
module P′ = Pushout P′
-R-resp-≈ : {A B : 𝒞.Obj} {f g : U [ A , B ]} → U [ f ≈ g ] → Cospans [ R₁ f ≈ R₁ g ]
-R-resp-≈ {A} {B} {f} {g} f≈g = record
+R-resp-≈ : {f g : U [ A , B ]} → U [ f ≈ g ] → Cospans [ R₁ f ≈ R₁ g ]
+R-resp-≈ {f} {g} f≈g = record
{ ≅N = ≅.refl
- ; from∘f₁≈f₁′ = 𝒞.identity²
- ; from∘f₂≈f₂′ = 𝒞.identityˡ ○ f≈g
+ ; from∘f₁≈f₁ = 𝒞.identity²
+ ; from∘f₂≈f₂ = 𝒞.identityˡ ○ f≈g
}
where
open 𝒞.HomReasoning
@@ -122,17 +123,11 @@ R = record
; F-resp-≈ = R-resp-≈
}
-B₁ : {A B C : 𝒞.Obj} → U [ A , C ] → U [ B , C ] → Cospans [ A , B ]
-B₁ f g = record
- { f₁ = f
- ; f₂ = g
- }
-
-B∘L : {W X Y Z : 𝒞.Obj} {f : U [ W , X ]} {g : U [ X , Y ]} {h : U [ Z , Y ]} → Cospans [ B₁ g h ∘ L₁ f ] ≈ B₁ (U [ g ∘ f ]) h
-B∘L {W} {X} {Y} {Z} {f} {g} {h} = record
+B∘L : {f : U [ W , X ]} {g : U [ X , Y ]} {h : U [ Z , Y ]} → Cospans [ cospan g h ∘ L₁ f ] ≈ cospan (U [ g ∘ f ]) h
+B∘L {f} {g} {h} = record
{ ≅N = up-to-iso P P′
- ; from∘f₁≈f₁′ = pullˡ (P.universal∘i₁≈h₁ {eq = P′.commute})
- ; from∘f₂≈f₂′ = pullˡ (P.universal∘i₂≈h₂ {eq = P′.commute}) ○ 𝒞.identityˡ
+ ; from∘f₁≈f₁ = pullˡ (P.universal∘i₁≈h₁ {eq = P′.commute})
+ ; from∘f₂≈f₂ = pullˡ (P.universal∘i₂≈h₂ {eq = P′.commute}) ○ 𝒞.identityˡ
}
where
open ⇒-Reasoning U
@@ -144,11 +139,11 @@ B∘L {W} {X} {Y} {Z} {f} {g} {h} = record
module P = Pushout P
module P′ = Pushout P′
-R∘B : {W X Y Z : 𝒞.Obj} {f : U [ W , X ]} {g : U [ Y , X ]} {h : U [ Z , Y ]} → Cospans [ R₁ h ∘ B₁ f g ] ≈ B₁ f (U [ g ∘ h ])
-R∘B {W} {X} {Y} {Z} {f} {g} {h} = record
+R∘B : {f : U [ W , X ]} {g : U [ Y , X ]} {h : U [ Z , Y ]} → Cospans [ R₁ h ∘ cospan f g ] ≈ cospan f (U [ g ∘ h ])
+R∘B {f} {g} {h} = record
{ ≅N = up-to-iso P P′
- ; from∘f₁≈f₁′ = pullˡ (P.universal∘i₁≈h₁ {eq = P′.commute}) ○ 𝒞.identityˡ
- ; from∘f₂≈f₂′ = pullˡ (P.universal∘i₂≈h₂ {eq = P′.commute})
+ ; from∘f₁≈f₁ = pullˡ (P.universal∘i₁≈h₁ {eq = P′.commute}) ○ 𝒞.identityˡ
+ ; from∘f₂≈f₂ = pullˡ (P.universal∘i₂≈h₂ {eq = P′.commute})
}
where
open ⇒-Reasoning U
@@ -164,20 +159,18 @@ module _ where
open _≅_
- ≅-L-R : ∀ {X Y : 𝒞.Obj} (X≅Y : X ≅ Y) → L₁ (to X≅Y) ≈ R₁ (from X≅Y)
- ≅-L-R {X} {Y} X≅Y = record
+ ≅-L-R : (X≅Y : X ≅ Y) → L₁ (to X≅Y) ≈ R₁ (from X≅Y)
+ ≅-L-R X≅Y = record
{ ≅N = X≅Y
- ; from∘f₁≈f₁′ = isoʳ X≅Y
- ; from∘f₂≈f₂′ = 𝒞.identityʳ
+ ; from∘f₁≈f₁ = isoʳ X≅Y
+ ; from∘f₂≈f₂ = 𝒞.identityʳ
}
-module ⊗ = Functor (⊗ 𝒞)
-
-L-resp-⊗ : {X Y X′ Y′ : 𝒞.Obj} {a : U [ X , X′ ]} {b : U [ Y , Y′ ]} → L₁ (a +₁ b) ≈ ⊗.₁ (L₁ a , L₁ b)
-L-resp-⊗ {X} {Y} {X′} {Y′} {a} {b} = record
+L-resp-⊗ : {a : U [ W , X ]} {b : U [ Y , Z ]} → L₁ (a +₁ b) ≈ ⊗.₁ (L₁ a , L₁ b)
+L-resp-⊗ {a} {b} = record
{ ≅N = ≅.refl
- ; from∘f₁≈f₁′ = 𝒞.identityˡ
- ; from∘f₂≈f₂′ = 𝒞.identityˡ ○ sym +-η ○ sym ([]-cong₂ identityʳ identityʳ)
+ ; from∘f₁≈f₁ = 𝒞.identityˡ
+ ; from∘f₂≈f₂ = 𝒞.identityˡ ○ sym +-η ○ sym ([]-cong₂ identityʳ identityʳ)
}
where
open 𝒞.HomReasoning
diff --git a/Functor/Instance/Cospan/Stack.agda b/Functor/Instance/Cospan/Stack.agda
index b7664dc..b72219b 100644
--- a/Functor/Instance/Cospan/Stack.agda
+++ b/Functor/Instance/Cospan/Stack.agda
@@ -9,11 +9,13 @@ import Categories.Diagram.Pushout.Properties as PushoutProperties
import Categories.Morphism as Morphism
import Categories.Morphism.Reasoning as ⇒-Reasoning
-open import Categories.Category.Core using (Category)
+open import Categories.Category using (Category)
+open import Categories.Functor using (Functor)
open import Categories.Functor.Bifunctor using (Bifunctor)
-open import Category.Instance.Cospans 𝒞 using (Cospan; Cospans; Same; id-Cospan; compose)
+open import Category.Instance.Cospans 𝒞 using (Cospans)
+open import Category.Diagram.Cospan 𝒞 as Cospan using (Cospan; identity; compose; _⊗_)
open import Category.Instance.FinitelyCocompletes {o} {ℓ} {e} using () renaming (_×_ to _×′_)
-open import Category.Instance.Properties.FinitelyCocompletes {o} {ℓ} {e} using (-+-; FinitelyCocompletes-CC)
+open import Category.Cartesian.Instance.FinitelyCocompletes {o} {ℓ} {e} using (-+-; FinitelyCocompletes-CC)
open import Data.Product.Base using (Σ; _,_; _×_; proj₁; proj₂)
open import Functor.Exact using (RightExactFunctor; IsPushout⇒Pushout)
open import Level using (Level; _⊔_; suc)
@@ -32,27 +34,19 @@ open DiagramPushout U×U using () renaming (Pushout to Pushout′)
open import Categories.Category.Monoidal.Utilities monoidal using (_⊗ᵢ_)
-together : {A A′ B B′ : Obj} → Cospan A B → Cospan A′ B′ → Cospan (A + A′) (B + B′)
-together A⇒B A⇒B′ = record
- { f₁ = f₁ A⇒B +₁ f₁ A⇒B′
- ; f₂ = f₂ A⇒B +₁ f₂ A⇒B′
- }
- where
- open Cospan
-
-id⊗id≈id : {A B : Obj} → Same (together (id-Cospan {A}) (id-Cospan {B})) (id-Cospan {A + B})
+id⊗id≈id : {A B : Obj} → identity {A} ⊗ identity {B} Cospan.≈ identity {A + B}
id⊗id≈id {A} {B} = record
{ ≅N = ≅.refl
- ; from∘f₁≈f₁′ = from∘f≈f′
- ; from∘f₂≈f₂′ = from∘f≈f′
+ ; from∘f₁≈f₁ = from∘f≈f
+ ; from∘f₂≈f₂ = from∘f≈f
}
where
open Morphism U using (module ≅)
open HomReasoning
open 𝒞 using (+-η; []-cong₂)
open coproduct {A} {B} using (i₁; i₂)
- from∘f≈f′ : id ∘ [ i₁ ∘ id , i₂ ∘ id ] 𝒞.≈ id
- from∘f≈f′ = begin
+ from∘f≈f : id ∘ [ i₁ ∘ id , i₂ ∘ id ] 𝒞.≈ id
+ from∘f≈f = begin
id ∘ [ i₁ ∘ id , i₂ ∘ id ] ≈⟨ identityˡ ⟩
[ i₁ ∘ id , i₂ ∘ id ] ≈⟨ []-cong₂ identityʳ identityʳ ⟩
[ i₁ , i₂ ] ≈⟨ +-η ⟩
@@ -64,14 +58,14 @@ homomorphism
→ (B⇒C : Cospan B C)
→ (A⇒B′ : Cospan A′ B′)
→ (B⇒C′ : Cospan B′ C′)
- → Same (together (compose A⇒B B⇒C) (compose A⇒B′ B⇒C′)) (compose (together A⇒B A⇒B′) (together B⇒C B⇒C′) )
+ → compose A⇒B B⇒C ⊗ compose A⇒B′ B⇒C′ Cospan.≈ compose (A⇒B ⊗ A⇒B′) (B⇒C ⊗ B⇒C′)
homomorphism A⇒B B⇒C A⇒B′ B⇒C′ = record
{ ≅N = ≅N
- ; from∘f₁≈f₁′ = from∘f₁≈f₁′
- ; from∘f₂≈f₂′ = from∘f₂≈f₂′
+ ; from∘f₁≈f₁ = from∘f₁≈f₁
+ ; from∘f₂≈f₂ = from∘f₂≈f₂
}
where
- open Cospan
+ open Cospan.Cospan
open Pushout
open HomReasoning
open ⇒-Reasoning U
@@ -89,56 +83,62 @@ homomorphism A⇒B B⇒C A⇒B′ B⇒C′ = record
P₃′ = IsPushout⇒Pushout (-+-.F-resp-pushout P₁×P₂.isPushout)
≅N : Q P₃′ ≅ Q P₃
≅N = up-to-iso P₃′ P₃
- from∘f₁≈f₁′ : from ≅N ∘ (f₁ (compose A⇒B B⇒C) +₁ f₁ (compose A⇒B′ B⇒C′)) ≈ f₁ (compose (together A⇒B A⇒B′) (together B⇒C B⇒C′))
- from∘f₁≈f₁′ = begin
+ from∘f₁≈f₁ : from ≅N ∘ (f₁ (compose A⇒B B⇒C) +₁ f₁ (compose A⇒B′ B⇒C′)) ≈ f₁ (compose (A⇒B ⊗ A⇒B′) (B⇒C ⊗ B⇒C′))
+ from∘f₁≈f₁ = begin
from ≅N ∘ (f₁ (compose A⇒B B⇒C) +₁ f₁ (compose A⇒B′ B⇒C′)) ≈⟨ Equiv.refl ⟩
from ≅N ∘ ((i₁ P₁ ∘ f₁ A⇒B) +₁ (i₁ P₂ ∘ f₁ A⇒B′)) ≈⟨ refl⟩∘⟨ +₁∘+₁ ⟨
from ≅N ∘ (i₁ P₁ +₁ i₁ P₂) ∘ (f₁ A⇒B +₁ f₁ A⇒B′) ≈⟨ Equiv.refl ⟩
- from ≅N ∘ i₁ P₃′ ∘ f₁ (together A⇒B A⇒B′) ≈⟨ pullˡ (universal∘i₁≈h₁ P₃′) ⟩
- i₁ P₃ ∘ f₁ (together A⇒B A⇒B′) ∎
- from∘f₂≈f₂′ : from ≅N ∘ (f₂ (compose A⇒B B⇒C) +₁ f₂ (compose A⇒B′ B⇒C′)) ≈ f₂ (compose (together A⇒B A⇒B′) (together B⇒C B⇒C′))
- from∘f₂≈f₂′ = begin
+ from ≅N ∘ i₁ P₃′ ∘ f₁ (A⇒B ⊗ A⇒B′) ≈⟨ pullˡ (universal∘i₁≈h₁ P₃′) ⟩
+ i₁ P₃ ∘ f₁ (A⇒B ⊗ A⇒B′) ∎
+ from∘f₂≈f₂ : from ≅N ∘ (f₂ (compose A⇒B B⇒C) +₁ f₂ (compose A⇒B′ B⇒C′)) ≈ f₂ (compose (A⇒B ⊗ A⇒B′) (B⇒C ⊗ B⇒C′))
+ from∘f₂≈f₂ = begin
from ≅N ∘ (f₂ (compose A⇒B B⇒C) +₁ f₂ (compose A⇒B′ B⇒C′)) ≈⟨ Equiv.refl ⟩
from ≅N ∘ ((i₂ P₁ ∘ f₂ B⇒C) +₁ (i₂ P₂ ∘ f₂ B⇒C′)) ≈⟨ refl⟩∘⟨ +₁∘+₁ ⟨
from ≅N ∘ (i₂ P₁ +₁ i₂ P₂) ∘ (f₂ B⇒C +₁ f₂ B⇒C′) ≈⟨ Equiv.refl ⟩
- from ≅N ∘ i₂ P₃′ ∘ f₂ (together B⇒C B⇒C′) ≈⟨ pullˡ (universal∘i₂≈h₂ P₃′) ⟩
- i₂ P₃ ∘ f₂ (together B⇒C B⇒C′) ∎
+ from ≅N ∘ i₂ P₃′ ∘ f₂ (B⇒C ⊗ B⇒C′) ≈⟨ pullˡ (universal∘i₂≈h₂ P₃′) ⟩
+ i₂ P₃ ∘ f₂ (B⇒C ⊗ B⇒C′) ∎
⊗-resp-≈
: {A A′ B B′ : Obj}
{f f′ : Cospan A B}
{g g′ : Cospan A′ B′}
- → Same f f′
- → Same g g′
- → Same (together f g) (together f′ g′)
+ → f Cospan.≈ f′
+ → g Cospan.≈ g′
+ → f ⊗ g Cospan.≈ f′ ⊗ g′
⊗-resp-≈ {_} {_} {_} {_} {f} {f′} {g} {g′} ≈f ≈g = record
{ ≅N = ≈f.≅N ⊗ᵢ ≈g.≅N
- ; from∘f₁≈f₁′ = from∘f₁≈f₁′
- ; from∘f₂≈f₂′ = from∘f₂≈f₂′
+ ; from∘f₁≈f₁ = from∘f₁≈f₁
+ ; from∘f₂≈f₂ = from∘f₂≈f₂
}
where
open 𝒞 using (-+-)
- module ≈f = Same ≈f
- module ≈g = Same ≈g
+ module ≈f = Cospan._≈_ ≈f
+ module ≈g = Cospan._≈_ ≈g
open HomReasoning
- open Cospan
+ open Cospan.Cospan
open 𝒞 using (+₁-cong₂; +₁∘+₁)
- from∘f₁≈f₁′ : (≈f.from +₁ ≈g.from) ∘ (f₁ f +₁ f₁ g) ≈ f₁ f′ +₁ f₁ g′
- from∘f₁≈f₁′ = begin 
+ from∘f₁≈f₁ : (≈f.from +₁ ≈g.from) ∘ (f₁ f +₁ f₁ g) ≈ f₁ f′ +₁ f₁ g′
+ from∘f₁≈f₁ = begin 
(≈f.from +₁ ≈g.from) ∘ (f₁ f +₁ f₁ g) ≈⟨ +₁∘+₁ ⟩
- (≈f.from ∘ f₁ f) +₁ (≈g.from ∘ f₁ g) ≈⟨ +₁-cong₂ (≈f.from∘f₁≈f₁′) (≈g.from∘f₁≈f₁′) ⟩
+ (≈f.from ∘ f₁ f) +₁ (≈g.from ∘ f₁ g) ≈⟨ +₁-cong₂ ≈f.from∘f₁≈f₁ ≈g.from∘f₁≈f₁ ⟩
f₁ f′ +₁ f₁ g′ ∎
- from∘f₂≈f₂′ : (≈f.from +₁ ≈g.from) ∘ (f₂ f +₁ f₂ g) ≈ f₂ f′ +₁ f₂ g′
- from∘f₂≈f₂′ = begin 
+ from∘f₂≈f₂ : (≈f.from +₁ ≈g.from) ∘ (f₂ f +₁ f₂ g) ≈ f₂ f′ +₁ f₂ g′
+ from∘f₂≈f₂ = begin 
(≈f.from +₁ ≈g.from) ∘ (f₂ f +₁ f₂ g) ≈⟨ +₁∘+₁ ⟩
- (≈f.from ∘ f₂ f) +₁ (≈g.from ∘ f₂ g) ≈⟨ +₁-cong₂ (≈f.from∘f₂≈f₂′) (≈g.from∘f₂≈f₂′) ⟩
+ (≈f.from ∘ f₂ f) +₁ (≈g.from ∘ f₂ g) ≈⟨ +₁-cong₂ ≈f.from∘f₂≈f₂ ≈g.from∘f₂≈f₂ ⟩
f₂ f′ +₁ f₂ g′ ∎
+private
+ ⊗′ : Bifunctor Cospans Cospans Cospans
+ ⊗′ = record
+ { F₀ = λ (A , A′) → A + A′
+ ; F₁ = λ (f , g) → f ⊗ g
+ ; identity = λ { {x , y} → id⊗id≈id {x} {y} }
+ ; homomorphism = λ { {_} {_} {_} {A⇒B , A⇒B′} {B⇒C , B⇒C′} → homomorphism A⇒B B⇒C A⇒B′ B⇒C′ }
+ ; F-resp-≈ = λ (≈f , ≈g) → ⊗-resp-≈ ≈f ≈g
+ }
+
⊗ : Bifunctor Cospans Cospans Cospans
-⊗ = record
- { F₀ = λ { (A , A′) → A + A′ }
- ; F₁ = λ { (f , g) → together f g }
- ; identity = λ { {x , y} → id⊗id≈id {x} {y} }
- ; homomorphism = λ { {_} {_} {_} {A⇒B , A⇒B′} {B⇒C , B⇒C′} → homomorphism A⇒B B⇒C A⇒B′ B⇒C′ }
- ; F-resp-≈ = λ { (≈f , ≈g) → ⊗-resp-≈ ≈f ≈g }
- }
+⊗ = ⊗′
+
+module ⊗ = Functor ⊗
diff --git a/Functor/Instance/Decorate.agda b/Functor/Instance/Decorate.agda
new file mode 100644
index 0000000..fedddba
--- /dev/null
+++ b/Functor/Instance/Decorate.agda
@@ -0,0 +1,165 @@
+{-# OPTIONS --without-K --safe #-}
+{-# OPTIONS --hidden-argument-puns #-}
+
+open import Categories.Category.Monoidal.Bundle using (MonoidalCategory; SymmetricMonoidalCategory)
+open import Categories.Functor.Monoidal.Symmetric using (module Lax)
+open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)
+open import Data.Product.Base using (_,_)
+
+open Lax using (SymmetricMonoidalFunctor)
+open FinitelyCocompleteCategory
+ using ()
+ renaming (symmetricMonoidalCategory to smc)
+
+module Functor.Instance.Decorate
+ {o o′ ℓ ℓ′ e e′}
+ (𝒞 : FinitelyCocompleteCategory o ℓ e)
+ {𝒟 : SymmetricMonoidalCategory o′ ℓ′ e′}
+ (F : SymmetricMonoidalFunctor (smc 𝒞) 𝒟) where
+
+import Categories.Category.Monoidal.Reasoning as ⊗-Reasoning
+import Categories.Diagram.Pushout as DiagramPushout
+import Categories.Morphism.Reasoning as ⇒-Reasoning
+import Category.Diagram.Cospan 𝒞 as Cospan
+
+open import Categories.Category using (Category; _[_,_]; _[_≈_]; _[_∘_])
+open import Categories.Category.Cocartesian using (module CocartesianMonoidal)
+open import Categories.Category.Monoidal.Properties using (coherence-inv₃)
+open import Categories.Category.Monoidal.Utilities using (module Shorthands)
+open import Categories.Functor.Core using (Functor)
+open import Categories.Functor.Properties using ([_]-resp-≅)
+open import Function.Base using () renaming (id to idf)
+open import Category.Instance.Cospans 𝒞 using (Cospans)
+open import Category.Instance.DecoratedCospans 𝒞 F using (DecoratedCospans)
+open import Functor.Instance.Cospan.Stack 𝒞 using (module ⊗)
+open import Functor.Instance.DecoratedCospan.Stack 𝒞 F using () renaming (module ⊗ to ⊗′)
+
+module 𝒞 = FinitelyCocompleteCategory 𝒞
+module 𝒟 = SymmetricMonoidalCategory 𝒟
+module F = SymmetricMonoidalFunctor F
+module Cospans = Category Cospans
+module DecoratedCospans = Category DecoratedCospans
+module mc𝒞 = CocartesianMonoidal 𝒞.U 𝒞.cocartesian
+
+-- For every cospan there exists a free decorated cospan
+-- i.e. the original cospan with the discrete decoration
+
+private
+ variable
+ A A′ B B′ C C′ D : 𝒞.Obj
+ f : Cospans [ A , B ]
+ g : Cospans [ C , D ]
+
+decorate : Cospans [ A , B ] → DecoratedCospans [ A , B ]
+decorate f = record
+ { cospan = f
+ ; decoration = F₁ ¡ ∘ ε
+ }
+ where
+ open 𝒞 using (¡)
+ open 𝒟 using (_∘_)
+ open F using (ε; F₁)
+
+identity : DecoratedCospans [ decorate (Cospans.id {A}) ≈ DecoratedCospans.id ]
+identity = record
+ { cospans-≈ = Cospans.Equiv.refl
+ ; same-deco = elimˡ F.identity
+ }
+ where
+ open ⇒-Reasoning 𝒟.U
+
+homomorphism : DecoratedCospans [ decorate (Cospans [ g ∘ f ]) ≈ DecoratedCospans [ decorate g ∘ decorate f ] ]
+homomorphism {g} {f} = record
+ { cospans-≈ = Cospans.Equiv.refl
+ ; same-deco = same-deco
+ }
+ where
+
+ open Cospan.Cospan f using (N; f₂)
+ open Cospan.Cospan g using () renaming (N to M; f₁ to g₁)
+
+ open 𝒟 using (U; monoidal; _⊗₁_; unitorˡ-commute-from) renaming (module unitorˡ to λ-)
+ open 𝒞 using (¡; ⊥; ¡-unique; pushout) renaming ([_,_] to [_,_]′; _+₁_ to infixr 10 _+₁_ )
+ open Category U
+ open Equiv
+ open ⇒-Reasoning U
+ open ⊗-Reasoning monoidal
+ open F.⊗-homo using () renaming (η to φ; commute to φ-commute)
+ open F using (F₁; ε)
+ open Shorthands monoidal
+
+ open DiagramPushout 𝒞.U using (Pushout)
+ open Pushout (pushout f₂ g₁) using (i₁; i₂)
+ open mc𝒞 using (unitorˡ)
+ open unitorˡ using () renaming (to to λ⇐′)
+
+ same-deco : F₁ 𝒞.id ∘ F₁ ¡ ∘ F.ε ≈ F₁ [ i₁ , i₂ ]′ ∘ φ (N , M) ∘ (F₁ ¡ ∘ ε) ⊗₁ (F₁ ¡ ∘ ε) ∘ ρ⇐
+ same-deco = begin
+ F₁ 𝒞.id ∘ F₁ ¡ ∘ ε ≈⟨ elimˡ F.identity ⟩
+ F₁ ¡ ∘ ε ≈⟨ F.F-resp-≈ (¡-unique _) ⟩∘⟨refl ⟩
+ F₁ ([ i₁ , i₂ ]′ 𝒞.∘ ¡ +₁ ¡ 𝒞.∘ λ⇐′) ∘ ε ≈⟨ refl⟩∘⟨ introʳ λ-.isoʳ ⟩
+ F₁ ([ i₁ , i₂ ]′ 𝒞.∘ ¡ +₁ ¡ 𝒞.∘ λ⇐′) ∘ ε ∘ λ⇒ ∘ λ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ coherence-inv₃ monoidal ⟩
+ F₁ ([ i₁ , i₂ ]′ 𝒞.∘ ¡ +₁ ¡ 𝒞.∘ λ⇐′) ∘ ε ∘ λ⇒ ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ unitorˡ-commute-from ⟨
+ F₁ ([ i₁ , i₂ ]′ 𝒞.∘ ¡ +₁ ¡ 𝒞.∘ λ⇐′) ∘ λ⇒ ∘ id ⊗₁ ε ∘ ρ⇐ ≈⟨ pushˡ F.homomorphism ⟩
+ F₁ [ i₁ , i₂ ]′ ∘ F₁ (¡ +₁ ¡ 𝒞.∘ λ⇐′) ∘ λ⇒ ∘ id ⊗₁ ε ∘ ρ⇐ ≈⟨ push-center F.homomorphism ⟩
+ F₁ [ i₁ , i₂ ]′ ∘ F₁ (¡ +₁ ¡) ∘ F₁ λ⇐′ ∘ λ⇒ ∘ id ⊗₁ ε ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ extendʳ (switch-fromtoˡ ([ F.F ]-resp-≅ unitorˡ) F.unitaryˡ) ⟨
+ F₁ [ i₁ , i₂ ]′ ∘ F₁ (¡ +₁ ¡) ∘ φ (⊥ , ⊥) ∘ ε ⊗₁ id ∘ id ⊗₁ ε ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ pullˡ (sym serialize₁₂) ⟩
+ F₁ [ i₁ , i₂ ]′ ∘ F₁ (¡ +₁ ¡) ∘ φ (⊥ , ⊥) ∘ ε ⊗₁ ε ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ (φ-commute (¡ , ¡)) ⟨
+ F₁ [ i₁ , i₂ ]′ ∘ φ (N , M) ∘ F₁ ¡ ⊗₁ F₁ ¡ ∘ ε ⊗₁ ε ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pullˡ (sym ⊗-distrib-over-∘) ⟩
+ F₁ [ i₁ , i₂ ]′ ∘ φ (N , M) ∘ (F₁ ¡ ∘ ε) ⊗₁ (F₁ ¡ ∘ ε) ∘ ρ⇐ ∎
+
+F-resp-≈ : Cospans [ f ≈ g ] → DecoratedCospans [ decorate f ≈ decorate g ]
+F-resp-≈ f≈g = record
+ { cospans-≈ = f≈g
+ ; same-deco = pullˡ (sym F.homomorphism) ○ sym (F.F-resp-≈ (¡-unique _)) ⟩∘⟨refl
+ }
+ where
+ open ⇒-Reasoning 𝒟.U
+ open 𝒟.Equiv
+ open 𝒟.HomReasoning
+ open 𝒞 using (¡-unique)
+
+Decorate : Functor Cospans DecoratedCospans
+Decorate = record
+ { F₀ = idf
+ ; F₁ = decorate
+ ; identity = identity
+ ; homomorphism = homomorphism
+ ; F-resp-≈ = F-resp-≈
+ }
+
+Decorate-resp-⊗ : DecoratedCospans [ decorate (⊗.₁ (f , g)) ≈ ⊗′.₁ (decorate f , decorate g) ]
+Decorate-resp-⊗ {f} {g} = record
+ { cospans-≈ = Cospan.≈-refl
+ ; same-deco = same-deco
+ }
+ where
+
+ open Cospan.Cospan f using (N)
+ open Cospan.Cospan g using () renaming (N to M)
+
+ open 𝒟 using (U; monoidal; _⊗₁_; unitorˡ-commute-from) renaming (module unitorˡ to λ-)
+ open 𝒞 using (¡; ⊥; ¡-unique; pushout) renaming ([_,_] to [_,_]′; _+₁_ to infixr 10 _+₁_ )
+ open Category U
+ open Equiv
+ open ⇒-Reasoning U
+ open ⊗-Reasoning monoidal
+ open F.⊗-homo using () renaming (η to φ; commute to φ-commute)
+ open F using (F₁; ε)
+ open Shorthands monoidal
+ open mc𝒞 using (unitorˡ)
+ open unitorˡ using () renaming (to to λ⇐′)
+
+ same-deco : F₁ 𝒞.id ∘ F₁ ¡ ∘ ε ≈ φ (N , M) ∘ (F₁ ¡ ∘ ε) ⊗₁ (F₁ ¡ ∘ ε) ∘ ρ⇐
+ same-deco = begin
+ F₁ 𝒞.id ∘ F₁ ¡ ∘ ε ≈⟨ elimˡ F.identity ⟩
+ F₁ ¡ ∘ ε ≈⟨ F.F-resp-≈ (¡-unique _) ⟩∘⟨refl ⟩
+ F₁ (¡ +₁ ¡ 𝒞.∘ λ⇐′) ∘ ε ≈⟨ refl⟩∘⟨ introʳ λ-.isoʳ ⟩
+ F₁ (¡ +₁ ¡ 𝒞.∘ λ⇐′) ∘ ε ∘ λ⇒ ∘ λ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ coherence-inv₃ monoidal ⟩
+ F₁ (¡ +₁ ¡ 𝒞.∘ λ⇐′) ∘ ε ∘ λ⇒ ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ unitorˡ-commute-from ⟨
+ F₁ (¡ +₁ ¡ 𝒞.∘ λ⇐′) ∘ λ⇒ ∘ id ⊗₁ ε ∘ ρ⇐ ≈⟨ pushˡ F.homomorphism ⟩
+ F₁ (¡ +₁ ¡) ∘ F₁ λ⇐′ ∘ λ⇒ ∘ id ⊗₁ ε ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ (switch-fromtoˡ ([ F.F ]-resp-≅ unitorˡ) F.unitaryˡ) ⟨
+ F₁ (¡ +₁ ¡) ∘ φ (⊥ , ⊥) ∘ ε ⊗₁ id ∘ id ⊗₁ ε ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pullˡ (sym serialize₁₂) ⟩
+ F₁ (¡ +₁ ¡) ∘ φ (⊥ , ⊥) ∘ ε ⊗₁ ε ∘ ρ⇐ ≈⟨ extendʳ (φ-commute (¡ , ¡)) ⟨
+ φ (N , M) ∘ F₁ ¡ ⊗₁ F₁ ¡ ∘ ε ⊗₁ ε ∘ ρ⇐ ≈⟨ refl⟩∘⟨ pullˡ (sym ⊗-distrib-over-∘) ⟩
+ φ (N , M) ∘ (F₁ ¡ ∘ ε) ⊗₁ (F₁ ¡ ∘ ε) ∘ ρ⇐ ∎
diff --git a/Functor/Instance/DecoratedCospan/Embed.agda b/Functor/Instance/DecoratedCospan/Embed.agda
new file mode 100644
index 0000000..77b16fa
--- /dev/null
+++ b/Functor/Instance/DecoratedCospan/Embed.agda
@@ -0,0 +1,275 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Categories.Category.Monoidal.Bundle using (MonoidalCategory; SymmetricMonoidalCategory)
+open import Categories.Functor.Monoidal.Symmetric using (module Lax)
+open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)
+
+open Lax using (SymmetricMonoidalFunctor)
+open FinitelyCocompleteCategory
+ using ()
+ renaming (symmetricMonoidalCategory to smc)
+
+module Functor.Instance.DecoratedCospan.Embed
+ {o o′ ℓ ℓ′ e e′}
+ (𝒞 : FinitelyCocompleteCategory o ℓ e)
+ {𝒟 : SymmetricMonoidalCategory o′ ℓ′ e′}
+ (F : SymmetricMonoidalFunctor (smc 𝒞) 𝒟) where
+
+import Categories.Category.Monoidal.Reasoning as ⊗-Reasoning
+import Categories.Diagram.Pushout.Properties as PushoutProperties
+import Categories.Morphism.Reasoning as ⇒-Reasoning
+import Category.Diagram.Pushout as Pushout′
+import Category.Diagram.Cospan as Cospan
+import Functor.Instance.Cospan.Embed 𝒞 as Embed
+
+open import Categories.Category using (Category; _[_,_]; _[_≈_]; _[_∘_])
+open import Categories.Category.Monoidal.Properties using (coherence-inv₃)
+open import Categories.Functor.Properties using ([_]-resp-≅)
+open import Category.Instance.Cospans 𝒞 using (Cospans)
+open import Category.Instance.DecoratedCospans 𝒞 F using (DecoratedCospans)
+
+import Categories.Diagram.Pushout as DiagramPushout
+import Categories.Diagram.Pushout.Properties as PushoutProperties
+import Categories.Morphism as Morphism
+
+open import Categories.Category.Cocartesian using (module CocartesianMonoidal)
+open import Categories.Category.Monoidal.Utilities using (module Shorthands)
+open import Categories.Functor using (Functor; _∘F_)
+open import Data.Product using (_,_)
+open import Function using () renaming (id to idf)
+open import Functor.Instance.DecoratedCospan.Stack 𝒞 F using (⊗)
+
+module 𝒞 = FinitelyCocompleteCategory 𝒞
+module 𝒟 = SymmetricMonoidalCategory 𝒟
+module F = SymmetricMonoidalFunctor F
+module Cospans = Category Cospans
+module DecoratedCospans = Category DecoratedCospans
+module mc𝒞 = CocartesianMonoidal 𝒞.U 𝒞.cocartesian
+
+open import Functor.Instance.Decorate 𝒞 F using (Decorate; Decorate-resp-⊗)
+
+private
+ variable
+ A B C D E H : 𝒞.Obj
+ f : 𝒞.U [ A , B ]
+ g : 𝒞.U [ C , D ]
+ h : 𝒞.U [ E , H ]
+
+L : Functor 𝒞.U DecoratedCospans
+L = Decorate ∘F Embed.L
+
+R : Functor 𝒞.op DecoratedCospans
+R = Decorate ∘F Embed.R
+
+B₁ : 𝒞.U [ A , C ] → 𝒞.U [ B , C ] → 𝒟.U [ 𝒟.unit , F.F₀ C ] → DecoratedCospans [ A , B ]
+B₁ f g s = record
+ { cospan = Cospan.cospan f g
+ ; decoration = s
+ }
+
+module _ where
+
+ module L = Functor L
+ module R = Functor R
+
+ module Codiagonal where
+
+ open mc𝒞 using (unitorˡ; unitorʳ; +-monoidal) public
+ open unitorˡ using () renaming (to to λ⇐′) public
+ open unitorʳ using () renaming (to to ρ⇐′) public
+ open 𝒞 using (U; _+_; []-cong₂; []∘+₁; ∘-distribˡ-[]; inject₁; inject₂; ¡)
+ renaming ([_,_] to [_,_]′; _+₁_ to infixr 10 _+₁_ )
+ open Category U
+ open Equiv
+ open HomReasoning
+ open ⇒-Reasoning 𝒞.U
+
+ μ : {X : Obj} → X + X ⇒ X
+ μ = [ id , id ]′
+
+ μ∘+ : {X Y Z : Obj} {f : X ⇒ Z} {g : Y ⇒ Z} → [ f , g ]′ ≈ μ ∘ f +₁ g
+ μ∘+ = []-cong₂ (sym identityˡ) (sym identityˡ) ○ sym []∘+₁
+
+ μ∘¡ˡ : {X : Obj} → μ ∘ ¡ +₁ id ∘ λ⇐′ ≈ id {X}
+ μ∘¡ˡ = begin
+ μ ∘ ¡ +₁ id ∘ λ⇐′ ≈⟨ pullˡ (sym μ∘+) ⟩
+ [ ¡ , id ]′ ∘ λ⇐′ ≈⟨ inject₂ ⟩
+ id ∎
+
+ μ∘¡ʳ : {X : Obj} → μ ∘ id +₁ ¡ ∘ ρ⇐′ ≈ id {X}
+ μ∘¡ʳ = begin
+ μ ∘ id +₁ ¡ ∘ ρ⇐′ ≈⟨ pullˡ (sym μ∘+) ⟩
+ [ id , ¡ ]′ ∘ ρ⇐′ ≈⟨ inject₁ ⟩
+ id ∎
+
+
+ μ-natural : {X Y : Obj} {f : X ⇒ Y} → f ∘ μ ≈ μ ∘ f +₁ f
+ μ-natural = ∘-distribˡ-[] ○ []-cong₂ (identityʳ ○ sym identityˡ) (identityʳ ○ sym identityˡ) ○ sym []∘+₁
+
+ B∘L : {A B M C : 𝒞.Obj}
+ → {f : 𝒞.U [ A , B ]}
+ → {g : 𝒞.U [ B , M ]}
+ → {h : 𝒞.U [ C , M ]}
+ → {s : 𝒟.U [ 𝒟.unit , F.₀ M ]}
+ → DecoratedCospans [ DecoratedCospans [ B₁ g h s ∘ L.₁ f ] ≈ B₁ (𝒞.U [ g ∘ f ]) h s ]
+ B∘L {A} {B} {M} {C} {f} {g} {h} {s} = record
+ { cospans-≈ = Embed.B∘L
+ ; same-deco = same-deco
+ }
+ where
+
+ module _ where
+ open 𝒞 using (¡; ⊥; ¡-unique; pushout) renaming ([_,_] to [_,_]′; _+₁_ to infixr 10 _+₁_ )
+ open 𝒞 using (U)
+ open Category U
+ open mc𝒞 using (unitorˡ; unitorˡ-commute-to; +-monoidal) public
+ open unitorˡ using () renaming (to to λ⇐′) public
+ open ⊗-Reasoning +-monoidal
+ open ⇒-Reasoning 𝒞.U
+ open Equiv
+
+ open Pushout′ 𝒞.U using (pushout-id-g)
+ open PushoutProperties 𝒞.U using (up-to-iso)
+ open DiagramPushout 𝒞.U using (Pushout)
+ P P′ : Pushout 𝒞.id g
+ P = pushout 𝒞.id g
+ P′ = pushout-id-g
+ module P = Pushout P
+ module P′ = Pushout P′
+ open Morphism 𝒞.U using (_≅_)
+ open _≅_ using (from)
+ open P using (i₁ ; i₂; universal∘i₂≈h₂) public
+
+ open Codiagonal using (μ; μ-natural; μ∘+; μ∘¡ˡ)
+
+ ≅ : P.Q ⇒ M
+ ≅ = up-to-iso P P′ .from
+
+ ≅∘[]∘¡+id : ((≅ ∘ [ i₁ , i₂ ]′) ∘ ¡ +₁ id) ∘ λ⇐′ ≈ id
+ ≅∘[]∘¡+id = begin
+ ((≅ ∘ [ i₁ , i₂ ]′) ∘ ¡ +₁ id) ∘ λ⇐′ ≈⟨ assoc²αε ⟩
+ ≅ ∘ [ i₁ , i₂ ]′ ∘ ¡ +₁ id ∘ λ⇐′ ≈⟨ refl⟩∘⟨ pushˡ μ∘+ ⟩
+ ≅ ∘ μ ∘ i₁ +₁ i₂ ∘ ¡ +₁ id ∘ λ⇐′ ≈⟨ refl⟩∘⟨ pull-center (sym split₁ʳ) ⟩
+ ≅ ∘ μ ∘ (i₁ ∘ ¡) +₁ i₂ ∘ λ⇐′ ≈⟨ extendʳ μ-natural ⟩
+ μ ∘ ≅ +₁ ≅ ∘ (i₁ ∘ ¡) +₁ i₂ ∘ λ⇐′ ≈⟨ pull-center (sym ⊗-distrib-over-∘) ⟩
+ μ ∘ (≅ ∘ i₁ ∘ ¡) +₁ (≅ ∘ i₂) ∘ λ⇐′ ≈⟨ refl⟩∘⟨ sym (¡-unique (≅ ∘ i₁ ∘ ¡)) ⟩⊗⟨ universal∘i₂≈h₂ ⟩∘⟨refl ⟩
+ μ ∘ ¡ +₁ id ∘ λ⇐′ ≈⟨ μ∘¡ˡ ⟩
+ id ∎
+
+ open 𝒟 using (U; monoidal; _⊗₁_; unitorˡ-commute-from) renaming (module unitorˡ to λ-)
+ open 𝒞 using (¡; ⊥; ¡-unique; pushout) renaming ([_,_] to [_,_]′; _+₁_ to infixr 10 _+₁_ )
+ open Category U
+ open Equiv
+ open ⇒-Reasoning U
+ open ⊗-Reasoning monoidal
+ open F.⊗-homo using () renaming (η to φ; commute to φ-commute)
+ open F using (F₁; ε)
+ open Shorthands monoidal
+
+ same-deco : F₁ ≅ ∘ F₁ [ i₁ , i₂ ]′ ∘ φ (B , M) ∘ (F₁ ¡ ∘ ε) ⊗₁ s ∘ ρ⇐ ≈ s
+ same-deco = begin
+ F₁ ≅ ∘ F₁ [ i₁ , i₂ ]′ ∘ φ (B , M) ∘ (F₁ ¡ ∘ ε) ⊗₁ s ∘ ρ⇐ ≈⟨ pullˡ (sym F.homomorphism) ⟩
+ F₁ (≅ 𝒞.∘ [ i₁ , i₂ ]′) ∘ φ (B , M) ∘ (F₁ ¡ ∘ ε) ⊗₁ s ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ split₁ˡ ⟩
+ F₁ (≅ 𝒞.∘ [ i₁ , i₂ ]′) ∘ φ (B , M) ∘ F₁ ¡ ⊗₁ id ∘ ε ⊗₁ s ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩⊗⟨ sym F.identity ⟩∘⟨refl ⟩
+ F₁ (≅ 𝒞.∘ [ i₁ , i₂ ]′) ∘ φ (B , M) ∘ F₁ ¡ ⊗₁ F₁ 𝒞.id ∘ ε ⊗₁ s ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ (φ-commute (¡ , 𝒞.id)) ⟩
+ F₁ (≅ 𝒞.∘ [ i₁ , i₂ ]′) ∘ F₁ (¡ +₁ 𝒞.id) ∘ φ (⊥ , M) ∘ ε ⊗₁ s ∘ ρ⇐ ≈⟨ pullˡ (sym F.homomorphism) ⟩
+ F₁ ((≅ 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ ¡ +₁ 𝒞.id) ∘ φ (⊥ , M) ∘ ε ⊗₁ s ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ serialize₁₂ ⟩
+ F₁ ((≅ 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ ¡ +₁ 𝒞.id) ∘ φ (⊥ , M) ∘ ε ⊗₁ id ∘ id ⊗₁ s ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ (switch-fromtoˡ ([ F.F ]-resp-≅ unitorˡ) F.unitaryˡ) ⟩
+ F₁ ((≅ 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ ¡ +₁ 𝒞.id) ∘ F₁ λ⇐′ ∘ λ⇒ ∘ id ⊗₁ s ∘ ρ⇐ ≈⟨ pullˡ (sym F.homomorphism) ⟩
+ F₁ (((≅ 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ ¡ +₁ 𝒞.id) 𝒞.∘ λ⇐′) ∘ λ⇒ ∘ id ⊗₁ s ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ unitorˡ-commute-from ⟩
+ F₁ (((≅ 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ ¡ +₁ 𝒞.id) 𝒞.∘ λ⇐′) ∘ s ∘ λ⇒ ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ coherence-inv₃ monoidal ⟨
+ F₁ (((≅ 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ ¡ +₁ 𝒞.id) 𝒞.∘ λ⇐′) ∘ s ∘ λ⇒ ∘ λ⇐ ≈⟨ refl⟩∘⟨ (sym-assoc ○ cancelʳ λ-.isoʳ) ⟩
+ F₁ (((≅ 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ ¡ +₁ 𝒞.id) 𝒞.∘ λ⇐′) ∘ s ≈⟨ elimˡ (F.F-resp-≈ ≅∘[]∘¡+id ○ F.identity) ⟩
+ s ∎
+
+ R∘B : {A N B C : 𝒞.Obj}
+ → {f : 𝒞.U [ A , N ]}
+ → {g : 𝒞.U [ B , N ]}
+ → {h : 𝒞.U [ C , B ]}
+ → {s : 𝒟.U [ 𝒟.unit , F.₀ N ]}
+ → DecoratedCospans [ DecoratedCospans [ R.₁ h ∘ B₁ f g s ] ≈ B₁ f (𝒞.U [ g ∘ h ]) s ]
+ R∘B {A} {N} {B} {C} {f} {g} {h} {s} = record
+ { cospans-≈ = Embed.R∘B
+ ; same-deco = same-deco
+ }
+ where
+
+ module _ where
+ open 𝒞 using (¡; ⊥; ¡-unique; pushout) renaming ([_,_] to [_,_]′; _+₁_ to infixr 10 _+₁_ )
+ open 𝒞 using (U)
+ open Category U
+ open mc𝒞 using (unitorʳ; unitorˡ; unitorˡ-commute-to; +-monoidal) public
+ open unitorˡ using () renaming (to to λ⇐′) public
+ open unitorʳ using () renaming (to to ρ⇐′) public
+ open ⊗-Reasoning +-monoidal
+ open ⇒-Reasoning 𝒞.U
+ open Equiv
+
+ open Pushout′ 𝒞.U using (pushout-f-id)
+ open PushoutProperties 𝒞.U using (up-to-iso)
+ open DiagramPushout 𝒞.U using (Pushout)
+ P P′ : Pushout g 𝒞.id
+ P = pushout g 𝒞.id
+ P′ = pushout-f-id
+ module P = Pushout P
+ module P′ = Pushout P′
+ open Morphism 𝒞.U using (_≅_)
+ open _≅_ using (from)
+ open P using (i₁ ; i₂; universal∘i₁≈h₁) public
+
+ open Codiagonal using (μ; μ-natural; μ∘+; μ∘¡ʳ)
+
+ ≅ : P.Q ⇒ N
+ ≅ = up-to-iso P P′ .from
+
+ ≅∘[]∘id+¡ : ((≅ ∘ [ i₁ , i₂ ]′) ∘ id +₁ ¡) ∘ ρ⇐′ ≈ id
+ ≅∘[]∘id+¡ = begin
+ ((≅ ∘ [ i₁ , i₂ ]′) ∘ id +₁ ¡) ∘ ρ⇐′ ≈⟨ assoc²αε ⟩
+ ≅ ∘ [ i₁ , i₂ ]′ ∘ id +₁ ¡ ∘ ρ⇐′ ≈⟨ refl⟩∘⟨ pushˡ μ∘+ ⟩
+ ≅ ∘ μ ∘ i₁ +₁ i₂ ∘ id +₁ ¡ ∘ ρ⇐′ ≈⟨ refl⟩∘⟨ pull-center merge₂ʳ ⟩
+ ≅ ∘ μ ∘ i₁ +₁ (i₂ ∘ ¡) ∘ ρ⇐′ ≈⟨ extendʳ μ-natural ⟩
+ μ ∘ ≅ +₁ ≅ ∘ i₁ +₁ (i₂ ∘ ¡) ∘ ρ⇐′ ≈⟨ pull-center (sym ⊗-distrib-over-∘) ⟩
+ μ ∘ (≅ ∘ i₁) +₁ (≅ ∘ i₂ ∘ ¡) ∘ ρ⇐′ ≈⟨ refl⟩∘⟨ universal∘i₁≈h₁ ⟩⊗⟨ sym (¡-unique (≅ ∘ i₂ ∘ ¡)) ⟩∘⟨refl ⟩
+ μ ∘ id +₁ ¡ ∘ ρ⇐′ ≈⟨ μ∘¡ʳ ⟩
+ id ∎
+
+ open 𝒟 using (U; monoidal; _⊗₁_; unitorʳ-commute-from) renaming (module unitorˡ to λ-; module unitorʳ to ρ)
+ open 𝒞 using (¡; ⊥; ¡-unique; pushout) renaming ([_,_] to [_,_]′; _+₁_ to infixr 10 _+₁_ )
+ open Category U
+ open Equiv
+ open ⇒-Reasoning U
+ open ⊗-Reasoning monoidal
+ open F.⊗-homo using () renaming (η to φ; commute to φ-commute)
+ open F using (F₁; ε)
+ open Shorthands monoidal
+
+ same-deco : F₁ ≅ ∘ F₁ [ i₁ , i₂ ]′ ∘ φ (N , B) ∘ s ⊗₁ (F₁ ¡ ∘ ε) ∘ ρ⇐ ≈ s
+ same-deco = begin
+ F₁ ≅ ∘ F₁ [ i₁ , i₂ ]′ ∘ φ (N , B) ∘ s ⊗₁ (F₁ ¡ ∘ ε) ∘ ρ⇐ ≈⟨ pullˡ (sym F.homomorphism) ⟩
+ F₁ (≅ 𝒞.∘ [ i₁ , i₂ ]′) ∘ φ (N , B) ∘ s ⊗₁ (F₁ ¡ ∘ ε) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ split₂ˡ ⟩
+ F₁ (≅ 𝒞.∘ [ i₁ , i₂ ]′) ∘ φ (N , B) ∘ id ⊗₁ F₁ ¡ ∘ s ⊗₁ ε ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ sym F.identity ⟩⊗⟨refl ⟩∘⟨refl ⟩
+ F₁ (≅ 𝒞.∘ [ i₁ , i₂ ]′) ∘ φ (N , B) ∘ F₁ 𝒞.id ⊗₁ F₁ ¡ ∘ s ⊗₁ ε ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ (φ-commute (𝒞.id , ¡)) ⟩
+ F₁ (≅ 𝒞.∘ [ i₁ , i₂ ]′) ∘ F₁ (𝒞.id +₁ ¡) ∘ φ (N , ⊥) ∘ s ⊗₁ ε ∘ ρ⇐ ≈⟨ pullˡ (sym F.homomorphism) ⟩
+ F₁ ((≅ 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ 𝒞.id +₁ ¡) ∘ φ (N , ⊥) ∘ s ⊗₁ ε ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ serialize₂₁ ⟩
+ F₁ ((≅ 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ 𝒞.id +₁ ¡) ∘ φ (N , ⊥) ∘ id ⊗₁ ε ∘ s ⊗₁ id ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ (switch-fromtoˡ ([ F.F ]-resp-≅ unitorʳ) F.unitaryʳ) ⟩
+ F₁ ((≅ 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ 𝒞.id +₁ ¡) ∘ F₁ ρ⇐′ ∘ ρ⇒ ∘ s ⊗₁ id ∘ ρ⇐ ≈⟨ pullˡ (sym F.homomorphism) ⟩
+ F₁ (((≅ 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ 𝒞.id +₁ ¡) 𝒞.∘ ρ⇐′) ∘ ρ⇒ ∘ s ⊗₁ id ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ unitorʳ-commute-from ⟩
+ F₁ (((≅ 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ 𝒞.id +₁ ¡) 𝒞.∘ ρ⇐′) ∘ s ∘ ρ⇒ ∘ ρ⇐ ≈⟨ refl⟩∘⟨ (sym-assoc ○ cancelʳ ρ.isoʳ) ⟩
+ F₁ (((≅ 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ 𝒞.id +₁ ¡) 𝒞.∘ ρ⇐′) ∘ s ≈⟨ elimˡ (F.F-resp-≈ ≅∘[]∘id+¡ ○ F.identity) ⟩
+ s ∎
+
+ open Morphism 𝒞.U using (_≅_)
+ open _≅_
+
+ ≅-L-R : (X≅Y : A ≅ B) → DecoratedCospans [ L.₁ (to X≅Y) ≈ R.₁ (from X≅Y) ]
+ ≅-L-R X≅Y = Decorate.F-resp-≈ (Embed.≅-L-R X≅Y)
+ where
+ module Decorate = Functor Decorate
+
+ open 𝒞 using (_+₁_)
+
+ L-resp-⊗ : DecoratedCospans [ L.₁ (f +₁ g) ≈ ⊗.₁ (L.₁ f , L.₁ g) ]
+ L-resp-⊗ = Decorate.F-resp-≈ Embed.L-resp-⊗ ○ Decorate-resp-⊗
+ where
+ module Decorate = Functor Decorate
+ open DecoratedCospans.HomReasoning
diff --git a/Functor/Instance/DecoratedCospan/Stack.agda b/Functor/Instance/DecoratedCospan/Stack.agda
new file mode 100644
index 0000000..381ee06
--- /dev/null
+++ b/Functor/Instance/DecoratedCospan/Stack.agda
@@ -0,0 +1,430 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory)
+open import Categories.Functor.Monoidal.Symmetric using (module Lax)
+open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)
+
+open Lax using (SymmetricMonoidalFunctor)
+open FinitelyCocompleteCategory
+ using ()
+ renaming (symmetricMonoidalCategory to smc)
+
+module Functor.Instance.DecoratedCospan.Stack
+ {o o′ ℓ ℓ′ e e′}
+ (𝒞 : FinitelyCocompleteCategory o ℓ e)
+ {𝒟 : SymmetricMonoidalCategory o′ ℓ′ e′}
+ (F : SymmetricMonoidalFunctor (smc 𝒞) 𝒟) where
+
+import Categories.Diagram.Pushout as DiagramPushout
+import Categories.Morphism as Morphism
+import Categories.Morphism.Reasoning as ⇒-Reasoning
+import Categories.Category.Monoidal.Reasoning as ⊗-Reasoning
+
+import Functor.Instance.Cospan.Stack 𝒞 as Stack
+
+open import Categories.Category using (Category; _[_,_]; _[_≈_]; _[_∘_])
+open import Categories.Category.BinaryProducts using (BinaryProducts)
+open import Categories.Category.Monoidal.Utilities using (module Shorthands)
+open import Categories.Category.Monoidal.Properties using (coherence-inv₃)
+open import Categories.Category.Monoidal.Braided.Properties using (braiding-coherence-inv)
+open import Categories.Functor using (Functor)
+open import Categories.Functor.Bifunctor using (Bifunctor)
+open import Categories.Functor.Properties using ([_]-resp-≅)
+open import Categories.Category.Cocartesian using (module CocartesianMonoidal; module CocartesianSymmetricMonoidal)
+open import Categories.Object.Initial using (Initial)
+open import Categories.Object.Duality using (Coproduct⇒coProduct)
+open import Category.Instance.DecoratedCospans 𝒞 F using () renaming (DecoratedCospans to Cospans; _≈_ to _≈_′)
+
+import Category.Diagram.Cospan 𝒞 as Cospan
+
+open import Cospan.Decorated 𝒞 F using (DecoratedCospan)
+open import Data.Product.Base using (_,_)
+
+module 𝒞 = FinitelyCocompleteCategory 𝒞
+module 𝒟 = SymmetricMonoidalCategory 𝒟
+module F = SymmetricMonoidalFunctor F
+module Cospans = Category Cospans
+
+open 𝒞 using (Obj; _+_; cocartesian)
+
+module mc𝒞 = CocartesianMonoidal 𝒞.U cocartesian
+module smc𝒞 = CocartesianSymmetricMonoidal 𝒞.U cocartesian
+
+open DiagramPushout 𝒞.U using (Pushout)
+
+private
+ variable
+ A A′ B B′ C C′ : Obj
+
+together : Cospans [ A , B ] → Cospans [ A′ , B′ ] → Cospans [ A + A′ , B + B′ ]
+together A⇒B A⇒B′ = record
+ { cospan = A⇒B.cospan Cospan.⊗ A⇒B′.cospan
+ ; decoration = ⊗-homo.η (A⇒B.N , A⇒B′.N) ∘ A⇒B.decoration ⊗₁ A⇒B′.decoration ∘ unitorʳ.to
+ }
+ where
+ module A⇒B = DecoratedCospan A⇒B
+ module A⇒B′ = DecoratedCospan A⇒B′
+ open 𝒟 using (_∘_; _⊗₁_; module unitorʳ)
+ open F using (module ⊗-homo)
+
+id⊗id≈id : Cospans [ together (Cospans.id {A}) (Cospans.id {B}) ≈ Cospans.id ]
+id⊗id≈id {A} {B} = record
+ { cospans-≈ = Stack.id⊗id≈id
+ ; same-deco = F.identity ⟩∘⟨refl
+ ○ identityˡ
+ ○ refl⟩∘⟨ ⊗-distrib-over-∘ ⟩∘⟨refl
+ ○ extendʳ (extendʳ (⊗-homo.commute (! , !)))
+ ○ refl⟩∘⟨ pullʳ (pushˡ serialize₂₁ ○ refl⟩∘⟨ sym unitorʳ-commute-to)
+ ○ pushˡ (F-resp-≈ !+!≈! ○ homomorphism)
+ ○ refl⟩∘⟨ (refl⟩∘⟨ sym-assoc ○ pullˡ unitaryʳ ○ cancelˡ unitorʳ.isoʳ)
+ }
+ where
+ open 𝒞 using (_+₁_; ¡-unique)
+ open 𝒟 using (identityˡ; U; monoidal; module unitorʳ; unitorʳ-commute-to; assoc; sym-assoc)
+ open 𝒟.Equiv
+ open ⇒-Reasoning U
+ open ⇒-Reasoning 𝒞.U using () renaming (flip-iso to flip-iso′)
+ open ⊗-Reasoning monoidal
+ open F using (module ⊗-homo; F-resp-≈; homomorphism; unitaryʳ)
+ open 𝒞 using (initial)
+ open Initial initial using (!; !-unique₂)
+ open Morphism using (_≅_; module ≅)
+ open mc𝒞 using (A+⊥≅A)
+ module A+⊥≅A = _≅_ A+⊥≅A
+ !+!≈! : 𝒞.U [ (! {A} +₁ ! {B}) ≈ ! {A + B} 𝒞.∘ A+⊥≅A.from ]
+ !+!≈! = 𝒞.Equiv.sym (flip-iso′ (≅.sym 𝒞.U A+⊥≅A) (¡-unique ((! +₁ !) 𝒞.∘ A+⊥≅A.to)))
+
+homomorphism
+ : (A⇒B : Cospans [ A , B ])
+ → (B⇒C : Cospans [ B , C ])
+ → (A⇒B′ : Cospans [ A′ , B′ ])
+ → (B⇒C′ : Cospans [ B′ , C′ ])
+ → Cospans
+ [ together (Cospans [ B⇒C ∘ A⇒B ]) (Cospans [ B⇒C′ ∘ A⇒B′ ])
+ ≈ Cospans [ together B⇒C B⇒C′ ∘ together A⇒B A⇒B′ ]
+ ]
+homomorphism {A} {B} {C} {A′} {B′} {C′} f g f′ g′ = record
+ { cospans-≈ = cospans-≈
+ ; same-deco = same-deco
+ }
+ where
+
+ module _ where
+ open DecoratedCospan using (cospan)
+ cospans-≈ : _ Cospan.⊗ _ Cospan.≈ Cospan.compose (_ Cospan.⊗ _) (_ Cospan.⊗ _)
+ cospans-≈ = Stack.homomorphism (f .cospan) (g .cospan) (f′ .cospan) (g′ .cospan)
+ open Cospan._≈_ cospans-≈ using () renaming (≅N to Q+Q′≅Q″) public
+
+ module DecorationNames where
+ open DecoratedCospan f using (N) renaming (decoration to s) public
+ open DecoratedCospan g using () renaming (decoration to t; N to M) public
+ open DecoratedCospan f′ using () renaming (decoration to s′; N to N′) public
+ open DecoratedCospan g′ using () renaming (decoration to t′; N to M′) public
+
+ module PushoutNames where
+ open DecoratedCospan using (f₁; f₂)
+ open 𝒞 using (pushout)
+ open Pushout (pushout (f .f₂) (g .f₁)) using (i₁; i₂; Q) public
+ open Pushout (pushout (f′ .f₂) (g′ .f₁)) using () renaming (i₁ to i₁′; i₂ to i₂′; Q to Q′) public
+ open Pushout (pushout (together f f′ .f₂) (together g g′ .f₁))
+ using (universal∘i₁≈h₁; universal∘i₂≈h₂)
+ renaming (i₁ to i₁″; i₂ to i₂″; Q to Q″) public
+
+ module _ where
+
+ open DecorationNames
+ open PushoutNames
+ open F.⊗-homo using () renaming (η to φ; commute to φ-commute)
+
+ open 𝒞 using () renaming ([_,_] to [_,_]′)
+
+ module _ where
+
+ open 𝒞
+ using (U; +-swap; inject₁; inject₂; +-η)
+ renaming (i₁ to ι₁; i₂ to ι₂; _+₁_ to infixr 10 _+₁_)
+ open Category U hiding (Obj)
+ open Equiv
+ open Shorthands mc𝒞.+-monoidal
+ open ⊗-Reasoning mc𝒞.+-monoidal
+ open ⇒-Reasoning U
+ open mc𝒞 using (assoc-commute-from; assoc-commute-to; module ⊗; associator)
+ open smc𝒞 using () renaming (module braiding to σ)
+
+ module Codiagonal where
+
+ open 𝒞 using (coproduct; +-unique; []-cong₂; []∘+₁; ∘-distribˡ-[])
+ μ : {X : Obj} → X + X ⇒ X
+ μ = [ id , id ]′
+
+ μ∘+ : {X Y Z : Obj} {f : X ⇒ Z} {g : Y ⇒ Z} → [ f , g ]′ ≈ μ ∘ f +₁ g
+ μ∘+ = []-cong₂ (sym identityˡ) (sym identityˡ) ○ sym []∘+₁
+
+ μ∘σ : {X : Obj} → μ ∘ +-swap ≈ μ {X}
+ μ∘σ = sym (+-unique (pullʳ inject₁ ○ inject₂) (pullʳ inject₂ ○ inject₁) )
+
+ op-binaryProducts : BinaryProducts op
+ op-binaryProducts = record { product = Coproduct⇒coProduct U coproduct }
+
+ module op-binaryProducts = BinaryProducts op-binaryProducts
+ open op-binaryProducts using () renaming (assocʳ∘⟨⟩ to []∘assocˡ)
+
+ μ-assoc : {X : Obj} → μ {X} ∘ μ +₁ (id {X}) ≈ μ ∘ (id {X}) +₁ μ ∘ α⇒
+ μ-assoc = begin
+ μ ∘ μ +₁ id ≈⟨ μ∘+ ⟨
+ [ [ id , id ]′ , id ]′ ≈⟨ []∘assocˡ ⟨
+ [ id , [ id , id ]′ ]′ ∘ α⇒ ≈⟨ pushˡ μ∘+ ⟩
+ μ ∘ id +₁ μ ∘ α⇒ ∎
+
+ μ-natural : {X Y : Obj} {f : X ⇒ Y} → f ∘ μ ≈ μ ∘ f +₁ f
+ μ-natural = ∘-distribˡ-[] ○ []-cong₂ (identityʳ ○ sym identityˡ) (identityʳ ○ sym identityˡ) ○ sym []∘+₁
+
+ open Codiagonal
+
+ ≅ : Q + Q′ ⇒ Q″
+ ≅ = Q+Q′≅Q″.from
+
+ ≅∘[]+[]≈μ∘μ+μ : ≅ ∘ [ i₁ , i₂ ]′ +₁ [ i₁′ , i₂′ ]′ ≈ (μ ∘ (μ +₁ μ)) ∘ ((i₁″ ∘ ι₁) +₁ (i₂″ ∘ ι₁)) +₁ ((i₁″ ∘ ι₂) +₁ (i₂″ ∘ ι₂))
+ ≅∘[]+[]≈μ∘μ+μ = begin
+ ≅ ∘ [ i₁ , i₂ ]′ +₁ [ i₁′ , i₂′ ]′ ≈⟨ refl⟩∘⟨ μ∘+ ⟩⊗⟨ μ∘+ ⟩
+ ≅ ∘ (μ ∘ i₁ +₁ i₂) +₁ (μ ∘ i₁′ +₁ i₂′) ≈⟨ refl⟩∘⟨ introˡ +-η ⟩
+ ≅ ∘ [ ι₁ , ι₂ ]′ ∘ (μ ∘ i₁ +₁ i₂) +₁ (μ ∘ i₁′ +₁ i₂′) ≈⟨ push-center μ∘+ ⟩
+ ≅ ∘ μ ∘ (ι₁ +₁ ι₂) ∘ (μ ∘ i₁ +₁ i₂) +₁ (μ ∘ i₁′ +₁ i₂′) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ sym ⊗-distrib-over-∘ ⟩
+ ≅ ∘ μ ∘ (ι₁ ∘ μ ∘ i₁ +₁ i₂) +₁ (ι₂ ∘ μ ∘ i₁′ +₁ i₂′) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ (extendʳ μ-natural) ⟩⊗⟨ (extendʳ μ-natural) ⟩
+ ≅ ∘ μ ∘ (μ ∘ ι₁ +₁ ι₁ ∘ i₁ +₁ i₂) +₁ (μ ∘ ι₂ +₁ ι₂ ∘ i₁′ +₁ i₂′) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ (refl⟩∘⟨ sym ⊗-distrib-over-∘) ⟩⊗⟨ (refl⟩∘⟨ sym ⊗-distrib-over-∘) ⟩
+ ≅ ∘ μ ∘ (μ ∘ (ι₁ ∘ i₁) +₁ (ι₁ ∘ i₂)) +₁ (μ ∘ (ι₂ ∘ i₁′) +₁ (ι₂ ∘ i₂′)) ≈⟨ extendʳ μ-natural ⟩
+ μ ∘ ≅ +₁ ≅ ∘ (μ ∘ _) +₁ (μ ∘ _) ≈⟨ refl⟩∘⟨ sym ⊗-distrib-over-∘ ⟩
+ μ ∘ (≅ ∘ μ ∘ _) +₁ (≅ ∘ μ ∘ _) ≈⟨ refl⟩∘⟨ extendʳ μ-natural ⟩⊗⟨ extendʳ μ-natural ⟩
+ μ ∘ (μ ∘ ≅ +₁ ≅ ∘ _) +₁ (μ ∘ ≅ +₁ ≅ ∘ _) ≈⟨ refl⟩∘⟨ (refl⟩∘⟨ sym ⊗-distrib-over-∘) ⟩⊗⟨ (refl⟩∘⟨ sym ⊗-distrib-over-∘) ⟩
+ μ ∘ (μ ∘ (≅ ∘ ι₁ ∘ i₁) +₁ (≅ ∘ ι₁ ∘ i₂)) +₁ (μ ∘ (≅ ∘ ι₂ ∘ i₁′) +₁ (≅ ∘ ι₂ ∘ i₂′)) ≈⟨ refl⟩∘⟨ (refl⟩∘⟨ eq₁ ⟩⊗⟨ eq₂ ) ⟩⊗⟨ (refl⟩∘⟨ eq₃ ⟩⊗⟨ eq₄ ) ⟩
+ μ ∘ (μ ∘ (i₁″ ∘ ι₁) +₁ (i₂″ ∘ ι₁)) +₁ (μ ∘ (i₁″ ∘ ι₂) +₁ (i₂″ ∘ ι₂)) ≈⟨ refl⟩∘⟨ ⊗-distrib-over-∘ ⟩
+ μ ∘ (μ +₁ μ) ∘ ((i₁″ ∘ ι₁) +₁ (i₂″ ∘ ι₁)) +₁ ((i₁″ ∘ ι₂) +₁ (i₂″ ∘ ι₂)) ≈⟨ sym-assoc ⟩
+ (μ ∘ (μ +₁ μ)) ∘ ((i₁″ ∘ ι₁) +₁ (i₂″ ∘ ι₁)) +₁ ((i₁″ ∘ ι₂) +₁ (i₂″ ∘ ι₂)) ∎
+ where
+ eq₁ : ≅ ∘ ι₁ ∘ i₁ ≈ i₁″ ∘ ι₁
+ eq₁ = refl⟩∘⟨ sym inject₁ ○ pullˡ (sym (switch-tofromˡ Q+Q′≅Q″ universal∘i₁≈h₁))
+ eq₂ : ≅ ∘ ι₁ ∘ i₂ ≈ i₂″ ∘ ι₁
+ eq₂ = refl⟩∘⟨ sym inject₁ ○ pullˡ (sym (switch-tofromˡ Q+Q′≅Q″ universal∘i₂≈h₂))
+ eq₃ : ≅ ∘ ι₂ ∘ i₁′ ≈ i₁″ ∘ ι₂
+ eq₃ = refl⟩∘⟨ sym inject₂ ○ pullˡ (sym (switch-tofromˡ Q+Q′≅Q″ universal∘i₁≈h₁))
+ eq₄ : ≅ ∘ ι₂ ∘ i₂′ ≈ i₂″ ∘ ι₂
+ eq₄ = refl⟩∘⟨ sym inject₂ ○ pullˡ (sym (switch-tofromˡ Q+Q′≅Q″ universal∘i₂≈h₂))
+
+ swap-inner : {W X Y Z : Obj} → (W + X) + (Y + Z) ⇒ (W + Y) + (X + Z)
+ swap-inner = α⇐ ∘ id +₁ (α⇒ ∘ +-swap +₁ id ∘ α⇐) ∘ α⇒
+
+ swap-inner-natural
+ : {W X Y Z W′ X′ Y′ Z′ : Obj}
+ {w : W ⇒ W′} {x : X ⇒ X′} {y : Y ⇒ Y′} {z : Z ⇒ Z′}
+ → (w +₁ x) +₁ (y +₁ z) ∘ swap-inner
+ ≈ swap-inner ∘ (w +₁ y) +₁ (x +₁ z)
+ swap-inner-natural {w = w} {x = x} {y = y} {z = z} = begin
+ (w +₁ x) +₁ (y +₁ z) ∘ α⇐ ∘ _ ≈⟨ extendʳ assoc-commute-to ⟨
+ α⇐ ∘ w +₁ (x +₁ _) ∘ id +₁ _ ∘ α⇒ ≈⟨ pull-center merge₂ʳ ⟩
+ α⇐ ∘ w +₁ (x +₁ _ ∘ α⇒ ∘ _) ∘ α⇒ ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ extendʳ assoc-commute-from ⟩∘⟨refl ⟨
+ α⇐ ∘ w +₁ (α⇒ ∘ (x +₁ y) +₁ z ∘ +-swap +₁ id ∘ α⇐) ∘ α⇒ ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ (refl⟩∘⟨ pushˡ split₁ʳ) ⟩∘⟨refl ⟨
+ α⇐ ∘ w +₁ (α⇒ ∘ (x +₁ y ∘ +-swap) +₁ z ∘ α⇐) ∘ α⇒ ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ (refl⟩∘⟨ σ.⇒.sym-commute _ ⟩⊗⟨refl ⟩∘⟨refl) ⟩∘⟨refl ⟩
+ α⇐ ∘ w +₁ (α⇒ ∘ (+-swap ∘ y +₁ x) +₁ z ∘ α⇐) ∘ α⇒ ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ push-center split₁ˡ ⟩∘⟨refl ⟩
+ α⇐ ∘ w +₁ (α⇒ ∘ +-swap +₁ id ∘ (y +₁ x) +₁ z ∘ α⇐) ∘ α⇒ ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ (refl⟩∘⟨ refl⟩∘⟨ assoc-commute-to) ⟩∘⟨refl ⟨
+ α⇐ ∘ w +₁ (α⇒ ∘ +-swap +₁ id ∘ α⇐ ∘ y +₁ (x +₁ z)) ∘ α⇒ ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ assoc²εβ ⟩∘⟨refl ⟩
+ α⇐ ∘ w +₁ ((α⇒ ∘ +-swap +₁ id ∘ α⇐) ∘ y +₁ (x +₁ z)) ∘ α⇒ ≈⟨ refl⟩∘⟨ pushˡ split₂ˡ ⟩
+ α⇐ ∘ id +₁ (α⇒ ∘ +-swap +₁ id ∘ α⇐) ∘ w +₁ (y +₁ (x +₁ z)) ∘ α⇒ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ assoc-commute-from ⟨
+ α⇐ ∘ id +₁ (α⇒ ∘ +-swap +₁ id ∘ α⇐) ∘ α⇒ ∘ (w +₁ y) +₁ (x +₁ z) ≈⟨ assoc²εβ ⟩
+ swap-inner ∘ (w +₁ y) +₁ (x +₁ z) ∎
+
+ μ∘μ+μ∘swap-inner : {X : Obj} → μ {X} ∘ μ +₁ μ ∘ swap-inner ≈ μ ∘ μ +₁ μ {X}
+ μ∘μ+μ∘swap-inner = begin
+ μ ∘ μ +₁ μ ∘ α⇐ ∘ id +₁ (α⇒ ∘ +-swap +₁ id ∘ α⇐) ∘ α⇒ ≈⟨ push-center serialize₁₂ ⟩
+ μ ∘ μ +₁ id ∘ id +₁ μ ∘ α⇐ ∘ id +₁ (α⇒ ∘ +-swap +₁ id ∘ α⇐) ∘ α⇒ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ ⊗.identity ⟩⊗⟨refl ⟩∘⟨refl ⟨
+ μ ∘ μ +₁ id ∘ (id +₁ id) +₁ μ ∘ α⇐ ∘ id +₁ (α⇒ ∘ +-swap +₁ id ∘ α⇐) ∘ α⇒ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ extendʳ assoc-commute-to ⟨
+ μ ∘ μ +₁ id ∘ α⇐ ∘ id +₁ (id +₁ μ) ∘ id +₁ (α⇒ ∘ +-swap +₁ id ∘ α⇐) ∘ α⇒ ≈⟨ pullˡ μ-assoc ⟩
+ (μ ∘ id +₁ μ ∘ α⇒) ∘ α⇐ ∘ id +₁ (id +₁ μ) ∘ id +₁ (α⇒ ∘ +-swap +₁ id ∘ α⇐) ∘ α⇒ ≈⟨ extendʳ (pullʳ (cancelʳ associator.isoʳ)) ⟩
+ μ ∘ id +₁ μ ∘ id +₁ (id +₁ μ) ∘ id +₁ (α⇒ ∘ +-swap +₁ id ∘ α⇐) ∘ α⇒ ≈⟨ refl⟩∘⟨ pull-center merge₂ˡ ⟩
+ μ ∘ id +₁ μ ∘ id +₁ (id +₁ μ ∘ α⇒ ∘ +-swap +₁ id ∘ α⇐) ∘ α⇒ ≈⟨ pull-center merge₂ʳ ⟩
+ μ ∘ id +₁ (μ ∘ id +₁ μ ∘ α⇒ ∘ +-swap +₁ id ∘ α⇐) ∘ α⇒ ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ pull-center refl ⟩∘⟨refl ⟩
+ μ ∘ id +₁ (μ ∘ (id +₁ μ ∘ α⇒) ∘ +-swap +₁ id ∘ α⇐) ∘ α⇒ ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ extendʳ μ-assoc ⟩∘⟨refl ⟨
+ μ ∘ id +₁ (μ ∘ μ +₁ id ∘ +-swap +₁ id ∘ α⇐) ∘ α⇒ ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ pull-center (sym split₁ˡ) ⟩∘⟨refl ⟩
+ μ ∘ id +₁ (μ ∘ (μ ∘ +-swap) +₁ id ∘ α⇐) ∘ α⇒ ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ (refl⟩∘⟨ μ∘σ ⟩⊗⟨refl ⟩∘⟨refl) ⟩∘⟨refl ⟩
+ μ ∘ id +₁ (μ ∘ μ +₁ id ∘ α⇐) ∘ α⇒ ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ (sym-assoc ○ flip-iso associator (μ-assoc ○ sym-assoc)) ⟩∘⟨refl ⟩
+ μ ∘ id +₁ (μ ∘ id +₁ μ) ∘ α⇒ ≈⟨ push-center split₂ʳ ⟩
+ μ ∘ id +₁ μ ∘ id +₁ (id +₁ μ) ∘ α⇒ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ assoc-commute-from ⟨
+ μ ∘ id +₁ μ ∘ α⇒ ∘ (id +₁ id) +₁ μ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ ⊗.identity ⟩⊗⟨refl ⟩
+ μ ∘ id +₁ μ ∘ α⇒ ∘ id +₁ μ ≈⟨ refl⟩∘⟨ sym-assoc ⟩
+ μ ∘ (id +₁ μ ∘ α⇒) ∘ id +₁ μ ≈⟨ extendʳ μ-assoc ⟨
+ μ ∘ μ +₁ id ∘ id +₁ μ ≈⟨ refl⟩∘⟨ serialize₁₂ ⟨
+ μ ∘ μ +₁ μ ∎
+
+ ≅∘[]+[]∘σ₄ : (Q+Q′≅Q″.from ∘ [ i₁ , i₂ ]′ +₁ [ i₁′ , i₂′ ]′) ∘ swap-inner ≈ [ i₁″ , i₂″ ]′
+ ≅∘[]+[]∘σ₄ = begin
+ (≅ ∘ [ i₁ , i₂ ]′ +₁ [ i₁′ , i₂′ ]′) ∘ _ ≈⟨ pushˡ ≅∘[]+[]≈μ∘μ+μ ⟩
+ (μ ∘ (μ +₁ μ)) ∘ ((i₁″ ∘ ι₁) +₁ (i₂″ ∘ ι₁)) +₁ ((i₁″ ∘ ι₂) +₁ (i₂″ ∘ ι₂)) ∘ (α⇐ ∘ _) ≈⟨ refl⟩∘⟨ swap-inner-natural ⟩
+ (μ ∘ (μ +₁ μ)) ∘ swap-inner ∘ _ ≈⟨ pullˡ assoc ⟩
+ (μ ∘ (μ +₁ μ) ∘ swap-inner) ∘ _ ≈⟨ pushˡ μ∘μ+μ∘swap-inner ⟩
+ μ ∘ (μ +₁ μ) ∘ ((i₁″ ∘ ι₁) +₁ (i₁″ ∘ ι₂)) +₁ ((i₂″ ∘ ι₁) +₁ (i₂″ ∘ ι₂)) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ ⊗-distrib-over-∘ ⟩⊗⟨ ⊗-distrib-over-∘ ⟩
+ μ ∘ (μ +₁ μ) ∘ (i₁″ +₁ i₁″ ∘ ι₁ +₁ ι₂) +₁ (i₂″ +₁ i₂″ ∘ ι₁ +₁ ι₂) ≈⟨ refl⟩∘⟨ ⊗-distrib-over-∘ ⟨
+ μ ∘ (μ ∘ i₁″ +₁ i₁″ ∘ ι₁ +₁ ι₂) +₁ (μ ∘ i₂″ +₁ i₂″ ∘ ι₁ +₁ ι₂) ≈⟨ refl⟩∘⟨ extendʳ μ-natural ⟩⊗⟨ extendʳ μ-natural ⟨
+ μ ∘ (i₁″ ∘ μ ∘ ι₁ +₁ ι₂) +₁ (i₂″ ∘ μ ∘ ι₁ +₁ ι₂) ≈⟨ refl⟩∘⟨ (refl⟩∘⟨ μ∘+) ⟩⊗⟨ (refl⟩∘⟨ μ∘+) ⟨
+ μ ∘ (i₁″ ∘ [ ι₁ , ι₂ ]′) +₁ (i₂″ ∘ [ ι₁ , ι₂ ]′) ≈⟨ refl⟩∘⟨ elimʳ +-η ⟩⊗⟨ elimʳ +-η ⟩
+ μ ∘ i₁″ +₁ i₂″ ≈⟨ μ∘+ ⟨
+ [ i₁″ , i₂″ ]′ ∎
+
+ module _ where
+
+ open 𝒟 using (U; _⊗₁_; module ⊗; module unitorˡ; module unitorʳ; monoidal; assoc-commute-from; assoc-commute-to)
+ open Category U
+ open ⇒-Reasoning U
+ open Equiv
+ open ⊗-Reasoning monoidal
+ open smc𝒞 using () renaming (associator to α)
+ open 𝒟 using () renaming (associator to α′)
+ open Morphism._≅_
+
+ swap-unit : 𝒟.braiding.⇐.η (𝒟.unit , 𝒟.unit) ≈ 𝒟.id
+ swap-unit = cancel-toʳ 𝒟.unitorˡ
+ ( braiding-coherence-inv 𝒟.braided
+ ○ sym (coherence-inv₃ monoidal)
+ ○ sym 𝒟.identityˡ)
+
+ φ-swap-inner : φ (N + M , N′ + M′) ∘ (φ (N , M) ∘ s ⊗₁ t) ⊗₁ (φ (N′ , M′) ∘ s′ ⊗₁ t′)
+ ≈ F.F₁ swap-inner ∘ φ (N + N′ , M + M′) ∘ (φ (N , N′) ∘ s ⊗₁ s′) ⊗₁ (φ (M , M′) ∘ t ⊗₁ t′)
+ φ-swap-inner = refl⟩∘⟨ ⊗-distrib-over-∘
+   ○ extendʳ
+ ( insertˡ ([ F.F ]-resp-≅ α .isoˡ) ⟩∘⟨ serialize₁₂
+ ○ center (assoc ○ F.associativity)
+ ○ refl⟩∘⟨
+ (extendˡ
+ ( refl⟩∘⟨ sym ⊗.identity ⟩⊗⟨refl
+ ○ extendˡ assoc-commute-from
+ ○ ( merge₂ʳ
+ ○ sym F.identity ⟩⊗⟨
+ ( switch-fromtoʳ α′ (assoc ○ (sym F.associativity))
+ ○ ( refl⟩∘⟨
+ ( refl⟩∘⟨
+ ( switch-fromtoʳ 𝒟.braiding.FX≅GX (sym F.braiding-compat) ⟩⊗⟨refl
+ ○ assoc ⟩⊗⟨refl
+ ○ split₁ʳ
+ ○ refl⟩⊗⟨ sym F.identity ⟩∘⟨refl)
+ ○ extendʳ (φ-commute (_ , 𝒞.id))
+ ○ refl⟩∘⟨
+ ( refl⟩∘⟨ split₁ˡ
+ ○ extendʳ (switch-fromtoˡ ([ F.F ]-resp-≅ α) F.associativity))
+ ○ pullˡ (sym F.homomorphism))
+ ○ pullˡ (sym F.homomorphism)) ⟩∘⟨refl
+ ○ assoc)
+ ○ split₂ʳ) ⟩∘⟨refl)
+ ○ ( extendʳ (φ-commute (𝒞.id , _))
+ ○ refl⟩∘⟨
+ ( refl⟩∘⟨ split₂ʳ
+ ○ extendʳ
+ ( refl⟩∘⟨ (refl⟩⊗⟨ assoc ○ split₂ʳ)
+ ○ extendʳ (switch-fromtoʳ α′ (assoc ○ (sym F.associativity)))
+ ○ refl⟩∘⟨
+ ( refl⟩∘⟨ (refl⟩⊗⟨ assoc ○ split₂ʳ)
+ ○ extendʳ assoc-commute-to
+ ○ ⊗.identity ⟩⊗⟨refl ⟩∘⟨refl)
+ ○ extendʳ (assoc ○ refl⟩∘⟨ (assoc ○ refl⟩∘⟨ sym serialize₁₂))))
+ ○ pullˡ (sym F.homomorphism)
+ ○ refl⟩∘⟨ (assoc ○ refl⟩∘⟨ pullʳ merge₂ʳ) ) ⟩∘⟨refl )
+ ○ center⁻¹ (sym F.homomorphism) assoc)
+ ○ refl⟩∘⟨
+ ( pullʳ
+ ( extendˡ assoc-commute-from
+ ○ ( pullʳ
+ ( merge₂ˡ
+ ○ refl⟩⊗⟨
+ ( extendˡ assoc-commute-to
+ ○ ( pullʳ (sym split₁ˡ ○ (𝒟.braiding.⇐.commute (s′ , t) ○ elimʳ swap-unit) ⟩⊗⟨refl)
+ ○ assoc-commute-from ) ⟩∘⟨refl
+ ○ cancelʳ 𝒟.associator.isoʳ))
+ ○ assoc-commute-to) ⟩∘⟨refl
+ ○ cancelʳ 𝒟.associator.isoˡ)
+ ○ pullʳ (sym ⊗-distrib-over-∘))
+
+ open Shorthands monoidal
+
+ same-deco
+ : (F.₁ Q+Q′≅Q″.from ∘ φ (Q , Q′) ∘ (F.₁ [ i₁ , i₂ ]′ ∘ φ (N , M) ∘ s ⊗₁ t ∘ ρ⇐) ⊗₁ (F.₁ [ i₁′ , i₂′ ]′ ∘ φ (N′ , M′) ∘ s′ ⊗₁ t′ ∘ ρ⇐) ∘ ρ⇐)
+ ≈ (F.₁ [ i₁″ , i₂″ ]′ ∘ φ (N + N′ , M + M′) ∘ (φ (N , N′) ∘ s ⊗₁ s′ ∘ ρ⇐) ⊗₁ (φ (M , M′) ∘ t ⊗₁ t′ ∘ ρ⇐) ∘ ρ⇐)
+ same-deco =
+ refl⟩∘⟨
+ ( refl⟩∘⟨ pushˡ ⊗-distrib-over-∘
+ ○ extendʳ (φ-commute ([ i₁ , i₂ ]′ , [ i₁′ , i₂′ ]′))
+ ○ refl⟩∘⟨ refl⟩∘⟨ sym-assoc ⟩⊗⟨ sym-assoc ⟩∘⟨refl
+ ○ refl⟩∘⟨ refl⟩∘⟨ pushˡ ⊗-distrib-over-∘
+ ○ refl⟩∘⟨ sym-assoc)
+ ○ pullˡ (sym F.homomorphism)
+ ○ extendʳ (pushʳ φ-swap-inner)
+ ○ (sym F.homomorphism ○ F.F-resp-≈ ≅∘[]+[]∘σ₄) ⟩∘⟨refl
+ ○ refl⟩∘⟨
+ ( assoc
+ ○ refl⟩∘⟨ pullˡ (sym ⊗-distrib-over-∘)
+ ○ refl⟩∘⟨ assoc ⟩⊗⟨ assoc ⟩∘⟨refl)
+
+⊗-resp-≈
+ : {A A′ B B′ : Obj}
+ {f f′ : Cospans [ A , B ]}
+ {g g′ : Cospans [ A′ , B′ ]}
+ → Cospans [ f ≈ f′ ]
+ → Cospans [ g ≈ g′ ]
+ → Cospans [ together f g ≈ together f′ g′ ]
+⊗-resp-≈ {_} {_} {_} {_} {f} {f′} {g} {g′} ≈f ≈g = record
+ { cospans-≈ = Stack.⊗-resp-≈ (≈f .cospans-≈) (≈g .cospans-≈)
+ ; same-deco = same-deco
+ }
+ where
+
+ open _≈_′ using (cospans-≈)
+
+ module SameNames where
+ open _≈_′ ≈f using () renaming (same-deco to ≅∘s≈t) public
+ open _≈_′ ≈g using () renaming (same-deco to ≅∘s≈t′) public
+ open Cospan._≈_ (≈f .cospans-≈) using (module ≅N) public
+ open Cospan._≈_ (≈g .cospans-≈) using () renaming (module ≅N to ≅N′) public
+
+ open SameNames
+
+ module DecorationNames where
+ open DecoratedCospan f using (N) renaming (decoration to s) public
+ open DecoratedCospan f′ using () renaming (decoration to t; N to M) public
+ open DecoratedCospan g using () renaming (decoration to s′; N to N′) public
+ open DecoratedCospan g′ using () renaming (decoration to t′; N to M′) public
+
+ open DecorationNames
+
+ module _ where
+ open 𝒞 using (_⇒_)
+ ≅ : N ⇒ M
+ ≅ = ≅N.from
+ ≅′ : N′ ⇒ M′
+ ≅′ = ≅N′.from
+
+ open 𝒞 using (_+₁_)
+
+ module _ where
+
+ open 𝒟 using (U; monoidal; _⊗₁_)
+ open Category U
+ open Equiv
+ open ⇒-Reasoning U
+ open ⊗-Reasoning monoidal
+ open F.⊗-homo using () renaming (η to φ; commute to φ-commute)
+ open F using (F₁)
+ open Shorthands monoidal
+
+ same-deco : F₁ (≅ +₁ ≅′) ∘ φ (N , N′) ∘ s ⊗₁ s′ ∘ ρ⇐ ≈ φ (M , M′) ∘ t ⊗₁ t′ ∘ ρ⇐
+ same-deco = begin
+ F₁ (≅ +₁ ≅′) ∘ φ (N , N′) ∘ s ⊗₁ s′ ∘ ρ⇐ ≈⟨ extendʳ (φ-commute (_ , _)) ⟨
+ φ (M , M′) ∘ F₁ ≅ ⊗₁ F₁ ≅′ ∘ s ⊗₁ s′ ∘ ρ⇐ ≈⟨ pull-center (sym ⊗-distrib-over-∘) ⟩
+ φ (M , M′) ∘ (F₁ ≅ ∘ s) ⊗₁ (F₁ ≅′ ∘ s′) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ ≅∘s≈t ⟩⊗⟨ ≅∘s≈t′ ⟩∘⟨refl ⟩
+ φ (M , M′) ∘ t ⊗₁ t′ ∘ ρ⇐ ∎
+
+⊗ : Bifunctor Cospans Cospans Cospans
+⊗ = record
+ { F₀ = λ (A , A′) → A + A′
+ ; F₁ = λ (f , g) → together f g
+ ; identity = λ { {x , y} → id⊗id≈id {x} {y} }
+ ; homomorphism = λ { {_} {_} {_} {A⇒B , A⇒B′} {B⇒C , B⇒C′} → homomorphism A⇒B B⇒C A⇒B′ B⇒C′ }
+ ; F-resp-≈ = λ (≈f , ≈g) → ⊗-resp-≈ ≈f ≈g
+ }
+
+module ⊗ = Functor ⊗
diff --git a/Functor/Instance/Endo/List.agda b/Functor/Instance/Endo/List.agda
new file mode 100644
index 0000000..67e3d0b
--- /dev/null
+++ b/Functor/Instance/Endo/List.agda
@@ -0,0 +1,15 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Level using (Level)
+
+module Functor.Instance.Endo.List {ℓ : Level} where
+
+import Functor.Instance.List {ℓ} {ℓ} as List
+
+open import Categories.Category.Instance.Setoids using (Setoids)
+open import Categories.Functor using (Endofunctor)
+
+-- List is only an endofunctor when the carrier sets and 
+-- equivalence relations live at the same level
+List : Endofunctor (Setoids ℓ ℓ)
+List = List.List
diff --git a/Functor/Instance/List.agda b/Functor/Instance/List.agda
new file mode 100644
index 0000000..a280218
--- /dev/null
+++ b/Functor/Instance/List.agda
@@ -0,0 +1,67 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Level using (Level; _⊔_)
+
+module Functor.Instance.List {c ℓ : Level} where
+
+import Data.List.Properties as ListProps
+import Data.List.Relation.Binary.Pointwise as PW
+
+open import Categories.Category.Instance.Setoids using (Setoids)
+open import Categories.Functor using (Functor)
+open import Data.Setoid using (∣_∣; _⇒ₛ_)
+open import Function.Base using (_∘_; id)
+open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_)
+open import Relation.Binary using (Setoid)
+
+open Functor
+open Setoid using (reflexive)
+open Func
+
+open import Data.Opaque.List as L hiding (List)
+
+private
+ variable
+ A B C : Setoid c ℓ
+
+open import Function.Construct.Identity using () renaming (function to Id)
+open import Function.Construct.Setoid using (_∙_)
+
+opaque
+
+ unfolding L.List
+
+ map-id
+ : (xs : ∣ Listₛ A ∣)
+ → (open Setoid (Listₛ A))
+ → mapₛ (Id _) ⟨$⟩ xs ≈ xs
+ map-id {A} = reflexive (Listₛ A) ∘ ListProps.map-id
+
+ List-homo
+ : (f : A ⟶ₛ B)
+ (g : B ⟶ₛ C)
+ → (xs : ∣ Listₛ A ∣)
+ → (open Setoid (Listₛ C))
+ → mapₛ (g ∙ f) ⟨$⟩ xs ≈ mapₛ g ⟨$⟩ (mapₛ f ⟨$⟩ xs)
+ List-homo {C = C} f g = reflexive (Listₛ C) ∘ ListProps.map-∘
+
+ List-resp-≈
+ : (f g : A ⟶ₛ B)
+ → (let open Setoid (A ⇒ₛ B) in f ≈ g)
+ → (let open Setoid (Listₛ A ⇒ₛ Listₛ B) in mapₛ f ≈ mapₛ g)
+ List-resp-≈ f g f≈g = PW.map⁺ (to f) (to g) (PW.refl f≈g)
+
+-- the List functor takes a carrier A to lists of A
+-- and the equivalence on A to pointwise equivalence on lists of A
+
+-- List on morphisms is the familiar map operation
+-- which applies the same function to every element of a list
+
+List : Functor (Setoids c ℓ) (Setoids c (c ⊔ ℓ))
+List .F₀ = Listₛ
+List .F₁ = mapₛ
+List .identity {_} {xs} = map-id xs
+List .homomorphism {f = f} {g} {xs} = List-homo f g xs
+List .F-resp-≈ {f = f} {g} f≈g = List-resp-≈ f g f≈g
+
+module List = Functor List
diff --git a/Functor/Instance/Monoidalize.agda b/Functor/Instance/Monoidalize.agda
new file mode 100644
index 0000000..6423109
--- /dev/null
+++ b/Functor/Instance/Monoidalize.agda
@@ -0,0 +1,43 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Level using (Level)
+open import Categories.Category using (Category)
+open import Categories.Category.Monoidal using (MonoidalCategory)
+open import Categories.Category.Cocartesian using (Cocartesian)
+
+module Functor.Instance.Monoidalize
+ {o o′ ℓ ℓ′ e e ′ : Level}
+ {C : Category o ℓ e}
+ (cocartesian : Cocartesian C)
+ (D : MonoidalCategory o ℓ e)
+ where
+
+open import Categories.Category.Cocartesian using (module CocartesianMonoidal)
+
+open import Categories.Functor using (Functor)
+open import Categories.Functor.Monoidal using (MonoidalFunctor)
+open import Categories.Category.Construction.Monoids using (Monoids)
+open import Categories.Category.Construction.Functors using (Functors)
+open import Categories.Category.Construction.MonoidalFunctors using (module Lax)
+open import Functor.Monoidal.Construction.MonoidValued cocartesian {D} using () renaming (F,⊗,ε to MonoidalFunctorOf)
+open import NaturalTransformation.Monoidal.Construction.MonoidValued cocartesian {D} using () renaming (β,⊗,ε to MonoidalNaturalTransformationOf)
+
+C-MC : MonoidalCategory o ℓ e
+C-MC = record { monoidal = +-monoidal }
+ where
+ open CocartesianMonoidal C cocartesian
+
+module C = MonoidalCategory C-MC
+module D = MonoidalCategory D
+
+open Lax using (MonoidalFunctors)
+open Functor
+
+Monoidalize : Functor (Functors C.U (Monoids D.monoidal)) (MonoidalFunctors C-MC D)
+Monoidalize .F₀ = MonoidalFunctorOf
+Monoidalize .F₁ α = MonoidalNaturalTransformationOf α
+Monoidalize .identity = D.Equiv.refl
+Monoidalize .homomorphism = D.Equiv.refl
+Monoidalize .F-resp-≈ x = x
+
+module Monoidalize = Functor Monoidalize
diff --git a/Functor/Instance/Multiset.agda b/Functor/Instance/Multiset.agda
new file mode 100644
index 0000000..b961c7b
--- /dev/null
+++ b/Functor/Instance/Multiset.agda
@@ -0,0 +1,72 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Level using (Level; _⊔_)
+
+module Functor.Instance.Multiset {c ℓ : Level} where
+
+import Data.Opaque.List as L
+import Data.List.Properties as ListProps
+import Data.List.Relation.Binary.Pointwise as PW
+
+open import Categories.Category.Instance.Setoids using (Setoids)
+open import Categories.Functor using (Functor)
+open import Data.List.Relation.Binary.Permutation.Setoid using (↭-setoid; ↭-reflexive-≋)
+open import Data.List.Relation.Binary.Permutation.Setoid.Properties using (map⁺)
+open import Data.Opaque.Multiset using (Multisetₛ; mapₛ)
+open import Data.Setoid using (∣_∣; _⇒ₛ_)
+open import Function.Base using (_∘_; id)
+open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_)
+open import Function.Construct.Identity using () renaming (function to Id)
+open import Function.Construct.Setoid using (_∙_)
+open import Relation.Binary using (Setoid)
+
+open Functor
+open Setoid using (reflexive)
+open Func
+
+private
+ variable
+ A B C : Setoid c ℓ
+
+-- the Multiset functor takes a carrier A to lists of A
+-- and the equivalence on A to permutation equivalence on lists of A
+
+-- Multiset on morphisms applies the same function to every element of a multiset
+
+opaque
+ unfolding mapₛ
+
+ map-id
+ : (xs : ∣ Multisetₛ A ∣)
+ → (open Setoid (Multisetₛ A))
+ → mapₛ (Id A) ⟨$⟩ xs ≈ xs
+ map-id {A} = reflexive (Multisetₛ A) ∘ ListProps.map-id
+
+opaque
+ unfolding mapₛ
+
+ Multiset-homo
+ : (f : A ⟶ₛ B)
+ (g : B ⟶ₛ C)
+ → (xs : ∣ Multisetₛ A ∣)
+ → (open Setoid (Multisetₛ C))
+ → mapₛ (g ∙ f) ⟨$⟩ xs ≈ mapₛ g ⟨$⟩ (mapₛ f ⟨$⟩ xs)
+ Multiset-homo {C = C} f g = reflexive (Multisetₛ C) ∘ ListProps.map-∘
+
+opaque
+ unfolding mapₛ
+
+ Multiset-resp-≈
+ : (f g : A ⟶ₛ B)
+ → (let open Setoid (A ⇒ₛ B) in f ≈ g)
+ → (let open Setoid (Multisetₛ A ⇒ₛ Multisetₛ B) in mapₛ f ≈ mapₛ g)
+ Multiset-resp-≈ {A} {B} f g f≈g = ↭-reflexive-≋ B (PW.map⁺ (to f) (to g) (PW.refl f≈g))
+
+Multiset : Functor (Setoids c ℓ) (Setoids c (c ⊔ ℓ))
+Multiset .F₀ = Multisetₛ
+Multiset .F₁ = mapₛ
+Multiset .identity {A} {xs} = map-id {A} xs
+Multiset .homomorphism {f = f} {g} {xs} = Multiset-homo f g xs
+Multiset .F-resp-≈ {A} {B} {f} {g} f≈g = Multiset-resp-≈ f g f≈g
+
+module Multiset = Functor Multiset
diff --git a/Functor/Instance/Nat/Circ.agda b/Functor/Instance/Nat/Circ.agda
new file mode 100644
index 0000000..88a6ec6
--- /dev/null
+++ b/Functor/Instance/Nat/Circ.agda
@@ -0,0 +1,56 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Level using (Level)
+
+module Functor.Instance.Nat.Circ {ℓ : Level} where
+
+import Data.List.Relation.Binary.Permutation.Setoid as ↭
+
+open import Categories.Category.Instance.Nat using (Nat)
+open import Categories.Functor using (Functor; _∘F_)
+open import Categories.Morphism.Notation using (_[_≅_])
+open import Category.Instance.Setoids.SymmetricMonoidal {ℓ} {ℓ} using (Setoids-×)
+open import Data.Circuit using (mk≈)
+open import Data.Circuit {ℓ} using (Circuitₛ; mkCircuitₛ; edgesₛ)
+open import Data.Circuit.Gate using (Gates)
+open import Data.Nat using (ℕ)
+open import Data.Opaque.Multiset using (Multisetₛ)
+open import Data.Product using (proj₁; proj₂; Σ-syntax)
+open import Functor.Free.Instance.CMonoid using (Free)
+open import Functor.Instance.Nat.Edge {ℓ} Gates using (Edge)
+open import Functor.Properties using (define-by-pw-iso)
+
+open import Category.Construction.CMonoids Setoids-×.symmetric using (CMonoids)
+open import Category.Construction.CMonoids.Properties Setoids-×.symmetric using (transport-by-iso)
+open import Object.Monoid.Commutative Setoids-×.symmetric using (CommutativeMonoid)
+
+Edges : Functor Nat CMonoids
+Edges = Free ∘F Edge
+
+module Edges = Functor Edges
+module Edge = Functor Edge
+
+opaque
+ unfolding Multisetₛ
+ Edges≅Circₛ : (n : ℕ) → Setoids-×.U [ Multisetₛ (Edge.₀ n) ≅ Circuitₛ n ]
+ Edges≅Circₛ n = record
+ { from = mkCircuitₛ
+ ; to = edgesₛ
+ ; iso = record
+   { isoˡ = ↭.↭-refl (Edge.₀ n)
+ ; isoʳ = mk≈ (↭.↭-refl (Edge.₀ n))
+ }
+ }
+
+private
+ Edges≅ : (n : ℕ) → Σ[ M ∈ CommutativeMonoid ] CMonoids [ Edges.₀ n ≅ M ]
+ Edges≅ n = transport-by-iso (Edges.₀ n) (Edges≅Circₛ n)
+
+Circuitₘ : ℕ → CommutativeMonoid
+Circuitₘ n = proj₁ (Edges≅ n)
+
+Edges≅Circₘ : (n : ℕ) → CMonoids [ Edges.₀ n ≅ Circuitₘ n ]
+Edges≅Circₘ n = proj₂ (Edges≅ n)
+
+Circ : Functor Nat CMonoids
+Circ = proj₁ (define-by-pw-iso Edges Circuitₘ Edges≅Circₘ)
diff --git a/Functor/Instance/Nat/Edge.agda b/Functor/Instance/Nat/Edge.agda
new file mode 100644
index 0000000..c69a1db
--- /dev/null
+++ b/Functor/Instance/Nat/Edge.agda
@@ -0,0 +1,60 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Data.Hypergraph.Label using (HypergraphLabel)
+open import Level using (Level; 0ℓ)
+
+module Functor.Instance.Nat.Edge {ℓ : Level} (HL : HypergraphLabel) where
+
+import Data.Vec as Vec
+import Data.Vec.Properties as VecProps
+
+open import Categories.Category.Instance.Nat using (Nat)
+open import Categories.Category.Instance.Setoids using (Setoids)
+open import Categories.Functor using (Functor)
+open import Data.Fin using (Fin)
+open import Data.Fin.Properties using (cast-is-id)
+open import Data.Hypergraph.Edge {ℓ} HL as Edge using (Edgeₛ; map; mapₛ; _≈_)
+open import Data.Nat using (ℕ)
+open import Data.Vec.Relation.Binary.Equality.Cast using (≈-reflexive)
+open import Function using (id; _∘_; Func; _⟶ₛ_)
+open import Relation.Binary using (Setoid)
+open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_)
+
+module HL = HypergraphLabel HL
+
+open Edge.Edge
+open Edge._≈_
+open Func
+open Functor
+
+map-id : {v : ℕ} {e : Edge.Edge v} → map id e ≈ e
+map-id .≡arity = ≡.refl
+map-id .≡label = HL.≈-reflexive ≡.refl
+map-id {_} {e} .≡ports = ≡.cong (ports e) ∘ ≡.sym ∘ cast-is-id ≡.refl
+
+map-∘
+ : {n m o : ℕ}
+ (f : Fin n → Fin m)
+ (g : Fin m → Fin o)
+ {e : Edge.Edge n}
+ → map (g ∘ f) e ≈ map g (map f e)
+map-∘ f g .≡arity = ≡.refl
+map-∘ f g .≡label = HL.≈-reflexive ≡.refl
+map-∘ f g {e} .≡ports = ≡.cong (g ∘ f ∘ ports e) ∘ ≡.sym ∘ cast-is-id ≡.refl
+
+map-resp-≗
+ : {n m : ℕ}
+ {f g : Fin n → Fin m}
+ → f ≗ g
+ → {e : Edge.Edge n}
+ → map f e ≈ map g e
+map-resp-≗ f≗g .≡arity = ≡.refl
+map-resp-≗ f≗g .≡label = HL.≈-reflexive ≡.refl
+map-resp-≗ {g = g} f≗g {e} .≡ports i = ≡.trans (f≗g (ports e i)) (≡.cong (g ∘ ports e) (≡.sym (cast-is-id ≡.refl i)))
+
+Edge : Functor Nat (Setoids ℓ ℓ)
+Edge .F₀ = Edgeₛ
+Edge .F₁ = mapₛ
+Edge .identity = map-id
+Edge .homomorphism {f = f} {g} = map-∘ f g
+Edge .F-resp-≈ = map-resp-≗
diff --git a/Functor/Instance/Nat/Preimage.agda b/Functor/Instance/Nat/Preimage.agda
new file mode 100644
index 0000000..7da00f4
--- /dev/null
+++ b/Functor/Instance/Nat/Preimage.agda
@@ -0,0 +1,65 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Functor.Instance.Nat.Preimage where
+
+open import Categories.Category.Instance.Nat using (Natop)
+open import Categories.Category.Instance.Setoids using (Setoids)
+open import Categories.Functor using (Functor)
+open import Data.Fin.Base using (Fin)
+open import Data.Bool.Base using (Bool)
+open import Data.Nat.Base using (ℕ)
+open import Data.Subset.Functional using (Subset)
+open import Data.Vec.Functional.Relation.Binary.Equality.Setoid using (≋-setoid)
+open import Function.Base using (id; _∘_)
+open import Function.Bundles using (Func; _⟶ₛ_)
+open import Function.Construct.Identity using () renaming (function to Id)
+open import Function.Construct.Setoid using (setoid; _∙_)
+open import Level using (0ℓ)
+open import Relation.Binary using (Rel; Setoid)
+open import Relation.Binary.PropositionalEquality as ≡ using (_≗_)
+
+open Functor
+open Func
+
+_≈_ : {X Y : Setoid 0ℓ 0ℓ} → Rel (X ⟶ₛ Y) 0ℓ
+_≈_ {X} {Y} = Setoid._≈_ (setoid X Y)
+infixr 4 _≈_
+
+private
+ variable A B C : ℕ
+
+-- action on objects (Subset n)
+Subsetₛ : ℕ → Setoid 0ℓ 0ℓ
+Subsetₛ = ≋-setoid (≡.setoid Bool)
+
+-- action of Preimage on morphisms (contravariant)
+Preimage₁ : (Fin A → Fin B) → Subsetₛ B ⟶ₛ Subsetₛ A
+to (Preimage₁ f) i = i ∘ f
+cong (Preimage₁ f) x≗y = x≗y ∘ f
+
+-- Preimage respects identity
+Preimage-identity : Preimage₁ id ≈ Id (Subsetₛ A)
+Preimage-identity {A} = Setoid.refl (Subsetₛ A)
+
+-- Preimage flips composition
+Preimage-homomorphism
+ : {A B C : ℕ}
+ (f : Fin A → Fin B)
+ (g : Fin B → Fin C)
+ → Preimage₁ (g ∘ f) ≈ Preimage₁ f ∙ Preimage₁ g
+Preimage-homomorphism {A} _ _ = Setoid.refl (Subsetₛ A)
+
+-- Preimage respects equality
+Preimage-resp-≈
+ : {f g : Fin A → Fin B}
+ → f ≗ g
+ → Preimage₁ f ≈ Preimage₁ g
+Preimage-resp-≈ f≗g {v} = ≡.cong v ∘ f≗g
+
+-- the Preimage functor
+Preimage : Functor Natop (Setoids 0ℓ 0ℓ)
+F₀ Preimage = Subsetₛ
+F₁ Preimage = Preimage₁
+identity Preimage = Preimage-identity
+homomorphism Preimage {f = f} {g} {v} = Preimage-homomorphism g f {v}
+F-resp-≈ Preimage = Preimage-resp-≈
diff --git a/Functor/Instance/Nat/Pull.agda b/Functor/Instance/Nat/Pull.agda
new file mode 100644
index 0000000..b1764d9
--- /dev/null
+++ b/Functor/Instance/Nat/Pull.agda
@@ -0,0 +1,81 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Functor.Instance.Nat.Pull where
+
+open import Categories.Category.Instance.Nat using (Natop)
+open import Categories.Category.Instance.Setoids using (Setoids)
+open import Categories.Functor using (Functor)
+open import Data.Fin.Base using (Fin)
+open import Data.Nat.Base using (ℕ)
+open import Function.Base using (id; _∘_)
+open import Function.Bundles using (Func; _⟶ₛ_)
+open import Function.Construct.Identity using () renaming (function to Id)
+open import Function.Construct.Setoid using (setoid; _∙_)
+open import Level using (0ℓ)
+open import Relation.Binary using (Rel; Setoid)
+open import Relation.Binary.PropositionalEquality as ≡ using (_≗_)
+open import Data.Circuit.Value using (Monoid)
+open import Data.System.Values Monoid using (Values)
+open import Data.Unit using (⊤; tt)
+
+open Functor
+open Func
+
+-- Pull takes a natural number n to the setoid Values n
+
+private
+
+ variable A B C : ℕ
+
+ _≈_ : {X Y : Setoid 0ℓ 0ℓ} → Rel (X ⟶ₛ Y) 0ℓ
+ _≈_ {X} {Y} = Setoid._≈_ (setoid X Y)
+
+ infixr 4 _≈_
+
+ opaque
+
+ unfolding Values
+
+ -- action of Pull on morphisms (contravariant)
+ Pull₁ : (Fin A → Fin B) → Values B ⟶ₛ Values A
+ to (Pull₁ f) i = i ∘ f
+ cong (Pull₁ f) x≗y = x≗y ∘ f
+
+ -- Pull respects identity
+ Pull-identity : Pull₁ id ≈ Id (Values A)
+ Pull-identity {A} = Setoid.refl (Values A)
+
+ opaque
+
+ unfolding Pull₁
+
+ -- Pull flips composition
+ Pull-homomorphism
+ : (f : Fin A → Fin B)
+ (g : Fin B → Fin C)
+ → Pull₁ (g ∘ f) ≈ Pull₁ f ∙ Pull₁ g
+ Pull-homomorphism {A} _ _ = Setoid.refl (Values A)
+
+ -- Pull respects equality
+ Pull-resp-≈
+ : {f g : Fin A → Fin B}
+ → f ≗ g
+ → Pull₁ f ≈ Pull₁ g
+ Pull-resp-≈ f≗g {v} = ≡.cong v ∘ f≗g
+
+opaque
+
+ unfolding Pull₁
+
+ Pull-defs : ⊤
+ Pull-defs = tt
+
+-- the Pull functor
+Pull : Functor Natop (Setoids 0ℓ 0ℓ)
+F₀ Pull = Values
+F₁ Pull = Pull₁
+identity Pull = Pull-identity
+homomorphism Pull {f = f} {g} = Pull-homomorphism g f
+F-resp-≈ Pull = Pull-resp-≈
+
+module Pull = Functor Pull
diff --git a/Functor/Instance/Nat/Push.agda b/Functor/Instance/Nat/Push.agda
new file mode 100644
index 0000000..8126006
--- /dev/null
+++ b/Functor/Instance/Nat/Push.agda
@@ -0,0 +1,79 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Functor.Instance.Nat.Push where
+
+open import Categories.Functor using (Functor)
+open import Categories.Category.Instance.Nat using (Nat)
+open import Categories.Category.Instance.Setoids using (Setoids)
+open import Data.Circuit.Merge using (merge; merge-cong₁; merge-cong₂; merge-⁅⁆; merge-preimage)
+open import Data.Fin.Base using (Fin)
+open import Data.Fin.Preimage using (preimage; preimage-cong₁)
+open import Data.Nat.Base using (ℕ)
+open import Data.Subset.Functional using (⁅_⁆)
+open import Function.Base using (id; _∘_)
+open import Function.Bundles using (Func; _⟶ₛ_)
+open import Function.Construct.Identity using () renaming (function to Id)
+open import Function.Construct.Setoid using (setoid; _∙_)
+open import Level using (0ℓ)
+open import Relation.Binary using (Rel; Setoid)
+open import Relation.Binary.PropositionalEquality as ≡ using (_≗_)
+open import Data.Circuit.Value using (Monoid)
+open import Data.System.Values Monoid using (Values)
+open import Data.Unit using (⊤; tt)
+
+open Func
+open Functor
+
+-- Push sends a natural number n to Values n
+
+private
+
+ variable A B C : ℕ
+
+ _≈_ : {X Y : Setoid 0ℓ 0ℓ} → Rel (X ⟶ₛ Y) 0ℓ
+ _≈_ {X} {Y} = Setoid._≈_ (setoid X Y)
+ infixr 4 _≈_
+
+ opaque
+
+ unfolding Values
+
+ -- action of Push on morphisms (covariant)
+ Push₁ : (Fin A → Fin B) → Values A ⟶ₛ Values B
+ to (Push₁ f) v = merge v ∘ preimage f ∘ ⁅_⁆
+ cong (Push₁ f) x≗y = merge-cong₁ x≗y ∘ preimage f ∘ ⁅_⁆
+
+ -- Push respects identity
+ Push-identity : Push₁ id ≈ Id (Values A)
+ Push-identity {_} {v} = merge-⁅⁆ v
+
+ -- Push respects composition
+ Push-homomorphism
+ : {f : Fin A → Fin B}
+ {g : Fin B → Fin C}
+ → Push₁ (g ∘ f) ≈ Push₁ g ∙ Push₁ f
+ Push-homomorphism {f = f} {g} {v} = merge-preimage f v ∘ preimage g ∘ ⁅_⁆
+
+ -- Push respects equality
+ Push-resp-≈
+ : {f g : Fin A → Fin B}
+ → f ≗ g
+ → Push₁ f ≈ Push₁ g
+ Push-resp-≈ f≗g {v} = merge-cong₂ v ∘ preimage-cong₁ f≗g ∘ ⁅_⁆
+
+opaque
+
+ unfolding Push₁
+
+ Push-defs : ⊤
+ Push-defs = tt
+
+-- the Push functor
+Push : Functor Nat (Setoids 0ℓ 0ℓ)
+F₀ Push = Values
+F₁ Push = Push₁
+identity Push = Push-identity
+homomorphism Push = Push-homomorphism
+F-resp-≈ Push = Push-resp-≈
+
+module Push = Functor Push
diff --git a/Functor/Instance/Nat/System.agda b/Functor/Instance/Nat/System.agda
new file mode 100644
index 0000000..05e1e7b
--- /dev/null
+++ b/Functor/Instance/Nat/System.agda
@@ -0,0 +1,110 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Functor.Instance.Nat.System where
+
+
+open import Level using (suc; 0ℓ)
+
+open import Categories.Category.Instance.Nat using (Nat)
+open import Categories.Category.Instance.Setoids using (Setoids)
+open import Categories.Functor.Core using (Functor)
+open import Data.Circuit.Value using (Monoid)
+open import Data.Fin.Base using (Fin)
+open import Data.Nat.Base using (ℕ)
+open import Data.Product.Base using (_,_; _×_)
+open import Data.System {suc 0ℓ} using (System; _≤_; Systemₛ)
+open import Data.System.Values Monoid using (module ≋)
+open import Data.Unit using (⊤; tt)
+open import Function.Base using (id; _∘_)
+open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_)
+open import Function.Construct.Identity using () renaming (function to Id)
+open import Function.Construct.Setoid using (_∙_)
+open import Functor.Instance.Nat.Pull using (Pull)
+open import Functor.Instance.Nat.Push using (Push)
+open import Relation.Binary.PropositionalEquality as ≡ using (_≗_)
+
+open Func
+open Functor
+open _≤_
+
+private
+
+ variable A B C : ℕ
+
+ opaque
+
+ map : (Fin A → Fin B) → System A → System B
+ map f X = let open System X in record
+ { S = S
+ ; fₛ = fₛ ∙ Pull.₁ f
+ ; fₒ = Push.₁ f ∙ fₒ
+ }
+
+ ≤-cong : (f : Fin A → Fin B) {X Y : System A} → Y ≤ X → map f Y ≤ map f X
+ ⇒S (≤-cong f x≤y) = ⇒S x≤y
+ ≗-fₛ (≤-cong f x≤y) = ≗-fₛ x≤y ∘ to (Pull.₁ f)
+ ≗-fₒ (≤-cong f x≤y) = cong (Push.₁ f) ∘ ≗-fₒ x≤y
+
+ System₁ : (Fin A → Fin B) → Systemₛ A ⟶ₛ Systemₛ B
+ to (System₁ f) = map f
+ cong (System₁ f) (x≤y , y≤x) = ≤-cong f x≤y , ≤-cong f y≤x
+
+ opaque
+
+ unfolding System₁
+
+ id-x≤x : {X : System A} → System₁ id ⟨$⟩ X ≤ X
+ ⇒S (id-x≤x) = Id _
+ ≗-fₛ (id-x≤x {_} {x}) i s = cong (System.fₛ x) Pull.identity
+ ≗-fₒ (id-x≤x {A} {x}) s = Push.identity
+
+ x≤id-x : {x : System A} → x ≤ System₁ id ⟨$⟩ x
+ ⇒S x≤id-x = Id _
+ ≗-fₛ (x≤id-x {A} {x}) i s = cong (System.fₛ x) (≋.sym Pull.identity)
+ ≗-fₒ (x≤id-x {A} {x}) s = ≋.sym Push.identity
+
+ System-homomorphism
+ : {f : Fin A → Fin B}
+ {g : Fin B → Fin C} 
+ {X : System A}
+ → System₁ (g ∘ f) ⟨$⟩ X ≤ System₁ g ⟨$⟩ (System₁ f ⟨$⟩ X)
+ × System₁ g ⟨$⟩ (System₁ f ⟨$⟩ X) ≤ System₁ (g ∘ f) ⟨$⟩ X
+ System-homomorphism {f = f} {g} {X} = left , right
+ where
+ open System X
+ left : map (g ∘ f) X ≤ map g (map f X)
+ left .⇒S = Id S
+ left .≗-fₛ i s = cong fₛ Pull.homomorphism
+ left .≗-fₒ s = Push.homomorphism
+ right : map g (map f X) ≤ map (g ∘ f) X
+ right .⇒S = Id S
+ right .≗-fₛ i s = cong fₛ (≋.sym Pull.homomorphism)
+ right .≗-fₒ s = ≋.sym Push.homomorphism
+
+ System-resp-≈
+ : {f g : Fin A → Fin B}
+ → f ≗ g
+ → {X : System A}
+ → System₁ f ⟨$⟩ X ≤ System₁ g ⟨$⟩ X
+ × System₁ g ⟨$⟩ X ≤ System₁ f ⟨$⟩ X
+ System-resp-≈ {A} {B} {f = f} {g} f≗g {X} = both f≗g , both (≡.sym ∘ f≗g)
+ where
+ open System X
+ both : {f g : Fin A → Fin B} → f ≗ g → map f X ≤ map g X
+ both f≗g .⇒S = Id S
+ both f≗g .≗-fₛ i s = cong fₛ (Pull.F-resp-≈ f≗g {i})
+ both {f} {g} f≗g .≗-fₒ s = Push.F-resp-≈ f≗g
+
+opaque
+ unfolding System₁
+ Sys-defs : ⊤
+ Sys-defs = tt
+
+Sys : Functor Nat (Setoids (suc 0ℓ) (suc 0ℓ))
+Sys .F₀ = Systemₛ
+Sys .F₁ = System₁
+Sys .identity = id-x≤x , x≤id-x
+Sys .homomorphism {x = X} = System-homomorphism {X = X}
+Sys .F-resp-≈ = System-resp-≈
+
+module Sys = Functor Sys
diff --git a/Functor/Instance/Underlying/SymmetricMonoidal/FinitelyCocomplete.agda b/Functor/Instance/Underlying/SymmetricMonoidal/FinitelyCocomplete.agda
new file mode 100644
index 0000000..80b7b2f
--- /dev/null
+++ b/Functor/Instance/Underlying/SymmetricMonoidal/FinitelyCocomplete.agda
@@ -0,0 +1,229 @@
+{-# OPTIONS --without-K --safe #-}
+{-# OPTIONS --no-require-unique-meta-solutions #-}
+
+open import Level using (Level)
+module Functor.Instance.Underlying.SymmetricMonoidal.FinitelyCocomplete {o ℓ e : Level} where
+
+import Categories.Morphism.Reasoning as ⇒-Reasoning
+import Categories.Object.Coproduct as Coproduct
+import Categories.Object.Initial as Initial
+
+open import Categories.Functor using (Functor; _∘F_)
+open import Categories.Functor.Properties using ([_]-resp-square; [_]-resp-∘)
+open import Categories.Functor.Monoidal using (IsMonoidalFunctor)
+open import Categories.Functor.Monoidal.Braided using (module Lax)
+open import Categories.Functor.Monoidal.Properties using (idF-SymmetricMonoidal; ∘-SymmetricMonoidal)
+open import Categories.Functor.Monoidal.Symmetric using (module Lax)
+open import Categories.Category using (Category; _[_,_]; _[_≈_]; _[_∘_])
+open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory; BraidedMonoidalCategory; MonoidalCategory)
+open import Categories.Category.Product using (_⁂_)
+open import Categories.Morphism using (_≅_)
+open import Categories.Morphism.Notation using (_[_≅_])
+open import Categories.NaturalTransformation.Core using (NaturalTransformation; ntHelper)
+open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; niHelper) renaming (refl to ≃-refl)
+open import Categories.NaturalTransformation.NaturalIsomorphism.Monoidal.Symmetric using (module Lax)
+open import Data.Product.Base using (_,_)
+
+open import Category.Instance.FinitelyCocompletes {o} {ℓ} {e} using (FinitelyCocompletes)
+open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)
+open import Category.Instance.SymMonCat {o} {ℓ} {e} using (SymMonCat)
+open import Functor.Exact using (RightExactFunctor; idREF; ∘-RightExactFunctor)
+
+open FinitelyCocompleteCategory using () renaming (symmetricMonoidalCategory to smc)
+open SymmetricMonoidalCategory using (unit) renaming (braidedMonoidalCategory to bmc)
+open BraidedMonoidalCategory using () renaming (monoidalCategory to mc)
+
+private
+ variable
+ A B C : FinitelyCocompleteCategory o ℓ e
+
+F₀ : FinitelyCocompleteCategory o ℓ e → SymmetricMonoidalCategory o ℓ e
+F₀ C = smc C
+{-# INJECTIVE_FOR_INFERENCE F₀ #-}
+
+F₁ : RightExactFunctor A B → Lax.SymmetricMonoidalFunctor (F₀ A) (F₀ B)
+F₁ {A} {B} F = record
+ { F = F.F
+ ; isBraidedMonoidal = record
+ { isMonoidal = record
+ { ε = ε-iso.from
+ ; ⊗-homo = ⊗-homo
+ ; associativity = assoc
+ ; unitaryˡ = unitaryˡ
+ ; unitaryʳ = unitaryʳ
+ }
+ ; braiding-compat = braiding-compat
+ }
+ }
+ where
+ module F = RightExactFunctor F
+ module A = SymmetricMonoidalCategory (F₀ A)
+ module B = SymmetricMonoidalCategory (F₀ B)
+ module A′ = FinitelyCocompleteCategory A
+ module B′ = FinitelyCocompleteCategory B
+ ε-iso : B.U [ B.unit ≅ F.₀ A.unit ]
+ ε-iso = Initial.up-to-iso B.U B′.initial (record { ⊥ = F.₀ A′.⊥ ; ⊥-is-initial = F.F-resp-⊥ A′.⊥-is-initial })
+ module ε-iso = _≅_ ε-iso
+ +-iso : ∀ {X Y} → B.U [ F.₀ X B′.+ F.₀ Y ≅ F.₀ (X A′.+ Y) ]
+ +-iso = Coproduct.up-to-iso B.U B′.coproduct (Coproduct.IsCoproduct⇒Coproduct B.U (F.F-resp-+ (Coproduct.Coproduct⇒IsCoproduct A.U A′.coproduct)))
+ module +-iso {X Y} = _≅_ (+-iso {X} {Y})
+ module B-proofs where
+ open ⇒-Reasoning B.U
+ open B.HomReasoning
+ open B.Equiv
+ open B using (_∘_; _≈_)
+ open B′ using (_+₁_; []-congˡ; []-congʳ; []-cong₂)
+ open A′ using (_+_; i₁; i₂)
+ ⊗-homo : NaturalTransformation (B.⊗ ∘F (F.F ⁂ F.F)) (F.F ∘F A.⊗)
+ ⊗-homo = ntHelper record
+ { η = λ { (X , Y) → +-iso.from {X} {Y} }
+ ; commute = λ { {X , Y} {X′ , Y′} (f , g) →
+ B′.coproduct.∘-distribˡ-[]
+ ○ B′.coproduct.[]-cong₂
+ (pullˡ B′.coproduct.inject₁ ○ [ F.F ]-resp-square (A.Equiv.sym A′.coproduct.inject₁))
+ (pullˡ B′.coproduct.inject₂ ○ [ F.F ]-resp-square (A.Equiv.sym A′.coproduct.inject₂))
+ ○ sym B′.coproduct.∘-distribˡ-[] }
+ }
+ assoc
+ : {X Y Z : A.Obj}
+ → F.₁ A′.+-assocˡ
+ ∘ +-iso.from {X + Y} {Z}
+ ∘ (+-iso.from {X} {Y} +₁ B.id {F.₀ Z})
+ ≈ +-iso.from {X} {Y + Z}
+ ∘ (B.id {F.₀ X} +₁ +-iso.from {Y} {Z})
+ ∘ B′.+-assocˡ
+ assoc {X} {Y} {Z} = begin
+ F.₁ A′.+-assocˡ ∘ +-iso.from ∘ (+-iso.from +₁ B.id) ≈⟨ refl⟩∘⟨ B′.[]∘+₁ ⟩
+ F.₁ A′.+-assocˡ ∘ B′.[ F.₁ i₁ ∘ +-iso.from , F.₁ i₂ ∘ B.id ] ≈⟨ refl⟩∘⟨ []-congʳ B′.coproduct.∘-distribˡ-[] ⟩
+ F.₁ A′.+-assocˡ ∘ B′.[ B′.[ F.₁ i₁ ∘ F.₁ i₁ , F.₁ i₁ ∘ F.₁ i₂ ] , F.₁ i₂ ∘ B.id ] ≈⟨ B′.coproduct.∘-distribˡ-[] ⟩
+ B′.[ F.₁ A′.+-assocˡ ∘ B′.[ F.₁ i₁ ∘ F.₁ i₁ , F.₁ i₁ ∘ F.₁ i₂ ] , _ ] ≈⟨ []-congʳ B′.coproduct.∘-distribˡ-[] ⟩
+ B′.[ B′.[ F.₁ A′.+-assocˡ ∘ F.₁ i₁ ∘ F.₁ i₁ , F.₁ A′.+-assocˡ ∘ _ ] , _ ] ≈⟨ []-congʳ ([]-congʳ (pullˡ ([ F.F ]-resp-∘ A′.coproduct.inject₁))) ⟩
+ B′.[ B′.[ F.₁ A′.[ i₁ , i₂ A′.∘ i₁ ] ∘ F.₁ i₁ , F.₁ A′.+-assocˡ ∘ _ ] , _ ] ≈⟨ []-congʳ ([]-congʳ ([ F.F ]-resp-∘ A′.coproduct.inject₁)) ⟩
+ B′.[ B′.[ F.₁ i₁ , F.₁ A′.+-assocˡ ∘ F.₁ i₁ ∘ F.₁ i₂ ] , _ ] ≈⟨ []-congʳ ([]-congˡ (pullˡ ([ F.F ]-resp-∘ A′.coproduct.inject₁))) ⟩
+ B′.[ B′.[ F.₁ i₁ , F.₁ A′.[ i₁ , i₂ A′.∘ i₁ ] ∘ F.₁ i₂ ] , _ ] ≈⟨ []-congʳ ([]-congˡ ([ F.F ]-resp-∘ A′.coproduct.inject₂)) ⟩
+ B′.[ B′.[ F.₁ i₁ , F.₁ (i₂ A′.∘ i₁) ] , F.₁ A′.+-assocˡ ∘ F.₁ i₂ ∘ B.id ] ≈⟨ []-congˡ (pullˡ ([ F.F ]-resp-∘ A′.coproduct.inject₂)) ⟩
+ B′.[ B′.[ F.₁ i₁ , F.₁ (i₂ A′.∘ i₁) ] , F.₁ (i₂ A′.∘ i₂) ∘ B.id ] ≈⟨ []-cong₂ ([]-congˡ F.homomorphism) (B.identityʳ ○ F.homomorphism) ⟩
+ B′.[ B′.[ F.₁ i₁ , F.₁ i₂ B′.∘ F.₁ i₁ ] , F.₁ i₂ ∘ F.₁ i₂ ] ≈⟨ []-congʳ ([]-congˡ B′.coproduct.inject₁) ⟨
+ B′.[ B′.[ F.₁ i₁ , B′.[ F.₁ i₂ B′.∘ F.₁ i₁  , _ ] ∘ B′.i₁ ] , _ ] ≈⟨ []-congʳ ([]-cong₂ (sym B′.coproduct.inject₁) (pushˡ (sym B′.coproduct.inject₂))) ⟩
+ B′.[ B′.[ B′.[ F.₁ i₁ , _ ] ∘ B′.i₁ , B′.[ F.₁ i₁ , _ ] ∘ B′.i₂ ∘ B′.i₁ ] , _ ] ≈⟨ []-congʳ B′.coproduct.∘-distribˡ-[] ⟨
+ B′.[ B′.[ F.₁ i₁ , _ ] ∘ B′.[ B′.i₁ , B′.i₂ ∘ B′.i₁ ] , F.₁ i₂ ∘ F.₁ i₂ ] ≈⟨ []-congˡ B′.coproduct.inject₂ ⟨
+ B′.[ B′.[ F.₁ i₁ , _ ] ∘ B′.[ _ , _ ] , B′.[ _ , F.₁ i₂ ∘ F.₁ i₂ ] ∘ B′.i₂ ] ≈⟨ []-congˡ (pushˡ (sym B′.coproduct.inject₂)) ⟩
+ B′.[ B′.[ F.₁ i₁ , _ ] ∘ B′.[ _ , _ ] , B′.[ F.₁ i₁ , _ ] ∘ B′.i₂ ∘ B′.i₂ ] ≈⟨ B′.coproduct.∘-distribˡ-[] ⟨
+ B′.[ F.₁ i₁ , B′.[ F.₁ i₂ ∘ F.₁ i₁ , F.₁ i₂ ∘ F.₁ i₂ ] ] ∘ B′.+-assocˡ ≈⟨ []-cong₂ B.identityʳ (B′.coproduct.∘-distribˡ-[]) ⟩∘⟨refl ⟨
+ B′.[ F.₁ i₁ B′.∘ B′.id , F.₁ i₂ ∘ B′.[ F.₁ i₁ , F.₁ i₂ ] ] ∘ B′.+-assocˡ ≈⟨ pushˡ (sym B′.[]∘+₁) ⟩
+ +-iso.from ∘ (B.id +₁ +-iso.from) ∘ B′.+-assocˡ ∎
+ unitaryˡ
+ : {X : A.Obj}
+ → F.₁ A′.[ A′.initial.! , A.id {X} ]
+ ∘ B′.[ F.₁ i₁ , F.₁ i₂ ]
+ ∘ B′.[ B′.i₁ ∘ B′.initial.! , B′.i₂ ∘ B.id ]
+ ≈ B′.[ B′.initial.! , B.id ]
+ unitaryˡ {X} = begin
+ F.₁ A′.[ A′.initial.! , A.id ] ∘ B′.[ F.₁ i₁ , F.₁ i₂ ] ∘ B′.[ _ , B′.i₂ ∘ B.id ] ≈⟨ refl⟩∘⟨ B′.coproduct.∘-distribˡ-[] ⟩
+ _ ∘ B′.[ _ ∘ B′.i₁ ∘ B′.initial.! , B′.[ F.₁ i₁ , F.₁ i₂ ] ∘ B′.i₂ ∘ B.id ] ≈⟨ refl⟩∘⟨ []-cong₂ (sym (B′.¡-unique _)) (pullˡ B′.coproduct.inject₂) ⟩
+ F.₁ A′.[ A′.initial.! , A.id ] ∘ B′.[ B′.initial.! , F.₁ i₂ ∘ B.id ] ≈⟨ B′.coproduct.∘-distribˡ-[] ⟩
+ B′.[ _ ∘ B′.initial.! , F.₁ A′.[ A′.initial.! , A.id ] ∘ F.₁ i₂ ∘ B.id ] ≈⟨ []-cong₂ (sym (B′.¡-unique _)) (pullˡ ([ F.F ]-resp-∘ A′.coproduct.inject₂)) ⟩
+ B′.[ B′.initial.! , F.₁ A.id ∘ B.id ] ≈⟨ []-congˡ (elimˡ F.identity) ⟩
+ B′.[ B′.initial.! , B.id ] ∎
+ unitaryʳ
+ : {X : A.Obj}
+ → F.₁ A′.[ A′.id {X} , A′.initial.! ]
+ ∘ B′.[ F.₁ i₁ , F.₁ i₂ ]
+ ∘ B′.[ B′.i₁ ∘ B.id , B′.i₂ ∘ B′.initial.! ]
+ ≈ B′.[ B.id , B′.initial.! ]
+ unitaryʳ {X} = begin
+ F.₁ A′.[ A.id , A′.initial.! ] ∘ B′.[ F.₁ i₁ , F.₁ i₂ ] ∘ B′.[ B′.i₁ ∘ B.id , _ ] ≈⟨ refl⟩∘⟨ B′.coproduct.∘-distribˡ-[] ⟩
+ _ ∘ B′.[ B′.[ F.₁ i₁ , F.₁ i₂ ] ∘ B′.i₁ ∘ B.id , _ ∘ B′.i₂ ∘ B′.initial.! ] ≈⟨ refl⟩∘⟨ []-cong₂ (pullˡ B′.coproduct.inject₁) (sym (B′.¡-unique _)) ⟩
+ F.₁ A′.[ A.id , A′.initial.! ] ∘ B′.[ F.₁ i₁ ∘ B.id , B′.initial.! ] ≈⟨ B′.coproduct.∘-distribˡ-[] ⟩
+ B′.[ F.₁ A′.[ A.id , A′.initial.! ] ∘ F.₁ i₁ ∘ B.id , _ ∘ B′.initial.! ] ≈⟨ []-cong₂ (pullˡ ([ F.F ]-resp-∘ A′.coproduct.inject₁)) (sym (B′.¡-unique _)) ⟩
+ B′.[ F.₁ A.id ∘ B.id , B′.initial.! ] ≈⟨ []-congʳ (elimˡ F.identity) ⟩
+ B′.[ B.id , B′.initial.! ] ∎
+ braiding-compat
+ : {X Y : A.Obj}
+ → F.₁ A′.[ i₂ {X} {Y} , i₁ ] ∘ B′.[ F.₁ i₁ , F.₁ i₂ ]
+ ≈ B′.[ F.F₁ i₁ , F.F₁ i₂ ] ∘ B′.[ B′.i₂ , B′.i₁ ]
+ braiding-compat = begin
+ F.₁ A′.[ i₂ , i₁ ] ∘ B′.[ F.₁ i₁ , F.₁ i₂ ] ≈⟨ B′.coproduct.∘-distribˡ-[] ⟩
+ B′.[ F.₁ A′.[ i₂ , i₁ ] ∘ F.₁ i₁ , F.₁ A′.[ i₂ , i₁ ] ∘ F.₁ i₂ ] ≈⟨ []-cong₂ ([ F.F ]-resp-∘ A′.coproduct.inject₁) ([ F.F ]-resp-∘ A′.coproduct.inject₂) ⟩
+ B′.[ F.₁ i₂ , F.₁ i₁ ] ≈⟨ []-cong₂ B′.coproduct.inject₂ B′.coproduct.inject₁ ⟨
+ B′.[ B′.[ F.₁ i₁ , F.₁ i₂ ] ∘ B′.i₂ , B′.[ F.₁ i₁ , F.₁ i₂ ] ∘ B′.i₁ ] ≈⟨ B′.coproduct.∘-distribˡ-[] ⟨
+ B′.[ F.₁ i₁ , F.₁ i₂ ] ∘ B′.[ B′.i₂ , B′.i₁ ] ∎
+ open B-proofs
+
+identity : Lax.SymmetricMonoidalNaturalIsomorphism (F₁ (Functor.Exact.idREF {o} {ℓ} {e} {A})) (idF-SymmetricMonoidal (F₀ A))
+identity {A} = record
+ { U = ≃-refl
+ ; F⇒G-isMonoidal = record
+ { ε-compat = ¡-unique₂ (id ∘ ¡) id
+ ; ⊗-homo-compat = refl⟩∘⟨ sym ([]-cong₂ identityʳ identityʳ)
+ }
+ }
+ where
+ open FinitelyCocompleteCategory A
+ open HomReasoning
+ open Equiv
+
+homomorphism
+ : {F : RightExactFunctor A B}
+ {G : RightExactFunctor B C}
+ → Lax.SymmetricMonoidalNaturalIsomorphism
+ (F₁ {A} {C} (∘-RightExactFunctor G F))
+ (∘-SymmetricMonoidal (F₁ {B} {C} G) (F₁ {A} {B} F))
+homomorphism {A} {B} {C} {F} {G} = record
+ { U = ≃-refl
+ ; F⇒G-isMonoidal = record
+ { ε-compat = ¡-unique₂ (id ∘ ¡) (G.₁ B.¡ ∘ ¡)
+ ; ⊗-homo-compat =
+ identityˡ
+ ○ sym
+ ([]-cong₂
+ ([ G.F ]-resp-∘ B.coproducts.inject₁)
+ ([ G.F ]-resp-∘ B.coproducts.inject₂))
+ ○ sym ∘-distribˡ-[]
+ ○ pushʳ (introʳ C.⊗.identity)
+ }
+ }
+ where
+ module A = FinitelyCocompleteCategory A
+ module B = FinitelyCocompleteCategory B
+ open FinitelyCocompleteCategory C
+ module C = SymmetricMonoidalCategory (F₀ C)
+ open HomReasoning
+ open Equiv
+ open ⇒-Reasoning U
+ module F = RightExactFunctor F
+ module G = RightExactFunctor G
+
+module _ {F G : RightExactFunctor A B} where
+
+ module F = RightExactFunctor F
+ module G = RightExactFunctor G
+
+ F-resp-≈
+ : NaturalIsomorphism F.F G.F
+ → Lax.SymmetricMonoidalNaturalIsomorphism (F₁ {A} {B} F) (F₁ {A} {B} G)
+ F-resp-≈ F≃G = record
+ { U = F≃G
+ ; F⇒G-isMonoidal = record
+ { ε-compat = sym (¡-unique (⇒.η A.⊥ ∘ ¡))
+ ; ⊗-homo-compat =
+ ∘-distribˡ-[]
+ ○ []-cong₂ (⇒.commute A.i₁) (⇒.commute A.i₂)
+ ○ sym []∘+₁
+ }
+ }
+ where
+ module A = FinitelyCocompleteCategory A
+ open NaturalIsomorphism F≃G
+ open FinitelyCocompleteCategory B
+ open HomReasoning
+ open Equiv
+
+Underlying : Functor FinitelyCocompletes SymMonCat
+Underlying = record
+ { F₀ = F₀
+ ; F₁ = F₁
+ ; identity = λ { {X} → identity {X} }
+ ; homomorphism = λ { {X} {Y} {Z} {F} {G} → homomorphism {X} {Y} {Z} {F} {G} }
+ ; F-resp-≈ = λ { {X} {Y} {F} {G} → F-resp-≈ {X} {Y} {F} {G} }
+ }
diff --git a/Functor/Monoidal/Braided/Strong/Properties.agda b/Functor/Monoidal/Braided/Strong/Properties.agda
new file mode 100644
index 0000000..66dc4c0
--- /dev/null
+++ b/Functor/Monoidal/Braided/Strong/Properties.agda
@@ -0,0 +1,59 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Level using (Level)
+open import Categories.Category.Monoidal using (BraidedMonoidalCategory)
+open import Categories.Functor.Monoidal.Braided using (module Strong)
+open Strong using (BraidedMonoidalFunctor)
+
+module Functor.Monoidal.Braided.Strong.Properties
+ {o o′ ℓ ℓ′ e e′ : Level}
+ {C : BraidedMonoidalCategory o ℓ e}
+ {D : BraidedMonoidalCategory o′ ℓ′ e′}
+ (F,φ,ε : BraidedMonoidalFunctor C D) where
+
+import Categories.Category.Construction.Core as Core
+import Categories.Category.Monoidal.Utilities as ⊗-Utilities
+import Functor.Monoidal.Strong.Properties as MonoidalProp
+
+open import Categories.Functor.Properties using ([_]-resp-≅)
+
+private
+
+ module C = BraidedMonoidalCategory C
+ module D = BraidedMonoidalCategory D
+
+open D
+open Core.Shorthands U using (_∘ᵢ_; idᵢ; _≈ᵢ_; ⌞_⌟; to-≈; _≅_; module HomReasoningᵢ)
+open ⊗-Utilities monoidal using (_⊗ᵢ_)
+open BraidedMonoidalFunctor F,φ,ε
+open MonoidalProp monoidalFunctor public
+
+private
+
+ variable
+ A B : Obj
+ X Y : C.Obj
+
+ σ : A ⊗₀ B ≅ B ⊗₀ A
+ σ = braiding.FX≅GX
+
+ σ⇐ : B ⊗₀ A ⇒ A ⊗₀ B
+ σ⇐ = braiding.⇐.η _
+
+ Fσ : F₀ (X C.⊗₀ Y) ≅ F₀ (Y C.⊗₀ X)
+ Fσ = [ F ]-resp-≅ C.braiding.FX≅GX
+
+ Fσ⇐ : F₀ (Y C.⊗₀ X) ⇒ F₀ (X C.⊗₀ Y)
+ Fσ⇐ = F₁ (C.braiding.⇐.η _)
+
+ φ : F₀ X ⊗₀ F₀ Y ≅ F₀ (X C.⊗₀ Y)
+ φ = ⊗-homo.FX≅GX
+
+open HomReasoning
+open Shorthands using (φ⇐)
+
+braiding-compatᵢ : Fσ {X} {Y} ∘ᵢ φ ≈ᵢ φ ∘ᵢ σ
+braiding-compatᵢ = ⌞ braiding-compat ⌟
+
+braiding-compat-inv : φ⇐ ∘ Fσ⇐ {X} {Y} ≈ σ⇐ ∘ φ⇐
+braiding-compat-inv = to-≈ braiding-compatᵢ
diff --git a/Functor/Monoidal/Construction/MonoidValued.agda b/Functor/Monoidal/Construction/MonoidValued.agda
new file mode 100644
index 0000000..937714d
--- /dev/null
+++ b/Functor/Monoidal/Construction/MonoidValued.agda
@@ -0,0 +1,214 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Categories.Category using (Category)
+open import Categories.Category.Cocartesian using (Cocartesian)
+open import Categories.Category.Cocartesian.Bundle using (CocartesianCategory)
+open import Categories.Category.Construction.Monoids using (Monoids)
+open import Categories.Category.Monoidal.Bundle using (MonoidalCategory)
+open import Categories.Functor using (Functor) renaming (_∘F_ to _∙_)
+open import Level using (Level; _⊔_)
+
+-- A functor from a cocartesian category 𝒞 to Monoids[S]
+-- can be turned into a monoidal functor from 𝒞 to S
+
+module Functor.Monoidal.Construction.MonoidValued
+ {o o′ ℓ ℓ′ e e′ : Level}
+ {𝒞 : Category o ℓ e}
+ (𝒞-+ : Cocartesian 𝒞)
+ {S : MonoidalCategory o′ ℓ′ e′}
+ (let module S = MonoidalCategory S)
+ (M : Functor 𝒞 (Monoids S.monoidal))
+ where
+
+import Categories.Category.Monoidal.Reasoning as ⊗-Reasoning
+import Categories.Category.Monoidal.Utilities as ⊗-Util
+import Categories.Morphism.Reasoning as ⇒-Reasoning
+import Categories.Object.Monoid as MonoidObject
+
+open import Categories.Category using (module Definitions)
+open import Categories.Category.Cocartesian using (module CocartesianMonoidal)
+open import Categories.Category.Product using (_⁂_)
+open import Categories.Functor.Monoidal using (MonoidalFunctor; IsMonoidalFunctor)
+open import Categories.Functor.Properties using ([_]-resp-square; [_]-resp-∘)
+open import Categories.Morphism using (_≅_)
+open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
+open import Data.Product using (_,_)
+open import Functor.Forgetful.Instance.Monoid S.monoidal using (Forget)
+
+private
+
+ G : Functor 𝒞 S.U
+ G = Forget ∙ M
+
+ module 𝒞 = CocartesianCategory (record { cocartesian = 𝒞-+ })
+ module 𝒞-M = CocartesianMonoidal 𝒞 𝒞-+
+
+ 𝒞-MC : MonoidalCategory o ℓ e
+ 𝒞-MC = record { monoidal = 𝒞-M.+-monoidal }
+
+ module +-assoc {n} {m} {o} = _≅_ (𝒞.+-assoc {n} {m} {o})
+ module +-λ {n} = _≅_ (𝒞-M.⊥+A≅A {n})
+ module +-ρ {n} = _≅_ (𝒞-M.A+⊥≅A {n})
+
+ module G = Functor G
+ module M = Functor M
+
+ open MonoidObject S.monoidal using (Monoid; Monoid⇒)
+ open Monoid renaming (assoc to μ-assoc; identityˡ to μ-identityˡ; identityʳ to μ-identityʳ)
+ open Monoid⇒
+
+ open 𝒞 using (-+-; _+_; _+₁_; i₁; i₂; inject₁; inject₂)
+
+ module _ where
+
+ open Category 𝒞
+ open ⇒-Reasoning 𝒞
+ open ⊗-Reasoning 𝒞-M.+-monoidal
+
+ module _ {n m o : Obj} where
+
+ private
+
+ +-α : (n + m) + o 𝒞.⇒ n + (m + o)
+ +-α = +-assoc.to {n} {m} {o}
+
+ +-α∘i₂ : +-α ∘ i₂ ≈ i₂ ∘ i₂
+ +-α∘i₂ = inject₂
+
+ +-α∘i₁∘i₁ : (+-α ∘ i₁) ∘ i₁ ≈ i₁
+ +-α∘i₁∘i₁ = inject₁ ⟩∘⟨refl ○ inject₁
+
+ +-α∘i₁∘i₂ : (+-α ∘ i₁) ∘ i₂ ≈ i₂ ∘ i₁
+ +-α∘i₁∘i₂ = inject₁ ⟩∘⟨refl ○ inject₂
+
+ module _ {n : Obj} where
+
+ +-ρ∘i₁ : +-ρ.from {n} ∘ i₁ ≈ id
+ +-ρ∘i₁ = inject₁
+
+ +-λ∘i₂ : +-λ.from {n} ∘ i₂ ≈ id
+ +-λ∘i₂ = inject₂
+
+ open S
+ open ⇒-Reasoning U
+ open ⊗-Reasoning monoidal
+ open ⊗-Util.Shorthands monoidal
+
+ ⊲ : {A : 𝒞.Obj} → G.₀ A ⊗₀ G.₀ A ⇒ G.₀ A
+ ⊲ {A} = μ (M.₀ A)
+
+ ⇒⊲ : {A B : 𝒞.Obj} (f : A 𝒞.⇒ B) → G.₁ f ∘ ⊲ ≈ ⊲ ∘ G.₁ f ⊗₁ G.₁ f
+ ⇒⊲ f = preserves-μ (M.₁ f)
+
+ ε : {A : 𝒞.Obj} → unit ⇒ G.₀ A
+ ε {A} = η (M.₀ A)
+
+ ⇒ε : {A B : 𝒞.Obj} (f : A 𝒞.⇒ B) → G.₁ f ∘ ε ≈ ε
+ ⇒ε f = preserves-η (M.₁ f)
+
+ ⊲-⊗ : {n m : 𝒞.Obj} → G.₀ n ⊗₀ G.₀ m ⇒ G.₀ (n + m)
+ ⊲-⊗ = ⊲ ∘ G.₁ i₁ ⊗₁ G.₁ i₂
+
+ module _ {n n′ m m′ : 𝒞.Obj} (f : n 𝒞.⇒ n′) (g : m 𝒞.⇒ m′) where
+
+ open Definitions S.U using (CommutativeSquare)
+
+ left₁ : CommutativeSquare (G.₁ i₁) (G.₁ f) (G.₁ (f +₁ g)) (G.₁ i₁)
+ left₁ = [ G ]-resp-square inject₁
+
+ left₂ : CommutativeSquare (G.₁ i₂) (G.₁ g) (G.₁ (f +₁ g)) (G.₁ i₂)
+ left₂ = [ G ]-resp-square inject₂
+
+ right : CommutativeSquare ⊲ (G.₁ (f +₁ g) ⊗₁ G.₁ (f +₁ g)) (G.₁ (f +₁ g)) ⊲
+ right = ⇒⊲ (f +₁ g)
+
+ ⊲-⊗-commute :
+ CommutativeSquare
+ (⊲ ∘ G.₁ i₁ ⊗₁ G.₁ i₂)
+ (G.₁ f ⊗₁ G.₁ g)
+ (G.₁ (f +₁ g))
+ (⊲ ∘ G.₁ i₁ ⊗₁ G.₁ i₂)
+ ⊲-⊗-commute = glue′ right (parallel left₁ left₂)
+
+ ⊲-⊗-homo : NaturalTransformation (⊗ ∙ (G ⁂ G)) (G ∙ -+-)
+ ⊲-⊗-homo = ntHelper record
+ { η = λ (n , m) → ⊲-⊗ {n} {m}
+ ; commute = λ (f , g) → Equiv.sym (⊲-⊗-commute f g)
+ }
+
+ ⊲-⊗-α
+ : {n m o : 𝒞.Obj}
+ → G.₁ (+-assoc.to {n} {m} {o})
+ ∘ (μ (M.₀ ((n + m) + o)) ∘ G.₁ i₁ ⊗₁ G.₁ i₂)
+ ∘ (μ (M.₀ (n + m)) ∘ G.₁ i₁ ⊗₁ G.₁ i₂) ⊗₁ id
+ ≈ (μ (M.₀ (n + m + o)) ∘ G.₁ i₁ ⊗₁ G.₁ i₂)
+ ∘ id ⊗₁ (μ (M.₀ (m + o)) ∘ G.₁ i₁ ⊗₁ G.₁ i₂)
+ ∘ α⇒
+ ⊲-⊗-α {n} {m} {o} = begin
+ G.₁ +-α ∘ (⊲ ∘ G.₁ i₁ ⊗₁ G.₁ i₂) ∘ (⊲ ∘ G.₁ i₁ ⊗₁ G.₁ i₂) ⊗₁ id ≈⟨ refl⟩∘⟨ pullʳ merge₁ʳ ⟩
+ G.₁ +-α ∘ ⊲ ∘ (G.₁ i₁ ∘ ⊲ ∘ G.₁ i₁ ⊗₁ G.₁ i₂) ⊗₁ G.₁ i₂ ≈⟨ extendʳ (⇒⊲ +-α) ⟩
+ ⊲ ∘ G.₁ +-α ⊗₁ G.₁ +-α ∘ (G.₁ i₁ ∘ ⊲ ∘ G.₁ i₁ ⊗₁ G.₁ i₂) ⊗₁ G.₁ i₂ ≈⟨ refl⟩∘⟨ ⊗-distrib-over-∘ ⟨
+ ⊲ ∘ (G.₁ +-α ∘ G.₁ i₁ ∘ ⊲ ∘ G.₁ i₁ ⊗₁ G.₁ i₂) ⊗₁ (G.₁ +-α ∘ G.₁ i₂) ≈⟨ refl⟩∘⟨ pullˡ (Equiv.sym G.homomorphism) ⟩⊗⟨ [ G ]-resp-square +-α∘i₂ ⟩
+ ⊲ ∘ (G.₁ (+-α 𝒞.∘ i₁) ∘ ⊲ ∘ G.₁ i₁ ⊗₁ G.₁ i₂) ⊗₁ (G.₁ i₂ ∘ G.₁ i₂) ≈⟨ refl⟩∘⟨ extendʳ (⇒⊲ (+-α 𝒞.∘ i₁)) ⟩⊗⟨refl ⟩
+ ⊲ ∘ (⊲ ∘ G.₁ (+-α 𝒞.∘ i₁) ⊗₁ G.₁ (+-α 𝒞.∘ i₁) ∘ _) ⊗₁ (G.₁ i₂ ∘ G.₁ i₂) ≈⟨ refl⟩∘⟨ (refl⟩∘⟨ ⊗-distrib-over-∘) ⟩⊗⟨refl ⟨
+ ⊲ ∘ (⊲ ∘ _ ⊗₁ (G.₁ (+-α 𝒞.∘ i₁) ∘ G.₁ i₂)) ⊗₁ (G.₁ i₂ ∘ G.₁ i₂) ≈⟨ refl⟩∘⟨ (refl⟩∘⟨ [ G ]-resp-∘ +-α∘i₁∘i₁ ⟩⊗⟨ [ G ]-resp-square +-α∘i₁∘i₂) ⟩⊗⟨refl ⟩
+ ⊲ ∘ (⊲ ∘ G.₁ i₁ ⊗₁ (G.₁ i₂ ∘ G.₁ i₁)) ⊗₁ (G.₁ i₂ ∘ G.₁ i₂) ≈⟨ refl⟩∘⟨ split₁ˡ ⟩
+ ⊲ ∘ ⊲ ⊗₁ id ∘ (G.₁ i₁ ⊗₁ (G.₁ i₂ ∘ G.₁ i₁)) ⊗₁ (G.₁ i₂ ∘ G.₁ i₂) ≈⟨ extendʳ (μ-assoc (M.₀ (n + (m + o)))) ⟩
+ ⊲ ∘ (id ⊗₁ ⊲ ∘ α⇒) ∘ (G.₁ i₁ ⊗₁ (G.₁ i₂ ∘ G.₁ i₁)) ⊗₁ (G.₁ i₂ ∘ G.₁ i₂) ≈⟨ refl⟩∘⟨ assoc ⟩
+ ⊲ ∘ id ⊗₁ ⊲ ∘ α⇒ ∘ (G.₁ i₁ ⊗₁ (G.₁ i₂ ∘ G.₁ i₁)) ⊗₁ (G.₁ i₂ ∘ G.₁ i₂) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ assoc-commute-from ⟩
+ ⊲ ∘ id ⊗₁ ⊲ ∘ G.₁ i₁ ⊗₁ ((G.₁ i₂ ∘ G.₁ i₁) ⊗₁ (G.₁ i₂ ∘ G.₁ i₂)) ∘ α⇒ ≈⟨ refl⟩∘⟨ pullˡ merge₂ˡ ⟩
+ ⊲ ∘ G.₁ i₁ ⊗₁ (⊲ ∘ (G.₁ i₂ ∘ G.₁ i₁) ⊗₁ (G.₁ i₂ ∘ G.₁ i₂)) ∘ α⇒ ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ (refl⟩∘⟨ ⊗-distrib-over-∘) ⟩∘⟨refl ⟩
+ ⊲ ∘ G.₁ i₁ ⊗₁ (⊲ ∘ G.₁ i₂ ⊗₁ G.₁ i₂ ∘ G.₁ i₁ ⊗₁ G.₁ i₂) ∘ α⇒ ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ (extendʳ (⇒⊲ i₂)) ⟩∘⟨refl ⟨
+ ⊲ ∘ G.₁ i₁ ⊗₁ (G.₁ i₂ ∘ ⊲ ∘ G.₁ i₁ ⊗₁ G.₁ i₂) ∘ α⇒ ≈⟨ pushʳ (pushˡ split₂ʳ) ⟩
+ (⊲ ∘ G.₁ i₁ ⊗₁ G.₁ i₂) ∘ id ⊗₁ (⊲ ∘ G.₁ i₁ ⊗₁ G.₁ i₂) ∘ α⇒ ∎
+ where
+ +-α : (n + m) + o 𝒞.⇒ n + (m + o)
+ +-α = +-assoc.to {n} {m} {o}
+
+ module _ {A B : 𝒞.Obj} (f : A 𝒞.⇒ B) where
+
+ ⊲-εʳ : ⊲ ∘ G.₁ f ⊗₁ ε ≈ G.₁ f ∘ ρ⇒
+ ⊲-εʳ = begin
+ ⊲ ∘ G.₁ f ⊗₁ ε ≈⟨ refl⟩∘⟨ serialize₂₁ ⟩
+ ⊲ ∘ id ⊗₁ ε ∘ G.₁ f ⊗₁ id ≈⟨ pullˡ (Equiv.sym (μ-identityʳ (M.₀ B))) ⟩
+ ρ⇒ ∘ G.₁ f ⊗₁ id ≈⟨ unitorʳ-commute-from ⟩
+ G.₁ f ∘ ρ⇒ ∎
+
+ ⊲-εˡ : ⊲ ∘ ε ⊗₁ G.₁ f ≈ G.₁ f ∘ λ⇒
+ ⊲-εˡ = begin
+ ⊲ ∘ ε ⊗₁ G.₁ f ≈⟨ refl⟩∘⟨ serialize₁₂ ⟩
+ ⊲ ∘ ε ⊗₁ id ∘ id ⊗₁ G.₁ f ≈⟨ pullˡ (Equiv.sym (μ-identityˡ (M.₀ B))) ⟩
+ λ⇒ ∘ id ⊗₁ G.₁ f ≈⟨ unitorˡ-commute-from ⟩
+ G.₁ f ∘ λ⇒ ∎
+
+ module _ {n : 𝒞.Obj} where
+
+ ⊲-⊗-λ : G.₁ (+-λ.from {n}) ∘ ⊲-⊗ ∘ ε ⊗₁ id ≈ λ⇒
+ ⊲-⊗-λ = begin
+ G.₁ +-λ.from ∘ (⊲ ∘ G.₁ i₁ ⊗₁ G.₁ i₂) ∘ ε ⊗₁ id ≈⟨ refl⟩∘⟨ pullʳ merge₁ʳ ⟩
+ G.₁ +-λ.from ∘ ⊲ ∘ (G.₁ i₁ ∘ ε) ⊗₁ G.₁ i₂ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ ⇒ε i₁ ⟩⊗⟨refl ⟩
+ G.₁ +-λ.from ∘ ⊲ ∘ ε ⊗₁ G.₁ i₂ ≈⟨ refl⟩∘⟨ ⊲-εˡ i₂ ⟩
+ G.₁ +-λ.from ∘ G.₁ i₂ ∘ λ⇒ ≈⟨ cancelˡ ([ G ]-resp-∘ +-λ∘i₂ ○ G.identity) ⟩
+ λ⇒ ∎
+
+ ⊲-⊗-ρ : G.₁ (+-ρ.from {n}) ∘ ⊲-⊗ ∘ id ⊗₁ ε ≈ ρ⇒
+ ⊲-⊗-ρ = begin
+ G.₁ +-ρ.from ∘ (⊲ ∘ G.₁ i₁ ⊗₁ G.₁ i₂) ∘ id ⊗₁ ε ≈⟨ refl⟩∘⟨ pullʳ merge₂ʳ ⟩
+ G.₁ +-ρ.from ∘ ⊲ ∘ G.₁ i₁ ⊗₁ (G.₁ i₂ ∘ ε) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩⊗⟨ ⇒ε i₂ ⟩
+ G.₁ +-ρ.from ∘ ⊲ ∘ G.₁ i₁ ⊗₁ ε ≈⟨ refl⟩∘⟨ ⊲-εʳ i₁ ⟩
+ G.₁ +-ρ.from ∘ G.₁ i₁ ∘ ρ⇒ ≈⟨ cancelˡ ([ G ]-resp-∘ +-ρ∘i₁ ○ G.identity) ⟩
+ ρ⇒   ∎
+
+F,⊗,ε : MonoidalFunctor 𝒞-MC S
+F,⊗,ε = record
+ { F = G
+ ; isMonoidal = record
+ { ε = ε
+ ; ⊗-homo = ⊲-⊗-homo
+ ; associativity = ⊲-⊗-α
+ ; unitaryˡ = ⊲-⊗-λ
+ ; unitaryʳ = ⊲-⊗-ρ 
+ }
+ }
+
+module F,⊗,ε = MonoidalFunctor F,⊗,ε
diff --git a/Functor/Monoidal/Construction/MultisetOf.agda b/Functor/Monoidal/Construction/MultisetOf.agda
new file mode 100644
index 0000000..83bdf52
--- /dev/null
+++ b/Functor/Monoidal/Construction/MultisetOf.agda
@@ -0,0 +1,89 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Categories.Category using (Category)
+open import Categories.Category.Cocartesian.Bundle using (CocartesianCategory)
+open import Categories.Category.Construction.Monoids using (Monoids)
+open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory)
+open import Categories.Functor using (Functor) renaming (_∘F_ to _∙_)
+open import Category.Construction.CMonoids using (CMonoids)
+
+open import Level using (Level)
+
+module Functor.Monoidal.Construction.MultisetOf
+ {o o′ ℓ ℓ′ e e′ : Level}
+ {𝒞 : CocartesianCategory o ℓ e}
+ {S : SymmetricMonoidalCategory o′ ℓ′ e′}
+ (let module 𝒞 = CocartesianCategory 𝒞)
+ (let module S = SymmetricMonoidalCategory S)
+ (G : Functor 𝒞.U S.U)
+ (M : Functor S.U (CMonoids S.symmetric))
+ where
+
+import Categories.Category.Monoidal.Reasoning as ⊗-Reasoning
+import Categories.Category.Monoidal.Utilities as ⊗-Util
+import Categories.Morphism.Reasoning as ⇒-Reasoning
+import Object.Monoid.Commutative as CMonoidObject
+
+open import Categories.Category.Cocartesian using (module CocartesianSymmetricMonoidal)
+open import Categories.Category.Monoidal.Symmetric.Properties using (module Shorthands)
+open import Categories.Functor.Monoidal using (MonoidalFunctor)
+open import Categories.Functor.Monoidal.Symmetric using (module Lax)
+open import Categories.Functor.Properties using ([_]-resp-∘)
+open import Data.Product using (_,_)
+
+module G = Functor G
+module M = Functor M
+module 𝒞-SM = CocartesianSymmetricMonoidal 𝒞.U 𝒞.cocartesian
+
+open 𝒞 using (⊥; -+-; _+_; _+₁_; i₁; i₂; inject₁; inject₂; +-swap)
+open Lax using (SymmetricMonoidalFunctor)
+
+open S
+open Functor
+open CMonoidObject symmetric using (CommutativeMonoid; CommutativeMonoid⇒)
+open CommutativeMonoid renaming (assoc to μ-assoc; identityˡ to μ-identityˡ; identityʳ to μ-identityʳ; commutative to μ-commutative)
+open CommutativeMonoid⇒
+
+Forget : Functor (CMonoids symmetric) (Monoids monoidal)
+Forget .F₀ = monoid
+Forget .F₁ = monoid⇒
+Forget .identity = Equiv.refl
+Forget .homomorphism = Equiv.refl
+Forget .F-resp-≈ x = x
+
+𝒞-SMC : SymmetricMonoidalCategory o ℓ e
+𝒞-SMC = record { symmetric = 𝒞-SM.+-symmetric }
+
+open import Functor.Monoidal.Construction.ListOf {𝒞 = 𝒞} G (Forget ∙ M)
+ using (List∘G; ListOf,++,[]; module LG; ++; module List; ++⇒)
+
+open Shorthands symmetric
+
+++-swap : {A : Obj} → ++ {A} ≈ ++ ∘ σ⇒
+++-swap {A} = μ-commutative (M.₀ A)
+
+open ⇒-Reasoning U
+open ⊗-Reasoning monoidal
+
+++-⊗-σ
+ : {X Y : 𝒞.Obj}
+ → LG.₁ (+-swap {X} {Y}) ∘ ++ ∘ LG.₁ i₁ ⊗₁ LG.₁ i₂
+ ≈ (++ ∘ LG.₁ i₁ ⊗₁ LG.₁ i₂) ∘ σ⇒
+++-⊗-σ {X} {Y} = begin
+ LG.₁ +-swap ∘ ++ ∘ LG.₁ i₁ ⊗₁ LG.₁ i₂ ≈⟨ extendʳ (++⇒ (G.₁ +-swap)) ⟩
+ ++ ∘ LG.₁ +-swap ⊗₁ LG.₁ +-swap ∘ LG.₁ i₁ ⊗₁ LG.₁ i₂ ≈⟨ refl⟩∘⟨ ⊗-distrib-over-∘ ⟨
+ ++ ∘ (LG.₁ +-swap ∘ LG.₁ i₁) ⊗₁ (LG.₁ +-swap ∘ LG.₁ i₂) ≈⟨ refl⟩∘⟨ [ List∘G ]-resp-∘ inject₁ ⟩⊗⟨ [ List∘G ]-resp-∘ inject₂ ⟩
+ ++ ∘ LG.₁ i₂ ⊗₁ LG.₁ i₁ ≈⟨ pushˡ ++-swap ⟩
+ ++ ∘ σ⇒ ∘ LG.₁ i₂ ⊗₁ LG.₁ i₁ ≈⟨ pushʳ (braiding.⇒.commute (LG.₁ i₂ , LG.₁ i₁ )) ⟩
+ (++ ∘ LG.₁ i₁ ⊗₁ LG.₁ i₂) ∘ σ⇒ ∎
+
+open SymmetricMonoidalFunctor
+
+module ListOf,++,[] = MonoidalFunctor ListOf,++,[]
+
+MultisetOf,++,[] : SymmetricMonoidalFunctor 𝒞-SMC S
+MultisetOf,++,[] .F = List∘G
+MultisetOf,++,[] .isBraidedMonoidal = record
+ { isMonoidal = ListOf,++,[].isMonoidal
+ ; braiding-compat = ++-⊗-σ
+ }
diff --git a/Functor/Monoidal/Instance/Nat/Circ.agda b/Functor/Monoidal/Instance/Nat/Circ.agda
new file mode 100644
index 0000000..1b45a75
--- /dev/null
+++ b/Functor/Monoidal/Instance/Nat/Circ.agda
@@ -0,0 +1,87 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Level using (Level; _⊔_; 0ℓ; suc)
+
+module Functor.Monoidal.Instance.Nat.Circ where
+
+import Categories.Object.Monoid as MonoidObject
+import Data.Permutation.Sort as ↭-Sort
+import Function.Reasoning as →-Reasoning
+
+open import Category.Instance.Setoids.SymmetricMonoidal {suc 0ℓ} {suc 0ℓ} using (Setoids-×)
+import Categories.Category.Monoidal.Reasoning as ⊗-Reasoning
+open import Category.Monoidal.Instance.Nat using (Nat,+,0)
+open import Categories.Category.Construction.Monoids using (Monoids)
+open import Categories.Category.Instance.Nat using (Nat; Nat-Cocartesian)
+open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory)
+open import Data.Setoid.Unit using (⊤ₛ)
+open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian)
+open import Categories.Category.Cartesian using (Cartesian)
+open Cartesian (Setoids-Cartesian {suc 0ℓ} {suc 0ℓ}) using (products)
+open import Categories.Category.BinaryProducts using (module BinaryProducts)
+open import Categories.Functor using (_∘F_)
+open BinaryProducts products using (-×-)
+open import Categories.Category.Product using (_⁂_)
+open import Categories.Category.Cocartesian using (Cocartesian)
+open import Categories.Category.Instance.Nat using (Nat-Cocartesian)
+open import Categories.Functor.Monoidal.Symmetric using (module Lax)
+open import Categories.Functor using (Functor)
+open import Categories.Category.Cocartesian.Bundle using (CocartesianCategory)
+open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
+open import Data.Circuit using (Circuit; Circuitₛ; mkCircuit; mkCircuitₛ; _≈_; mk≈; map)
+open import Data.Circuit.Gate using (Gates)
+open import Data.Nat using (ℕ; _+_)
+open import Data.Product using (_,_)
+open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
+open import Function using (_⟶ₛ_; Func; _⟨$⟩_; _∘_; id)
+open import Functor.Instance.Nat.Circ {suc 0ℓ} using (Circ; module Multiset∘Edge)
+open import Functor.Instance.Nat.Edge {suc 0ℓ} using (Edge)
+open import Function.Construct.Setoid using (_∙_)
+
+module Setoids-× = SymmetricMonoidalCategory Setoids-×
+
+open import Functor.Instance.FreeCMonoid {suc 0ℓ} {suc 0ℓ} using (FreeCMonoid)
+
+Nat-Cocartesian-Category : CocartesianCategory 0ℓ 0ℓ 0ℓ
+Nat-Cocartesian-Category = record { cocartesian = Nat-Cocartesian }
+
+open import Functor.Monoidal.Construction.MultisetOf
+ {𝒞 = Nat-Cocartesian-Category} (Edge Gates) FreeCMonoid using (MultisetOf,++,[])
+
+open Lax using (SymmetricMonoidalFunctor)
+
+module MultisetOf,++,[] = SymmetricMonoidalFunctor MultisetOf,++,[]
+
+open SymmetricMonoidalFunctor
+
+ε⇒ : ⊤ₛ ⟶ₛ Circuitₛ 0
+ε⇒ = mkCircuitₛ ∙ MultisetOf,++,[].ε
+
+open Cocartesian Nat-Cocartesian using (-+-)
+
+open Func
+
+η : {n m : ℕ} → Circuitₛ n ×ₛ Circuitₛ m ⟶ₛ Circuitₛ (n + m)
+η {n} {m} .to (mkCircuit X , mkCircuit Y) = mkCircuit (MultisetOf,++,[].⊗-homo.η (n , m) ⟨$⟩ (X , Y))
+η {n} {m} .cong (mk≈ x , mk≈ y) = mk≈ (cong (MultisetOf,++,[].⊗-homo.η (n , m)) (x , y))
+
+⊗-homomorphism : NaturalTransformation (-×- ∘F (Circ ⁂ Circ)) (Circ ∘F -+-)
+⊗-homomorphism = ntHelper record
+ { η = λ (n , m) → η {n} {m}
+ ; commute = λ { (f , g) {mkCircuit X , mkCircuit Y} → mk≈ (MultisetOf,++,[].⊗-homo.commute (f , g) {X , Y}) }
+ }
+
+Circ,⊗,ε : SymmetricMonoidalFunctor Nat,+,0 Setoids-×
+Circ,⊗,ε .F = Circ
+Circ,⊗,ε .isBraidedMonoidal = record
+ { isMonoidal = record
+ { ε = ε⇒
+ ; ⊗-homo = ⊗-homomorphism
+ ; associativity = λ { {n} {m} {o} {(mkCircuit x , mkCircuit y) , mkCircuit z} →
+ mk≈ (MultisetOf,++,[].associativity {n} {m} {o} {(x , y) , z}) }
+ ; unitaryˡ = λ { {n} {_ , mkCircuit x} → mk≈ (MultisetOf,++,[].unitaryˡ {n} {_ , x}) }
+ ; unitaryʳ = λ { {n} {mkCircuit x , _} → mk≈ (MultisetOf,++,[].unitaryʳ {n} {x , _}) }
+ }
+ ; braiding-compat = λ { {n} {m} {mkCircuit x , mkCircuit y} →
+ mk≈ (MultisetOf,++,[].braiding-compat {n} {m} {x , y}) }
+ }
diff --git a/Functor/Monoidal/Instance/Nat/Preimage.agda b/Functor/Monoidal/Instance/Nat/Preimage.agda
new file mode 100644
index 0000000..844df79
--- /dev/null
+++ b/Functor/Monoidal/Instance/Nat/Preimage.agda
@@ -0,0 +1,164 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Functor.Monoidal.Instance.Nat.Preimage where
+
+open import Category.Monoidal.Instance.Nat using (Natop,+,0; Natop-Cartesian)
+open import Categories.Category.Instance.Nat using (Nat-Cocartesian)
+open import Data.Setoid.Unit using (⊤ₛ)
+open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
+open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian)
+open import Categories.Category.BinaryProducts using (module BinaryProducts)
+open import Categories.Category.Cartesian using (Cartesian)
+open import Categories.Category.Cocartesian using (Cocartesian; BinaryCoproducts)
+open import Categories.Category.Product using (_⁂_)
+open import Categories.Functor using (_∘F_)
+open import Data.Subset.Functional using (Subset)
+open import Data.Nat.Base using (ℕ; _+_)
+open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
+open import Data.Product.Base using (_,_; _×_; Σ)
+open import Data.Vec.Functional using ([]; _++_)
+open import Data.Vec.Functional.Properties using (++-cong)
+open import Data.Vec.Functional using (Vector; [])
+open import Function.Bundles using (Func; _⟶ₛ_)
+open import Functor.Instance.Nat.Preimage using (Preimage; Subsetₛ)
+open import Level using (0ℓ)
+
+open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using (products)
+open BinaryProducts products using (-×-)
+open Cocartesian Nat-Cocartesian using (module Dual; _+₁_; +-assocʳ; +-swap; +₁∘+-swap)
+open Dual.op-binaryProducts using () renaming (-×- to -+-; assocˡ∘⟨⟩ to []∘assocʳ; swap∘⟨⟩ to []∘swap)
+
+open import Data.Fin.Base using (Fin; splitAt; join; _↑ˡ_; _↑ʳ_)
+open import Data.Fin.Properties using (splitAt-join; splitAt-↑ˡ)
+open import Data.Sum.Base using ([_,_]′; map; map₁; map₂; inj₁; inj₂)
+open import Data.Sum.Properties using ([,]-map; [,]-cong; [-,]-cong; [,-]-cong; [,]-∘)
+open import Data.Fin.Preimage using (preimage)
+open import Function.Base using (_∘_; id)
+open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_; module ≡-Reasoning)
+open import Data.Bool.Base using (Bool)
+
+open Func
+Preimage-ε : ⊤ₛ {0ℓ} {0ℓ} ⟶ₛ Subsetₛ 0
+to Preimage-ε x = []
+cong Preimage-ε x ()
+
+++ₛ : {n m : ℕ} → Subsetₛ n ×ₛ Subsetₛ m ⟶ₛ Subsetₛ (n + m)
+to ++ₛ (xs , ys) = xs ++ ys
+cong ++ₛ (≗xs , ≗ys) = ++-cong _ _ ≗xs ≗ys
+
+preimage-++
+ : {n n′ m m′ : ℕ}
+ (f : Fin n → Fin n′)
+ (g : Fin m → Fin m′)
+ {xs : Subset n′}
+ {ys : Subset m′}
+ → preimage f xs ++ preimage g ys ≗ preimage (f +₁ g) (xs ++ ys)
+preimage-++ {n} {n′} {m} {m′} f g {xs} {ys} e = begin
+ (xs ∘ f ++ ys ∘ g) e ≡⟨ [,]-map (splitAt n e) ⟨
+ [ xs , ys ]′ (map f g (splitAt n e)) ≡⟨ ≡.cong [ xs , ys ]′ (splitAt-join n′ m′ (map f g (splitAt n e))) ⟨
+ [ xs , ys ]′ (splitAt n′ (join n′ m′ (map f g (splitAt n e)))) ≡⟨ ≡.cong ([ xs , ys ]′ ∘ splitAt n′) ([,]-map (splitAt n e)) ⟩
+ [ xs , ys ]′ (splitAt n′ ((f +₁ g) e)) ∎
+ where
+ open ≡-Reasoning
+
+⊗-homomorphism : NaturalTransformation (-×- ∘F (Preimage ⁂ Preimage)) (Preimage ∘F -+-)
+⊗-homomorphism = ntHelper record
+ { η = λ (n , m) → ++ₛ {n} {m}
+ ; commute = λ { {n′ , m′} {n , m} (f , g) {xs , ys} e → preimage-++ f g e }
+ }
+
+open import Category.Instance.Setoids.SymmetricMonoidal {0ℓ} {0ℓ} using (Setoids-×)
+open import Categories.Functor.Monoidal.Symmetric Natop,+,0 Setoids-× using (module Lax)
+open Lax using (SymmetricMonoidalFunctor)
+
+++-assoc
+ : {m n o : ℕ}
+ (X : Subset m)
+ (Y : Subset n)
+ (Z : Subset o)
+ → ((X ++ Y) ++ Z) ∘ +-assocʳ {m} ≗ X ++ (Y ++ Z)
+++-assoc {m} {n} {o} X Y Z i = begin
+ ((X ++ Y) ++ Z) (+-assocʳ {m} i) ≡⟨⟩
+ [ [ X , Y ]′ ∘ splitAt m , Z ]′ (splitAt (m + n) (+-assocʳ {m} i)) ≡⟨ [,]-cong ([,]-cong (inv ∘ X) (inv ∘ Y) ∘ splitAt m) (inv ∘ Z) (splitAt (m + n) (+-assocʳ {m} i)) ⟨
+ [ [ b ∘ X′ , b ∘ Y′ ]′ ∘ splitAt m , b ∘ Z′ ]′ (splitAt _ (+-assocʳ {m} i)) ≡⟨ [-,]-cong ([,]-∘ b ∘ splitAt m) (splitAt (m + n) (+-assocʳ {m} i)) ⟨
+ [ b ∘ [ X′ , Y′ ]′ ∘ splitAt m , b ∘ Z′ ]′ (splitAt _ (+-assocʳ {m} i)) ≡⟨ [,]-∘ b (splitAt (m + n) (+-assocʳ {m} i)) ⟨
+ b ([ [ X′ , Y′ ]′ ∘ splitAt m , Z′ ]′ (splitAt _ (+-assocʳ {m} i))) ≡⟨ ≡.cong b ([]∘assocʳ {2} {m} i) ⟩
+ b ([ X′ , [ Y′ , Z′ ]′ ∘ splitAt n ]′ (splitAt m i)) ≡⟨ [,]-∘ b (splitAt m i) ⟩
+ [ b ∘ X′ , b ∘ [ Y′ , Z′ ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,-]-cong ([,]-∘ b ∘ splitAt n) (splitAt m i) ⟩
+ [ b ∘ X′ , [ b ∘ Y′ , b ∘ Z′ ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,]-cong (inv ∘ X) ([,]-cong (inv ∘ Y) (inv ∘ Z) ∘ splitAt n) (splitAt m i) ⟩
+ [ X , [ Y , Z ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨⟩
+ (X ++ (Y ++ Z)) i ∎
+ where
+ open Bool
+ open Fin
+ f : Bool → Fin 2
+ f false = zero
+ f true = suc zero
+ b : Fin 2 → Bool
+ b zero = false
+ b (suc zero) = true
+ inv : b ∘ f ≗ id
+ inv false = ≡.refl
+ inv true = ≡.refl
+ X′ : Fin m → Fin 2
+ X′ = f ∘ X
+ Y′ : Fin n → Fin 2
+ Y′ = f ∘ Y
+ Z′ : Fin o → Fin 2
+ Z′ = f ∘ Z
+ open ≡-Reasoning
+
+Preimage-unitaryˡ
+ : {n : ℕ}
+ (X : Subset n)
+ → (X ++ []) ∘ (_↑ˡ 0) ≗ X
+Preimage-unitaryˡ {n} X i = begin
+ [ X , [] ]′ (splitAt _ (i ↑ˡ 0)) ≡⟨ ≡.cong ([ X , [] ]′) (splitAt-↑ˡ n i 0) ⟩
+ [ X , [] ]′ (inj₁ i) ≡⟨⟩
+ X i ∎
+ where
+ open ≡-Reasoning
+
+++-swap
+ : {n m : ℕ}
+ (X : Subset n)
+ (Y : Subset m)
+ → (X ++ Y) ∘ +-swap {n} ≗ Y ++ X
+++-swap {n} {m} X Y i = begin
+ [ X , Y ]′ (splitAt n (+-swap {n} i)) ≡⟨ [,]-cong (inv ∘ X) (inv ∘ Y) (splitAt n (+-swap {n} i)) ⟨
+ [ b ∘ X′ , b ∘ Y′ ]′ (splitAt n (+-swap {n} i)) ≡⟨ [,]-∘ b (splitAt n (+-swap {n} i)) ⟨
+ b ([ X′ , Y′ ]′ (splitAt n (+-swap {n} i))) ≡⟨ ≡.cong b ([]∘swap {2} {n} i) ⟩
+ b ([ Y′ , X′ ]′ (splitAt m i)) ≡⟨ [,]-∘ b (splitAt m i) ⟩
+ [ b ∘ Y′ , b ∘ X′ ]′ (splitAt m i) ≡⟨ [,]-cong (inv ∘ Y) (inv ∘ X) (splitAt m i) ⟩
+ [ Y , X ]′ (splitAt m i) ∎
+ where
+ open Bool
+ open Fin
+ f : Bool → Fin 2
+ f false = zero
+ f true = suc zero
+ b : Fin 2 → Bool
+ b zero = false
+ b (suc zero) = true
+ inv : b ∘ f ≗ id
+ inv false = ≡.refl
+ inv true = ≡.refl
+ X′ : Fin n → Fin 2
+ X′ = f ∘ X
+ Y′ : Fin m → Fin 2
+ Y′ = f ∘ Y
+ open ≡-Reasoning
+
+open SymmetricMonoidalFunctor
+Preimage,++,[] : SymmetricMonoidalFunctor
+Preimage,++,[] .F = Preimage
+Preimage,++,[] .isBraidedMonoidal = record
+ { isMonoidal = record
+ { ε = Preimage-ε
+ ; ⊗-homo = ⊗-homomorphism
+ ; associativity = λ { {m} {n} {o} {(X , Y) , Z} i → ++-assoc X Y Z i }
+ ; unitaryˡ = λ _ → ≡.refl
+ ; unitaryʳ = λ { {n} {X , _} i → Preimage-unitaryˡ X i }
+ }
+ ; braiding-compat = λ { {n} {m} {X , Y} i → ++-swap X Y i }
+ }
diff --git a/Functor/Monoidal/Instance/Nat/Pull.agda b/Functor/Monoidal/Instance/Nat/Pull.agda
new file mode 100644
index 0000000..b267f97
--- /dev/null
+++ b/Functor/Monoidal/Instance/Nat/Pull.agda
@@ -0,0 +1,166 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Functor.Monoidal.Instance.Nat.Pull where
+
+import Categories.Morphism as Morphism
+
+open import Level using (0ℓ; Level)
+
+open import Category.Instance.Setoids.SymmetricMonoidal {0ℓ} {0ℓ} using (Setoids-×)
+open import Category.Monoidal.Instance.Nat using (Natop,+,0; Natop-Cartesian)
+
+open import Categories.Category.BinaryProducts using (module BinaryProducts)
+open import Categories.Category.Cartesian using (Cartesian)
+open import Categories.Category.Cocartesian using (Cocartesian; BinaryCoproducts)
+open import Categories.Category.Instance.Nat using (Nat)
+open import Categories.Category.Instance.Nat using (Nat-Cocartesian)
+open import Data.Setoid.Unit using (⊤ₛ)
+open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory)
+open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian)
+open import Categories.Category.Product using (_⁂_)
+open import Categories.Functor using (_∘F_)
+open import Categories.Functor.Monoidal.Symmetric Natop,+,0 Setoids-× using (module Strong)
+open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
+open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; niHelper)
+open import Data.Circuit.Value using (Monoid)
+open import Data.Vector using (++-assoc)
+open import Data.Fin.Base using (Fin; splitAt; join)
+open import Data.Fin.Permutation using (Permutation; _⟨$⟩ʳ_; _⟨$⟩ˡ_)
+open import Data.Fin.Preimage using (preimage)
+open import Data.Fin.Properties using (splitAt-join; splitAt-↑ˡ; splitAt-↑ʳ; join-splitAt)
+open import Data.Nat.Base using (ℕ; _+_)
+open import Data.Product.Base using (_,_; _×_; Σ; proj₁; proj₂)
+open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
+open import Data.Setoid using (∣_∣)
+open import Data.Subset.Functional using (Subset)
+open import Data.Sum.Base using ([_,_]′; map; map₁; map₂; inj₁; inj₂)
+open import Data.Sum.Properties using ([,]-map; [,]-cong; [-,]-cong; [,-]-cong; [,]-∘)
+open import Data.System.Values Monoid using (Values; <ε>; []-unique; _++_; ++ₛ; splitₛ; _≋_; [])
+open import Data.Unit.Polymorphic using (tt)
+open import Function using (Func; _⟶ₛ_; _⟨$⟩_; _∘_)
+open import Function.Construct.Constant using () renaming (function to Const)
+open import Functor.Instance.Nat.Pull using (Pull; Pull-defs)
+open import Relation.Binary using (Setoid)
+open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_; module ≡-Reasoning)
+
+open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using (products)
+
+open BinaryProducts products using (-×-)
+open Cocartesian Nat-Cocartesian using (module Dual; _+₁_; +-assocʳ; +-comm; +-swap; +₁∘+-swap; i₁; i₂)
+open Dual.op-binaryProducts using () renaming (-×- to -+-; assocˡ∘⟨⟩ to []∘assocʳ; swap∘⟨⟩ to []∘swap)
+open Func
+open Morphism (Setoids-×.U) using (_≅_; module Iso)
+open Strong using (SymmetricMonoidalFunctor)
+open ≡-Reasoning
+
+private
+
+ open _≅_
+ open Iso
+
+ Pull-ε : ⊤ₛ ≅ Values 0
+ from Pull-ε = Const ⊤ₛ (Values 0) []
+ to Pull-ε = Const (Values 0) ⊤ₛ tt
+ isoˡ (iso Pull-ε) = tt
+ isoʳ (iso Pull-ε) {x} = []-unique [] x
+
+ opaque
+ unfolding _++_
+ unfolding Pull-defs
+ Pull-++
+ : {n n′ m m′ : ℕ}
+ (f : Fin n → Fin n′)
+ (g : Fin m → Fin m′)
+ {xs : ∣ Values n′ ∣}
+ {ys : ∣ Values m′ ∣}
+ → (Pull.₁ f ⟨$⟩ xs) ++ (Pull.₁ g ⟨$⟩ ys) ≋ Pull.₁ (f +₁ g) ⟨$⟩ (xs ++ ys)
+ Pull-++ {n} {n′} {m} {m′} f g {xs} {ys} e = begin
+ (xs ∘ f ++ ys ∘ g) e ≡⟨ [,]-map (splitAt n e) ⟨
+ [ xs , ys ]′ (map f g (splitAt n e)) ≡⟨ ≡.cong [ xs , ys ]′ (splitAt-join n′ m′ (map f g (splitAt n e))) ⟨
+ (xs ++ ys) (join n′ m′ (map f g (splitAt n e))) ≡⟨ ≡.cong (xs ++ ys) ([,]-map (splitAt n e)) ⟩
+ (xs ++ ys) ((f +₁ g) e) ∎
+
+ module _ {n m : ℕ} where
+
+ opaque
+ unfolding splitₛ
+
+ open import Function.Construct.Setoid using (setoid)
+ open module ⇒ₛ {A} {B} = Setoid (setoid {0ℓ} {0ℓ} {0ℓ} {0ℓ} A B) using (_≈_)
+ open import Function.Construct.Setoid using (_∙_)
+ open import Function.Construct.Identity using () renaming (function to Id)
+
+ split∘++ : splitₛ ∙ ++ₛ ≈ Id (Values n ×ₛ Values m)
+ split∘++ {xs , ys} .proj₁ i = ≡.cong [ xs , ys ]′ (splitAt-↑ˡ n i m)
+ split∘++ {xs , ys} .proj₂ i = ≡.cong [ xs , ys ]′ (splitAt-↑ʳ n m i)
+
+ ++∘split : ++ₛ {n} ∙ splitₛ ≈ Id (Values (n + m))
+ ++∘split {x} i = ≡.trans (≡.sym ([,]-∘ x (splitAt n i))) (≡.cong x (join-splitAt n m i))
+
+ ⊗-homomorphism : NaturalIsomorphism (-×- ∘F (Pull ⁂ Pull)) (Pull ∘F -+-)
+ ⊗-homomorphism = niHelper record
+ { η = λ (n , m) → ++ₛ {n} {m}
+ ; η⁻¹ = λ (n , m) → splitₛ {n} {m}
+ ; commute = λ { {n , m} {n′ , m′} (f , g) {xs , ys} → Pull-++ f g }
+ ; iso = λ (n , m) → record
+ { isoˡ = split∘++
+ ; isoʳ = ++∘split
+ }
+ }
+
+ module _ {n m : ℕ} where
+
+ opaque
+ unfolding Pull-++
+
+ Pull-i₁
+ : (X : ∣ Values n ∣)
+ (Y : ∣ Values m ∣)
+ → Pull.₁ i₁ ⟨$⟩ (X ++ Y) ≋ X
+ Pull-i₁ X Y i = ≡.cong [ X , Y ]′ (splitAt-↑ˡ n i m)
+
+ Pull-i₂
+ : (X : ∣ Values n ∣)
+ (Y : ∣ Values m ∣)
+ → Pull.₁ i₂ ⟨$⟩ (X ++ Y) ≋ Y
+ Pull-i₂ X Y i = ≡.cong [ X , Y ]′ (splitAt-↑ʳ n m i)
+
+ opaque
+ unfolding Pull-++
+
+ Push-assoc
+ : {m n o : ℕ}
+ (X : ∣ Values m ∣)
+ (Y : ∣ Values n ∣)
+ (Z : ∣ Values o ∣)
+ → Pull.₁ (+-assocʳ {m} {n} {o}) ⟨$⟩ ((X ++ Y) ++ Z) ≋ X ++ (Y ++ Z)
+ Push-assoc {m} {n} {o} X Y Z i = ++-assoc X Y Z i
+
+ Pull-swap
+ : {n m : ℕ}
+ (X : ∣ Values n ∣)
+ (Y : ∣ Values m ∣)
+ → Pull.₁ (+-swap {n}) ⟨$⟩ (X ++ Y) ≋ Y ++ X
+ Pull-swap {n} {m} X Y i = begin
+ ((X ++ Y) ∘ +-swap {n}) i ≡⟨ [,]-∘ (X ++ Y) (splitAt m i) ⟩
+ [ (X ++ Y) ∘ i₂ , (X ++ Y) ∘ i₁ ]′ (splitAt m i) ≡⟨ [-,]-cong (Pull-i₂ X Y) (splitAt m i) ⟩
+ [ Y , (X ++ Y) ∘ i₁ ]′ (splitAt m i) ≡⟨ [,-]-cong (Pull-i₁ X Y) (splitAt m i) ⟩
+ [ Y , X ]′ (splitAt m i) ≡⟨⟩
+ (Y ++ X) i ∎
+
+open SymmetricMonoidalFunctor
+
+Pull,++,[] : SymmetricMonoidalFunctor
+Pull,++,[] .F = Pull
+Pull,++,[] .isBraidedMonoidal = record
+ { isStrongMonoidal = record
+ { ε = Pull-ε
+ ; ⊗-homo = ⊗-homomorphism
+ ; associativity = λ { {_} {_} {_} {(X , Y) , Z} → Push-assoc X Y Z }
+ ; unitaryˡ = λ { {n} {_ , X} → Pull-i₂ {0} {n} [] X }
+ ; unitaryʳ = λ { {n} {X , _} → Pull-i₁ {n} {0} X [] }
+ }
+ ; braiding-compat = λ { {n} {m} {X , Y} → Pull-swap X Y }
+ }
+
+module Pull,++,[] = SymmetricMonoidalFunctor Pull,++,[]
diff --git a/Functor/Monoidal/Instance/Nat/Push.agda b/Functor/Monoidal/Instance/Nat/Push.agda
new file mode 100644
index 0000000..2e8c0cf
--- /dev/null
+++ b/Functor/Monoidal/Instance/Nat/Push.agda
@@ -0,0 +1,209 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Functor.Monoidal.Instance.Nat.Push where
+
+open import Categories.Category.Instance.Nat using (Nat)
+open import Data.Bool.Base using (Bool; false)
+open import Data.Subset.Functional using (Subset; ⁅_⁆; ⊥)
+open import Function.Base using (_∘_; case_of_; _$_; id)
+open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_)
+open import Level using (0ℓ; Level)
+open import Relation.Binary using (Rel; Setoid)
+open import Functor.Instance.Nat.Push using (Push; Push-defs)
+open import Data.Setoid.Unit using (⊤ₛ)
+open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
+open import Data.Vec.Functional as Vec using (Vector)
+open import Data.Vector using (++-assoc; ++-↑ˡ; ++-↑ʳ)
+-- open import Data.Vec.Functional.Properties using (++-cong)
+open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian)
+open import Function.Construct.Constant using () renaming (function to Const)
+open import Categories.Category.BinaryProducts using (module BinaryProducts)
+open import Categories.Category.Cartesian using (Cartesian)
+open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using (products)
+open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)
+open import Categories.Category.Instance.Nat using (Nat-Cocartesian)
+open import Categories.Category.Cocartesian using (Cocartesian)
+open import Categories.Category.Product using (_⁂_)
+open import Categories.Functor using () renaming (_∘F_ to _∘′_)
+open Cocartesian Nat-Cocartesian using (module Dual; i₁; i₂; -+-; _+₁_; +-assoc; +-assocʳ; +-assocˡ; +-comm; +-swap; +₁∘+-swap)
+open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
+open import Data.Nat using (ℕ; _+_)
+open import Data.Fin using (Fin)
+open import Data.Product.Base using (_,_; _×_; Σ)
+open import Data.Fin.Preimage using (preimage; preimage-⊥; preimage-cong₂)
+open import Functor.Monoidal.Instance.Nat.Preimage using (preimage-++)
+open import Data.Sum.Base using ([_,_]; [_,_]′; inj₁; inj₂)
+open import Data.Sum.Properties using ([,]-cong; [,-]-cong; [-,]-cong; [,]-∘; [,]-map)
+open import Data.Circuit.Merge using (merge-with; merge; merge-⊥; merge-[]; ⁅⁆-++; merge-++; merge-cong₁; merge-cong₂; merge-suc; _when_; join-merge; merge-preimage-ρ; merge-⁅⁆)
+open import Data.Circuit.Value using (Value; join; join-comm; join-assoc; Monoid)
+open import Data.Fin.Base using (splitAt; _↑ˡ_; _↑ʳ_) renaming (join to joinAt)
+open import Data.Fin.Properties using (splitAt-↑ˡ; splitAt-↑ʳ; splitAt⁻¹-↑ˡ; splitAt⁻¹-↑ʳ; ↑ˡ-injective; ↑ʳ-injective; _≟_)
+open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≢_; _≗_; module ≡-Reasoning)
+open BinaryProducts products using (-×-)
+open Value using (U)
+open Bool using (false)
+
+open import Function.Bundles using (Equivalence)
+open import Category.Monoidal.Instance.Nat using (Nat,+,0)
+open import Category.Instance.Setoids.SymmetricMonoidal {0ℓ} {0ℓ} using (Setoids-×)
+open import Categories.Functor.Monoidal.Symmetric Nat,+,0 Setoids-× using (module Lax)
+open Lax using (SymmetricMonoidalFunctor)
+open import Categories.Morphism Nat using (_≅_)
+open import Function.Bundles using (Inverse)
+open import Data.Fin.Permutation using (Permutation; _⟨$⟩ʳ_; _⟨$⟩ˡ_)
+open Dual.op-binaryProducts using () renaming (assocˡ∘⟨⟩ to []∘assocʳ; swap∘⟨⟩ to []∘swap)
+open import Relation.Nullary.Decidable using (does; does-⇔; dec-false)
+open import Data.Setoid using (∣_∣)
+
+open ℕ
+
+open import Data.System.Values Monoid using (Values; <ε>; ++ₛ; _++_; head; tail; _≋_)
+
+open Func
+open ≡-Reasoning
+
+private
+
+ Push-ε : ⊤ₛ {0ℓ} {0ℓ} ⟶ₛ Values 0
+ Push-ε = Const ⊤ₛ (Values 0) <ε>
+
+ opaque
+
+ unfolding _++_
+
+ unfolding Push-defs
+ Push-++
+ : {n n′ m m′ : ℕ }
+ → (f : Fin n → Fin n′)
+ → (g : Fin m → Fin m′)
+ → (xs : ∣ Values n ∣)
+ → (ys : ∣ Values m ∣)
+ → (Push.₁ f ⟨$⟩ xs) ++ (Push.₁ g ⟨$⟩ ys)
+ ≋ Push.₁ (f +₁ g) ⟨$⟩ (xs ++ ys)
+ Push-++ {n} {n′} {m} {m′} f g xs ys i = begin
+ ((merge xs ∘ preimage f ∘ ⁅_⁆) ++ (merge ys ∘ preimage g ∘ ⁅_⁆)) i
+ ≡⟨ [,]-cong left right (splitAt n′ i) ⟩
+ [ (λ x → merge (xs ++ ys) _) , (λ x → merge (xs ++ ys) _) ]′ (splitAt n′ i)
+ ≡⟨ [,]-∘ (merge (xs ++ ys) ∘ (preimage (f +₁ g))) (splitAt n′ i) ⟨
+ merge (xs ++ ys) (preimage (f +₁ g) ((⁅⁆++⊥ Vec.++ ⊥++⁅⁆) i)) ≡⟨ merge-cong₂ (xs ++ ys) (preimage-cong₂ (f +₁ g) (⁅⁆-++ {n′} i)) ⟩
+ merge (xs ++ ys) (preimage (f +₁ g) ⁅ i ⁆) ∎
+ where
+ ⁅⁆++⊥ : Vector (Subset (n′ + m′)) n′
+ ⁅⁆++⊥ x = ⁅ x ⁆ Vec.++ ⊥
+ ⊥++⁅⁆ : Vector (Subset (n′ + m′)) m′
+ ⊥++⁅⁆ x = ⊥ Vec.++ ⁅ x ⁆
+ left : (x : Fin n′) → merge xs (preimage f ⁅ x ⁆) ≡ merge (xs ++ ys) (preimage (f +₁ g) (⁅ x ⁆ Vec.++ ⊥))
+ left x = begin
+ merge xs (preimage f ⁅ x ⁆) ≡⟨ join-comm U (merge xs (preimage f ⁅ x ⁆)) ⟩
+ join (merge xs (preimage f ⁅ x ⁆)) U ≡⟨ ≡.cong (join (merge _ _)) (merge-⊥ ys) ⟨
+ join (merge xs (preimage f ⁅ x ⁆)) (merge ys ⊥) ≡⟨ ≡.cong (join (merge _ _)) (merge-cong₂ ys (preimage-⊥ g)) ⟨
+ join (merge xs (preimage f ⁅ x ⁆)) (merge ys (preimage g ⊥)) ≡⟨ merge-++ xs ys (preimage f ⁅ x ⁆) (preimage g ⊥) ⟨
+ merge (xs ++ ys) ((preimage f ⁅ x ⁆) Vec.++ (preimage g ⊥)) ≡⟨ merge-cong₂ (xs ++ ys) (preimage-++ f g) ⟩
+ merge (xs ++ ys) (preimage (f +₁ g) (⁅ x ⁆ Vec.++ ⊥)) ∎
+ right : (x : Fin m′) → merge ys (preimage g ⁅ x ⁆) ≡ merge (xs ++ ys) (preimage (f +₁ g) (⊥ Vec.++ ⁅ x ⁆))
+ right x = begin
+ merge ys (preimage g ⁅ x ⁆) ≡⟨⟩
+ join U (merge ys (preimage g ⁅ x ⁆)) ≡⟨ ≡.cong (λ h → join h (merge _ _)) (merge-⊥ xs) ⟨
+ join (merge xs ⊥) (merge ys (preimage g ⁅ x ⁆)) ≡⟨ ≡.cong (λ h → join h (merge _ _)) (merge-cong₂ xs (preimage-⊥ f)) ⟨
+ join (merge xs (preimage f ⊥)) (merge ys (preimage g ⁅ x ⁆)) ≡⟨ merge-++ xs ys (preimage f ⊥) (preimage g ⁅ x ⁆) ⟨
+ merge (xs ++ ys) ((preimage f ⊥) Vec.++ (preimage g ⁅ x ⁆)) ≡⟨ merge-cong₂ (xs ++ ys) (preimage-++ f g) ⟩
+ merge (xs ++ ys) (preimage (f +₁ g) (⊥ Vec.++ ⁅ x ⁆)) ∎
+
+ ⊗-homomorphism : NaturalTransformation (-×- ∘′ (Push ⁂ Push)) (Push ∘′ -+-)
+ ⊗-homomorphism = ntHelper record
+ { η = λ (n , m) → ++ₛ {n} {m}
+ ; commute = λ { (f , g) {xs , ys} → Push-++ f g xs ys }
+ }
+
+ opaque
+
+ unfolding Push-defs
+ unfolding _++_
+
+ Push-assoc
+ : {m n o : ℕ}
+ (X : ∣ Values m ∣)
+ (Y : ∣ Values n ∣)
+ (Z : ∣ Values o ∣)
+ → (Push.₁ (+-assocˡ {m} {n} {o}) ⟨$⟩ ((X ++ Y) ++ Z)) ≋ X ++ Y ++ Z
+ Push-assoc {m} {n} {o} X Y Z i = begin
+ merge ((X ++ Y) ++ Z) (preimage (+-assocˡ {m}) ⁅ i ⁆) ≡⟨ merge-preimage-ρ ↔-mno ((X ++ Y) ++ Z) ⁅ i ⁆ ⟩
+ merge (((X ++ Y) ++ Z) ∘ (+-assocʳ {m})) (⁅ i ⁆) ≡⟨⟩
+ merge (((X ++ Y) ++ Z) ∘ (+-assocʳ {m})) (preimage id ⁅ i ⁆) ≡⟨ merge-cong₁ (++-assoc X Y Z) (preimage id ⁅ i ⁆) ⟩
+ merge (X ++ (Y ++ Z)) (preimage id ⁅ i ⁆) ≡⟨ Push.identity i ⟩
+ (X ++ (Y ++ Z)) i ∎
+ where
+ open Inverse
+ module +-assoc = _≅_ (+-assoc {m} {n} {o})
+ ↔-mno : Permutation ((m + n) + o) (m + (n + o))
+ ↔-mno .to = +-assocˡ {m}
+ ↔-mno .from = +-assocʳ {m}
+ ↔-mno .to-cong ≡.refl = ≡.refl
+ ↔-mno .from-cong ≡.refl = ≡.refl
+ ↔-mno .inverse = (λ { ≡.refl → +-assoc.isoˡ _ }) , λ { ≡.refl → +-assoc.isoʳ _ }
+
+ Push-unitaryˡ
+ : {n : ℕ}
+ (X : ∣ Values n ∣)
+ → Push.₁ id ⟨$⟩ (<ε> ++ X) ≋ X
+ Push-unitaryˡ = merge-⁅⁆
+
+ preimage-++′
+ : {n m o : ℕ}
+ (f : Vector (Fin o) n)
+ (g : Vector (Fin o) m)
+ (S : Subset o)
+ → preimage (f Vec.++ g) S ≗ preimage f S Vec.++ preimage g S
+ preimage-++′ {n} f g S = [,]-∘ S ∘ splitAt n
+
+ Push-unitaryʳ
+ : {n : ℕ}
+ (X : ∣ Values n ∣)
+ → Push.₁ (id Vec.++ (λ())) ⟨$⟩ (X ++ (<ε> {0})) ≋ X
+ Push-unitaryʳ {n} X i = begin
+ merge (X ++ <ε>) (preimage (id Vec.++ (λ ())) ⁅ i ⁆) ≡⟨ merge-cong₂ (X Vec.++ <ε>) (preimage-++′ id (λ ()) ⁅ i ⁆) ⟩
+ merge (X ++ <ε>) (⁅ i ⁆ Vec.++ preimage (λ ()) ⁅ i ⁆) ≡⟨ merge-++ X <ε> ⁅ i ⁆ (preimage (λ ()) ⁅ i ⁆) ⟩
+ join (merge X ⁅ i ⁆) (merge <ε> (preimage (λ ()) ⁅ i ⁆)) ≡⟨ ≡.cong (join (merge X ⁅ i ⁆)) (merge-[] <ε> (preimage (λ ()) ⁅ i ⁆)) ⟩
+ join (merge X ⁅ i ⁆) U ≡⟨ join-comm (merge X ⁅ i ⁆) U ⟩
+ merge X ⁅ i ⁆ ≡⟨ merge-⁅⁆ X i ⟩
+ X i ∎
+
+ Push-swap
+ : {n m : ℕ}
+ (X : ∣ Values n ∣)
+ (Y : ∣ Values m ∣)
+ → Push.₁ (+-swap {m}) ⟨$⟩ (X ++ Y) ≋ (Y ++ X)
+ Push-swap {n} {m} X Y i = begin
+ merge (X ++ Y) (preimage (+-swap {m}) ⁅ i ⁆) ≡⟨ merge-preimage-ρ n+m↔m+n (X ++ Y) ⁅ i ⁆ ⟩
+ merge ((X ++ Y) ∘ +-swap {n}) ⁅ i ⁆ ≡⟨ merge-⁅⁆ ((X ++ Y) ∘ (+-swap {n})) i ⟩
+ ((X ++ Y) ∘ +-swap {n}) i ≡⟨ [,]-∘ (X ++ Y) (splitAt m i) ⟩
+ [ (X ++ Y) ∘ i₂ , (X ++ Y) ∘ i₁ ]′ (splitAt m i) ≡⟨ [-,]-cong (++-↑ʳ X Y) (splitAt m i) ⟩
+ [ Y , (X ++ Y) ∘ i₁ ]′ (splitAt m i) ≡⟨ [,-]-cong (++-↑ˡ X Y) (splitAt m i) ⟩
+ [ Y , X ]′ (splitAt m i) ≡⟨⟩
+ (Y ++ X) i ∎
+ where
+ open ≡-Reasoning
+ open Inverse
+ module +-swap = _≅_ (+-comm {m} {n})
+ n+m↔m+n : Permutation (n + m) (m + n)
+ n+m↔m+n .to = +-swap.to
+ n+m↔m+n .from = +-swap.from
+ n+m↔m+n .to-cong ≡.refl = ≡.refl
+ n+m↔m+n .from-cong ≡.refl = ≡.refl
+ n+m↔m+n .inverse = (λ { ≡.refl → +-swap.isoˡ _ }) , (λ { ≡.refl → +-swap.isoʳ _ })
+
+open SymmetricMonoidalFunctor
+Push,++,[] : SymmetricMonoidalFunctor
+Push,++,[] .F = Push
+Push,++,[] .isBraidedMonoidal = record
+ { isMonoidal = record
+ { ε = Push-ε
+ ; ⊗-homo = ⊗-homomorphism
+ ; associativity = λ { {n} {m} {o} {(X , Y) , Z} → Push-assoc X Y Z }
+ ; unitaryˡ = λ { {n} {_ , X} → Push-unitaryˡ X }
+ ; unitaryʳ = λ { {n} {X , _} → Push-unitaryʳ X }
+ }
+ ; braiding-compat = λ { {n} {m} {X , Y} → Push-swap X Y }
+ }
+
+module Push,++,[] = SymmetricMonoidalFunctor Push,++,[]
diff --git a/Functor/Monoidal/Instance/Nat/System.agda b/Functor/Monoidal/Instance/Nat/System.agda
new file mode 100644
index 0000000..6659fb3
--- /dev/null
+++ b/Functor/Monoidal/Instance/Nat/System.agda
@@ -0,0 +1,394 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Functor.Monoidal.Instance.Nat.System where
+
+import Categories.Category.Monoidal.Utilities as ⊗-Util
+import Data.Circuit.Value as Value
+import Data.Vec.Functional as Vec
+import Relation.Binary.PropositionalEquality as ≡
+
+open import Level using (0ℓ; suc; Level)
+
+open import Category.Monoidal.Instance.Nat using (Nat,+,0; Natop,+,0)
+open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory; BraidedMonoidalCategory)
+open import Category.Instance.Setoids.SymmetricMonoidal {0ℓ} {0ℓ} using () renaming (Setoids-× to 0ℓ-Setoids-×)
+open import Category.Instance.Setoids.SymmetricMonoidal {suc 0ℓ} {suc 0ℓ} using (Setoids-×)
+
+module Natop,+,0 = SymmetricMonoidalCategory Natop,+,0 renaming (braidedMonoidalCategory to B)
+module 0ℓ-Setoids-× = SymmetricMonoidalCategory 0ℓ-Setoids-× renaming (braidedMonoidalCategory to B)
+
+open import Functor.Monoidal.Instance.Nat.Pull using (Pull,++,[])
+open import Categories.Functor.Monoidal.Braided Natop,+,0.B 0ℓ-Setoids-×.B using (module Strong)
+
+Pull,++,[]B : Strong.BraidedMonoidalFunctor
+Pull,++,[]B = record { isBraidedMonoidal = Pull,++,[].isBraidedMonoidal }
+module Pull,++,[]B = Strong.BraidedMonoidalFunctor (record { isBraidedMonoidal = Pull,++,[].isBraidedMonoidal })
+
+open import Categories.Category.BinaryProducts using (module BinaryProducts)
+open import Categories.Category.Cartesian using (Cartesian)
+open import Categories.Category.Cocartesian using (Cocartesian)
+open import Categories.Category.Instance.Nat using (Nat; Nat-Cocartesian; Natop)
+open import Categories.Category.Instance.Setoids using (Setoids)
+open import Data.Setoid.Unit using (⊤ₛ)
+open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian)
+open import Categories.Category.Product using (Product)
+open import Categories.Category.Product using (_⁂_)
+open import Categories.Functor using (Functor)
+open import Categories.Functor using (_∘F_)
+open import Categories.Functor.Monoidal.Symmetric Nat,+,0 Setoids-× using (module Lax)
+open import Categories.NaturalTransformation.Core using (NaturalTransformation; ntHelper)
+open import Data.Circuit.Value using (Monoid)
+open import Data.Fin using (Fin)
+open import Data.Nat using (ℕ; _+_)
+open import Data.Product using (_,_; dmap; _×_) renaming (map to ×-map)
+open import Data.Product.Function.NonDependent.Setoid using (_×-function_; proj₁ₛ; proj₂ₛ; <_,_>ₛ; swapₛ)
+open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
+open import Data.Setoid using (_⇒ₛ_; ∣_∣)
+open import Data.System {suc 0ℓ} using (Systemₛ; System; discrete; _≤_)
+open import Data.System.Values Monoid using (++ₛ; splitₛ; Values; ++-cong; _++_; [])
+open import Data.System.Values Value.Monoid using (_≋_; module ≋)
+open import Data.Unit.Polymorphic using (⊤; tt)
+open import Function using (Func; _⟶ₛ_; _⟨$⟩_; _∘_; id; case_of_)
+open import Function.Construct.Constant using () renaming (function to Const)
+open import Function.Construct.Identity using () renaming (function to Id)
+open import Function.Construct.Setoid using (_∙_; setoid)
+open import Functor.Instance.Nat.Pull using (Pull)
+open import Functor.Instance.Nat.Push using (Push)
+open import Functor.Instance.Nat.System using (Sys; Sys-defs)
+open import Functor.Monoidal.Braided.Strong.Properties Pull,++,[]B using (braiding-compat-inv)
+open import Functor.Monoidal.Instance.Nat.Push using (Push,++,[])
+open import Functor.Monoidal.Strong.Properties Pull,++,[].monoidalFunctor using (associativity-inv)
+open import Functor.Monoidal.Strong.Properties Pull,++,[].monoidalFunctor using (unitaryʳ-inv; unitaryˡ-inv; module Shorthands)
+open import Relation.Binary using (Setoid)
+open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_)
+
+open module ⇒ₛ {A} {B} = Setoid (setoid {0ℓ} {0ℓ} {0ℓ} {0ℓ} A B) using (_≈_)
+
+open Cartesian (Setoids-Cartesian {suc 0ℓ} {suc 0ℓ}) using (products)
+
+open BinaryProducts products using (-×-)
+open Cocartesian Nat-Cocartesian using (module Dual; i₁; i₂; -+-; _+₁_; +-assocʳ; +-assocˡ; +-comm; +-swap; +₁∘+-swap; +₁∘i₁; +₁∘i₂)
+open Dual.op-binaryProducts using () renaming (×-assoc to +-assoc)
+open SymmetricMonoidalCategory using () renaming (braidedMonoidalCategory to B)
+
+open Func
+
+Sys-ε : ⊤ₛ {suc 0ℓ} {suc 0ℓ} ⟶ₛ Systemₛ 0
+Sys-ε = Const ⊤ₛ (Systemₛ 0) (discrete 0)
+
+private
+
+ variable
+ n m o : ℕ
+ c₁ c₂ c₃ c₄ c₅ c₆ : Level
+ ℓ₁ ℓ₂ ℓ₃ ℓ₄ ℓ₅ ℓ₆ : Level
+
+_×-⇒_
+ : {A : Setoid c₁ ℓ₁}
+ {B : Setoid c₂ ℓ₂}
+ {C : Setoid c₃ ℓ₃}
+ {D : Setoid c₄ ℓ₄}
+ {E : Setoid c₅ ℓ₅}
+ {F : Setoid c₆ ℓ₆}
+ → A ⟶ₛ B ⇒ₛ C
+ → D ⟶ₛ E ⇒ₛ F
+ → A ×ₛ D ⟶ₛ B ×ₛ E ⇒ₛ C ×ₛ F
+_×-⇒_ f g .to (x , y) = to f x ×-function to g y
+_×-⇒_ f g .cong (x , y) = cong f x , cong g y
+
+⊗ : System n × System m → System (n + m)
+⊗ {n} {m} (S₁ , S₂) = record
+ { S = S₁.S ×ₛ S₂.S
+ ; fₛ = S₁.fₛ ×-⇒ S₂.fₛ ∙ splitₛ
+ ; fₒ = ++ₛ ∙ S₁.fₒ ×-function S₂.fₒ
+ }
+ where
+ module S₁ = System S₁
+ module S₂ = System S₂
+
+opaque
+
+ _~_ : {A B : Setoid 0ℓ 0ℓ} → Func A B → Func A B → Set
+ _~_ = _≈_
+ infix 4 _~_
+
+ sym-~
+ : {A B : Setoid 0ℓ 0ℓ}
+ {x y : Func A B}
+ → x ~ y
+ → y ~ x
+ sym-~ {A} {B} {x} {y} = 0ℓ-Setoids-×.Equiv.sym {A} {B} {x} {y}
+
+⊗ₛ
+ : {n m : ℕ}
+ → Systemₛ n ×ₛ Systemₛ m ⟶ₛ Systemₛ (n + m)
+⊗ₛ .to = ⊗
+⊗ₛ {n} {m} .cong {a , b} {c , d} ((a≤c , c≤a) , (b≤d , d≤b)) = left , right
+ where
+ module a = System a
+ module b = System b
+ module c = System c
+ module d = System d
+ module a≤c = _≤_ a≤c
+ module b≤d = _≤_ b≤d
+ module c≤a = _≤_ c≤a
+ module d≤b = _≤_ d≤b
+
+ open _≤_
+ left : ⊗ₛ ⟨$⟩ (a , b) ≤ ⊗ₛ ⟨$⟩ (c , d)
+ left .⇒S = a≤c.⇒S ×-function b≤d.⇒S
+ left .≗-fₛ i with (i₁ , i₂) ← splitₛ ⟨$⟩ i = dmap (a≤c.≗-fₛ i₁) (b≤d.≗-fₛ i₂)
+ left .≗-fₒ = cong ++ₛ ∘ dmap a≤c.≗-fₒ b≤d.≗-fₒ
+
+ right : ⊗ₛ ⟨$⟩ (c , d) ≤ ⊗ₛ ⟨$⟩ (a , b)
+ right .⇒S = c≤a.⇒S ×-function d≤b.⇒S
+ right .≗-fₛ i with (i₁ , i₂) ← splitₛ ⟨$⟩ i = dmap (c≤a.≗-fₛ i₁) (d≤b.≗-fₛ i₂)
+ right .≗-fₒ = cong ++ₛ ∘ dmap c≤a.≗-fₒ d≤b.≗-fₒ
+
+opaque
+
+ unfolding Sys-defs
+
+ System-⊗-≤
+ : {n n′ m m′ : ℕ}
+ (X : System n)
+ (Y : System m)
+ (f : Fin n → Fin n′)
+ (g : Fin m → Fin m′)
+ → ⊗ (Sys.₁ f ⟨$⟩ X , Sys.₁ g ⟨$⟩ Y) ≤ Sys.₁ (f +₁ g) ⟨$⟩ ⊗ (X , Y)
+ System-⊗-≤ {n} {n′} {m} {m′} X Y f g = record
+ { ⇒S = Id (X.S ×ₛ Y.S)
+ ; ≗-fₛ = λ i s → cong (X.fₛ ×-⇒ Y.fₛ) (Pull,++,[].⊗-homo.⇐.sym-commute (f , g) {i}) {s}
+ ; ≗-fₒ = λ (s₁ , s₂) → Push,++,[].⊗-homo.commute (f , g) {X.fₒ′ s₁ , Y.fₒ′ s₂}
+ }
+ where
+ module X = System X
+ module Y = System Y
+
+ System-⊗-≥
+ : {n n′ m m′ : ℕ}
+ (X : System n)
+ (Y : System m)
+ (f : Fin n → Fin n′)
+ (g : Fin m → Fin m′)
+ → Sys.₁ (f +₁ g) ⟨$⟩ (⊗ (X , Y)) ≤ ⊗ (Sys.₁ f ⟨$⟩ X , Sys.₁ g ⟨$⟩ Y)
+ System-⊗-≥ {n} {n′} {m} {m′} X Y f g = record
+ { ⇒S = Id (X.S ×ₛ Y.S)
+ ; ≗-fₛ = λ i s → cong (X.fₛ ×-⇒ Y.fₛ) (Pull,++,[].⊗-homo.⇐.commute (f , g) {i}) {s}
+ ; ≗-fₒ = λ (s₁ , s₂) → Push,++,[].⊗-homo.sym-commute (f , g) {X.fₒ′ s₁ , Y.fₒ′ s₂}
+ }
+ where
+ module X = System X
+ module Y = System Y
+
+⊗-homomorphism : NaturalTransformation (-×- ∘F (Sys ⁂ Sys)) (Sys ∘F -+-)
+⊗-homomorphism = ntHelper record
+ { η = λ (n , m) → ⊗ₛ {n} {m}
+ ; commute = λ { (f , g) {X , Y} → System-⊗-≤ X Y f g , System-⊗-≥ X Y f g }
+ }
+
+opaque
+
+ unfolding Sys-defs
+
+ ⊗-assoc-≤
+ : (X : System n)
+ (Y : System m)
+ (Z : System o)
+ → Sys.₁ (+-assocˡ {n}) ⟨$⟩ (⊗ (⊗ (X , Y) , Z)) ≤ ⊗ (X , ⊗ (Y , Z))
+ ⊗-assoc-≤ {n} {m} {o} X Y Z = record
+ { ⇒S = assocˡ
+ ; ≗-fₛ = λ i ((s₁ , s₂) , s₃) → cong (X.fₛ ×-⇒ (Y.fₛ ×-⇒ Z.fₛ) ∙ assocˡ) (associativity-inv {x = i}) {s₁ , s₂ , s₃}
+ ; ≗-fₒ = λ ((s₁ , s₂) , s₃) → Push,++,[].associativity {x = (X.fₒ′ s₁ , Y.fₒ′ s₂) , Z.fₒ′ s₃}
+ }
+ where
+ open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using () renaming (products to 0ℓ-products)
+ open BinaryProducts 0ℓ-products using (assocˡ)
+
+ module X = System X
+ module Y = System Y
+ module Z = System Z
+
+ ⊗-assoc-≥
+ : (X : System n)
+ (Y : System m)
+ (Z : System o)
+ → ⊗ (X , ⊗ (Y , Z)) ≤ Sys.₁ (+-assocˡ {n}) ⟨$⟩ (⊗ (⊗ (X , Y) , Z))
+ ⊗-assoc-≥ {n} {m} {o} X Y Z = record
+ { ⇒S = ×-assocʳ
+ ; ≗-fₛ = λ i (s₁ , s₂ , s₃) → cong ((X.fₛ ×-⇒ Y.fₛ) ×-⇒ Z.fₛ) (sym-split-assoc {i}) {(s₁ , s₂) , s₃}
+ ; ≗-fₒ = λ (s₁ , s₂ , s₃) → sym-++-assoc {(X.fₒ′ s₁ , Y.fₒ′ s₂) , Z.fₒ′ s₃}
+ }
+ where
+ open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using () renaming (products to prod)
+ open BinaryProducts prod using () renaming (assocʳ to ×-assocʳ; assocˡ to ×-assocˡ)
+
+ +-assocℓ : Fin ((n + m) + o) → Fin (n + (m + o))
+ +-assocℓ = +-assocˡ {n} {m} {o}
+
+ opaque
+
+ unfolding _~_
+
+ associativity-inv-~ : splitₛ ×-function Id (Values o) ∙ splitₛ ∙ Pull.₁ +-assocℓ ~ ×-assocʳ ∙ Id (Values n) ×-function splitₛ ∙ splitₛ
+ associativity-inv-~ {i} = associativity-inv {n} {m} {o} {i}
+
+ associativity-~ : Push.₁ (+-assocˡ {n} {m} {o}) ∙ ++ₛ ∙ ++ₛ ×-function Id (Values o) ~ ++ₛ ∙ Id (Values n) ×-function ++ₛ ∙ ×-assocˡ
+ associativity-~ {i} = Push,++,[].associativity {n} {m} {o} {i}
+
+ sym-split-assoc-~ : ×-assocʳ ∙ Id (Values n) ×-function splitₛ ∙ splitₛ ~ splitₛ ×-function Id (Values o) ∙ splitₛ ∙ Pull.₁ +-assocℓ
+ sym-split-assoc-~ = sym-~ associativity-inv-~
+
+ sym-++-assoc-~ : ++ₛ ∙ Id (Values n) ×-function ++ₛ ∙ ×-assocˡ ~ Push.₁ (+-assocˡ {n} {m} {o}) ∙ ++ₛ ∙ ++ₛ ×-function Id (Values o)
+ sym-++-assoc-~ = sym-~ associativity-~
+
+ opaque
+
+ unfolding _~_
+
+ sym-split-assoc : ×-assocʳ ∙ Id (Values n) ×-function splitₛ ∙ splitₛ ≈ splitₛ ×-function Id (Values o) ∙ splitₛ ∙ Pull.₁ +-assocℓ
+ sym-split-assoc {i} = sym-split-assoc-~ {i}
+
+ sym-++-assoc : ++ₛ ∙ Id (Values n) ×-function ++ₛ ∙ ×-assocˡ ≈ Push.₁ (+-assocˡ {n} {m} {o}) ∙ ++ₛ ∙ ++ₛ ×-function Id (Values o)
+ sym-++-assoc {i} = sym-++-assoc-~
+
+ module X = System X
+ module Y = System Y
+ module Z = System Z
+
+ Sys-unitaryˡ-≤ : (X : System n) → Sys.₁ id ⟨$⟩ (⊗ (discrete 0 , X)) ≤ X
+ Sys-unitaryˡ-≤ {n} X = record
+ { ⇒S = proj₂ₛ
+ ; ≗-fₛ = λ i (_ , s) → cong (X.fₛ ∙ proj₂ₛ {A = ⊤ₛ {0ℓ}}) (unitaryˡ-inv {n} {i})
+ ; ≗-fₒ = λ (_ , s) → Push,++,[].unitaryˡ {n} {tt , X.fₒ′ s}
+ }
+ where
+ module X = System X
+
+ Sys-unitaryˡ-≥ : (X : System n) → X ≤ Sys.₁ id ⟨$⟩ (⊗ (discrete 0 , X))
+ Sys-unitaryˡ-≥ {n} X = record
+ { ⇒S = < Const X.S ⊤ₛ tt , Id X.S >ₛ
+ ; ≗-fₛ = λ i s → cong (disc.fₛ ×-⇒ X.fₛ ∙ ε⇒ ×-function Id (Values n)) (sym-split-unitaryˡ {i})
+ ; ≗-fₒ = λ s → sym-++-unitaryˡ {_ , X.fₒ′ s}
+ }
+ where
+ module X = System X
+ open SymmetricMonoidalCategory 0ℓ-Setoids-× using (module Equiv)
+ open ⊗-Util.Shorthands 0ℓ-Setoids-×.monoidal using (λ⇐)
+ open Shorthands using (ε⇐; ε⇒)
+ module disc = System (discrete 0)
+ sym-split-unitaryˡ
+ : λ⇐ ≈ ε⇐ ×-function Id (Values n) ∙ splitₛ ∙ Pull.₁ ((λ ()) Vec.++ id)
+ sym-split-unitaryˡ =
+ 0ℓ-Setoids-×.Equiv.sym
+ {Values n}
+ {⊤ₛ ×ₛ Values n}
+ {ε⇐ ×-function Id (Values n) ∙ splitₛ ∙ Pull.₁ ((λ ()) Vec.++ id)}
+ {λ⇐}
+ (unitaryˡ-inv {n})
+ sym-++-unitaryˡ : proj₂ₛ {A = ⊤ₛ {0ℓ} {0ℓ}} ≈ Push.₁ ((λ ()) Vec.++ id) ∙ ++ₛ ∙ Push,++,[].ε ×-function Id (Values n)
+ sym-++-unitaryˡ =
+ 0ℓ-Setoids-×.Equiv.sym
+ {⊤ₛ ×ₛ Values n}
+ {Values n}
+ {Push.₁ ((λ ()) Vec.++ id) ∙ ++ₛ ∙ Push,++,[].ε ×-function Id (Values n)}
+ {proj₂ₛ}
+ (Push,++,[].unitaryˡ {n})
+
+
+ Sys-unitaryʳ-≤ : (X : System n) → Sys.₁ (id Vec.++ (λ ())) ⟨$⟩ (⊗ {n} {0} (X , discrete 0)) ≤ X
+ Sys-unitaryʳ-≤ {n} X = record
+ { ⇒S = proj₁ₛ
+ ; ≗-fₛ = λ i (s , _) → cong (X.fₛ ∙ proj₁ₛ {B = ⊤ₛ {0ℓ}}) (unitaryʳ-inv {n} {i})
+ ; ≗-fₒ = λ (s , _) → Push,++,[].unitaryʳ {n} {X.fₒ′ s , tt}
+ }
+ where
+ module X = System X
+
+ Sys-unitaryʳ-≥ : (X : System n) → X ≤ Sys.₁ (id Vec.++ (λ ())) ⟨$⟩ (⊗ {n} {0} (X , discrete 0))
+ Sys-unitaryʳ-≥ {n} X = record
+ { ⇒S = < Id X.S , Const X.S ⊤ₛ tt >ₛ
+ ; ≗-fₛ = λ i s → cong (X.fₛ ×-⇒ disc.fₛ ∙ Id (Values n) ×-function ε⇒) sym-split-unitaryʳ {s , tt}
+ ; ≗-fₒ = λ s → sym-++-unitaryʳ {X.fₒ′ s , tt}
+ }
+ where
+ module X = System X
+ module disc = System (discrete 0)
+ open ⊗-Util.Shorthands 0ℓ-Setoids-×.monoidal using (ρ⇐)
+ open Shorthands using (ε⇐; ε⇒)
+ sym-split-unitaryʳ
+ : ρ⇐ ≈ Id (Values n) ×-function ε⇐ ∙ splitₛ ∙ Pull.₁ (id Vec.++ (λ ()))
+ sym-split-unitaryʳ =
+ 0ℓ-Setoids-×.Equiv.sym
+ {Values n}
+ {Values n ×ₛ ⊤ₛ}
+ {Id (Values n) ×-function ε⇐ ∙ splitₛ ∙ Pull.₁ (id Vec.++ (λ ()))}
+ {ρ⇐}
+ (unitaryʳ-inv {n})
+ sym-++-unitaryʳ : proj₁ₛ {B = ⊤ₛ {0ℓ}} ≈ Push.₁ (id Vec.++ (λ ())) ∙ ++ₛ ∙ Id (Values n) ×-function Push,++,[].ε
+ sym-++-unitaryʳ =
+ 0ℓ-Setoids-×.Equiv.sym
+ {Values n ×ₛ ⊤ₛ}
+ {Values n}
+ {Push.₁ (id Vec.++ (λ ())) ∙ ++ₛ ∙ Id (Values n) ×-function Push,++,[].ε}
+ {proj₁ₛ}
+ (Push,++,[].unitaryʳ {n})
+
+ Sys-braiding-compat-≤
+ : (X : System n)
+ (Y : System m)
+ → Sys.₁ (+-swap {m} {n}) ⟨$⟩ (⊗ (X , Y)) ≤ ⊗ (Y , X)
+ Sys-braiding-compat-≤ {n} {m} X Y = record
+ { ⇒S = swapₛ
+ ; ≗-fₛ = λ i (s₁ , s₂) → cong (Y.fₛ ×-⇒ X.fₛ ∙ swapₛ) (braiding-compat-inv {m} {n} {i}) {s₂ , s₁}
+ ; ≗-fₒ = λ (s₁ , s₂) → Push,++,[].braiding-compat {n} {m} {X.fₒ′ s₁ , Y.fₒ′ s₂}
+ }
+ where
+ module X = System X
+ module Y = System Y
+
+ Sys-braiding-compat-≥
+ : (X : System n)
+ (Y : System m)
+ → ⊗ (Y , X) ≤ Sys.₁ (+-swap {m} {n}) ⟨$⟩ ⊗ (X , Y)
+ Sys-braiding-compat-≥ {n} {m} X Y = record
+ { ⇒S = swapₛ
+ ; ≗-fₛ = λ i (s₂ , s₁) → cong (X.fₛ ×-⇒ Y.fₛ) (sym-braiding-compat-inv {i})
+ ; ≗-fₒ = λ (s₂ , s₁) → sym-braiding-compat-++ {X.fₒ′ s₁ , Y.fₒ′ s₂}
+ }
+ where
+ module X = System X
+ module Y = System Y
+ sym-braiding-compat-inv : swapₛ ∙ splitₛ {m} ≈ splitₛ ∙ Pull.₁ (+-swap {m} {n})
+ sym-braiding-compat-inv {i} =
+ 0ℓ-Setoids-×.Equiv.sym
+ {Values (m + n)}
+ {Values n ×ₛ Values m}
+ {splitₛ ∙ Pull.₁ (+-swap {m} {n})}
+ {swapₛ ∙ splitₛ {m}}
+ (λ {j} → braiding-compat-inv {m} {n} {j}) {i}
+ sym-braiding-compat-++ : ++ₛ {m} ∙ swapₛ ≈ Push.₁ (+-swap {m} {n}) ∙ ++ₛ
+ sym-braiding-compat-++ {i} =
+ 0ℓ-Setoids-×.Equiv.sym
+ {Values n ×ₛ Values m}
+ {Values (m + n)}
+ {Push.₁ (+-swap {m} {n}) ∙ ++ₛ}
+ {++ₛ {m} ∙ swapₛ}
+ (Push,++,[].braiding-compat {n} {m})
+
+open Lax.SymmetricMonoidalFunctor
+
+Sys,⊗,ε : Lax.SymmetricMonoidalFunctor
+Sys,⊗,ε .F = Sys
+Sys,⊗,ε .isBraidedMonoidal = record
+ { isMonoidal = record
+ { ε = Sys-ε
+ ; ⊗-homo = ⊗-homomorphism
+ ; associativity = λ { {n} {m} {o} {(X , Y), Z} → ⊗-assoc-≤ X Y Z , ⊗-assoc-≥ X Y Z }
+ ; unitaryˡ = λ { {n} {_ , X} → Sys-unitaryˡ-≤ X , Sys-unitaryˡ-≥ X }
+ ; unitaryʳ = λ { {n} {X , _} → Sys-unitaryʳ-≤ X , Sys-unitaryʳ-≥ X }
+ }
+ ; braiding-compat = λ { {n} {m} {X , Y} → Sys-braiding-compat-≤ X Y , Sys-braiding-compat-≥ X Y }
+ }
+
+module Sys,⊗,ε = Lax.SymmetricMonoidalFunctor Sys,⊗,ε
diff --git a/Functor/Monoidal/Strong/Properties.agda b/Functor/Monoidal/Strong/Properties.agda
new file mode 100644
index 0000000..9eb7579
--- /dev/null
+++ b/Functor/Monoidal/Strong/Properties.agda
@@ -0,0 +1,104 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Level using (Level)
+open import Categories.Category.Monoidal using (MonoidalCategory)
+open import Categories.Functor.Monoidal using (StrongMonoidalFunctor)
+
+module Functor.Monoidal.Strong.Properties
+ {o o′ ℓ ℓ′ e e′ : Level}
+ {C : MonoidalCategory o ℓ e}
+ {D : MonoidalCategory o′ ℓ′ e′}
+ (F,φ,ε : StrongMonoidalFunctor C D) where
+
+import Categories.Category.Monoidal.Utilities as ⊗-Utilities
+import Categories.Category.Construction.Core as Core
+
+open import Categories.Functor.Monoidal using (StrongMonoidalFunctor)
+open import Categories.Functor.Properties using ([_]-resp-≅)
+
+private
+
+ module C where
+ open MonoidalCategory C public
+ open ⊗-Utilities.Shorthands monoidal public using (α⇐; λ⇐; ρ⇐)
+
+ module D where
+ open MonoidalCategory D public
+ open ⊗-Utilities.Shorthands monoidal using (α⇐; λ⇐; ρ⇐) public
+ open Core.Shorthands U using (_∘ᵢ_; idᵢ; _≈ᵢ_; ⌞_⌟; to-≈; _≅_; module HomReasoningᵢ) public
+ open ⊗-Utilities monoidal using (_⊗ᵢ_) public
+
+open D
+
+open StrongMonoidalFunctor F,φ,ε
+
+private
+
+ variable
+ X Y Z : C.Obj
+
+ α : {A B C : Obj} → (A ⊗₀ B) ⊗₀ C ≅ A ⊗₀ (B ⊗₀ C)
+ α = associator
+
+ Fα : F₀ ((X C.⊗₀ Y) C.⊗₀ Z) ≅ F₀ (X C.⊗₀ (Y C.⊗₀ Z))
+ Fα = [ F ]-resp-≅ C.associator
+
+ λ- : {A : Obj} → unit ⊗₀ A ≅ A
+ λ- = unitorˡ
+
+ Fλ : F₀ (C.unit C.⊗₀ X) ≅ F₀ X
+ Fλ = [ F ]-resp-≅ C.unitorˡ
+
+ ρ : {A : Obj} → A ⊗₀ unit ≅ A
+ ρ = unitorʳ
+
+ Fρ : F₀ (X C.⊗₀ C.unit) ≅ F₀ X
+ Fρ = [ F ]-resp-≅ C.unitorʳ
+
+ φ : F₀ X ⊗₀ F₀ Y ≅ F₀ (X C.⊗₀ Y)
+ φ = ⊗-homo.FX≅GX
+
+module Shorthands where
+
+ φ⇒ : F₀ X ⊗₀ F₀ Y ⇒ F₀ (X C.⊗₀ Y)
+ φ⇒ = ⊗-homo.⇒.η _
+
+ φ⇐ : F₀ (X C.⊗₀ Y) ⇒ F₀ X ⊗₀ F₀ Y
+ φ⇐ = ⊗-homo.⇐.η _
+
+ ε⇒ : unit ⇒ F₀ C.unit
+ ε⇒ = ε.from
+
+ ε⇐ : F₀ C.unit ⇒ unit
+ ε⇐ = ε.to
+
+open Shorthands
+open HomReasoning
+
+associativityᵢ : Fα {X} {Y} {Z} ∘ᵢ φ ∘ᵢ φ ⊗ᵢ idᵢ ≈ᵢ φ ∘ᵢ idᵢ ⊗ᵢ φ ∘ᵢ α
+associativityᵢ = ⌞ associativity ⌟
+
+associativity-inv : φ⇐ ⊗₁ id ∘ φ⇐ ∘ F₁ (C.α⇐ {X} {Y} {Z}) ≈ α⇐ ∘ id ⊗₁ φ⇐ ∘ φ⇐
+associativity-inv = begin
+ φ⇐ ⊗₁ id ∘ φ⇐ ∘ F₁ C.α⇐ ≈⟨ sym-assoc ⟩
+ (φ⇐ ⊗₁ id ∘ φ⇐) ∘ F₁ C.α⇐ ≈⟨ to-≈ associativityᵢ ⟩
+ (α⇐ ∘ id ⊗₁ φ⇐) ∘ φ⇐ ≈⟨ assoc ⟩
+ α⇐ ∘ id ⊗₁ φ⇐ ∘ φ⇐ ∎
+
+unitaryˡᵢ : Fλ {X} ∘ᵢ φ ∘ᵢ ε ⊗ᵢ idᵢ ≈ᵢ λ-
+unitaryˡᵢ = ⌞ unitaryˡ ⌟
+
+unitaryˡ-inv : ε⇐ ⊗₁ id ∘ φ⇐ ∘ F₁ (C.λ⇐ {X}) ≈ λ⇐
+unitaryˡ-inv = begin
+ ε⇐ ⊗₁ id ∘ φ⇐ ∘ F₁ C.λ⇐ ≈⟨ sym-assoc ⟩
+ (ε⇐ ⊗₁ id ∘ φ⇐) ∘ F₁ C.λ⇐ ≈⟨ to-≈ unitaryˡᵢ ⟩
+ λ⇐ ∎
+
+unitaryʳᵢ : Fρ {X} ∘ᵢ φ ∘ᵢ idᵢ ⊗ᵢ ε ≈ᵢ ρ
+unitaryʳᵢ = ⌞ unitaryʳ ⌟
+
+unitaryʳ-inv : id ⊗₁ ε⇐ ∘ φ⇐ ∘ F₁ (C.ρ⇐ {X}) ≈ ρ⇐
+unitaryʳ-inv = begin
+ id ⊗₁ ε⇐ ∘ φ⇐ ∘ F₁ C.ρ⇐ ≈⟨ sym-assoc ⟩
+ (id ⊗₁ ε⇐ ∘ φ⇐) ∘ F₁ C.ρ⇐ ≈⟨ to-≈ unitaryʳᵢ ⟩
+ ρ⇐ ∎
diff --git a/Functor/Properties.agda b/Functor/Properties.agda
new file mode 100644
index 0000000..1bd3ba6
--- /dev/null
+++ b/Functor/Properties.agda
@@ -0,0 +1,77 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Functor.Properties where
+
+import Categories.Morphism.Reasoning as ⇒-Reasoning
+
+open import Categories.Category using (Category; _[_,_])
+open import Level using (Level)
+open import Categories.Morphism.Notation using (_[_≅_])
+open import Categories.Morphism using (_≅_)
+open import Categories.Functor using (Functor)
+open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_; niHelper)
+open import Data.Product using (Σ-syntax; _,_)
+
+module _
+ {o o′ ℓ ℓ′ e e′ : Level}
+ {𝒞 : Category o ℓ e}
+ {𝒟 : Category o′ ℓ′ e′}
+ where
+
+ module 𝒞 = Category 𝒞
+ module 𝒟 = Category 𝒟
+
+ define-by-pw-iso
+ : (F : Functor 𝒞 𝒟)
+ (G₀ : 𝒞.Obj → 𝒟.Obj)
+ → (let module F = Functor F)
+ → ((X : 𝒞.Obj) → 𝒟 [ F.₀ X ≅ G₀ X ])
+ → Σ[ G ∈ Functor 𝒞 𝒟 ] F ≃ G
+ define-by-pw-iso F G₀ α = G , F≃G
+ where
+ open Functor
+ module F = Functor F
+ open 𝒟
+ open _≅_
+ open HomReasoning
+ open ⇒-Reasoning 𝒟
+
+ G-homo
+ : {X Y Z : 𝒞.Obj}
+ → (f : 𝒞 [ X , Y ])
+ → (g : 𝒞 [ Y , Z ])
+ → from (α Z) ∘ F.₁ (g 𝒞.∘ f) ∘ to (α X)
+ ≈ (from (α Z) ∘ F.₁ g ∘ to (α Y)) ∘ from (α Y) ∘ F.₁ f ∘ to (α X)
+ G-homo {X} {Y} {Z} f g = begin
+ from (α Z) ∘ F.₁ (g 𝒞.∘ f) ∘ to (α X) ≈⟨ extendʳ (pushʳ F.homomorphism) ⟩
+ (from (α Z) ∘ F.₁ g) ∘ F.₁ f ∘ to (α X) ≈⟨ extendˡ (pushˡ (insertʳ (isoˡ (α Y)))) ⟩
+ (from (α Z) ∘ F.₁ g ∘ to (α Y)) ∘ from (α Y) ∘ F.₁ f ∘ to (α X) ∎
+
+ G-resp-≈
+ : {X Y : 𝒞.Obj}
+ → {f g : 𝒞 [ X , Y ]}
+ → f 𝒞.≈ g
+ → from (α Y) ∘ F.₁ f ∘ to (α X)
+ ≈ from (α Y) ∘ F.₁ g ∘ to (α X)
+ G-resp-≈ f≈g = refl⟩∘⟨ F.F-resp-≈ f≈g ⟩∘⟨refl
+
+ G-identity : {X : 𝒞.Obj} → from (α X) ∘ F.₁ 𝒞.id ∘ to (α X) ≈ id
+ G-identity {X} = refl⟩∘⟨ (F.identity ⟩∘⟨refl ○ identityˡ) ○ isoʳ (α X)
+
+ G : Functor 𝒞 𝒟
+ G .F₀ = G₀
+ G .F₁ {X} {Y} f = from (α Y) ∘ F.₁ f ∘ to (α X)
+ G .identity {X} = G-identity
+ G .homomorphism {f = f} {g} = G-homo f g
+ G .F-resp-≈ = G-resp-≈
+
+ commute : {X Y : 𝒞.Obj} (f : 𝒞 [ X , Y ]) → from (α Y) ∘ F.F₁ f ≈ (from (α Y) ∘ F.₁ f ∘ to (α X)) ∘ from (α X)
+ commute {X} {Y} f = pushʳ (insertʳ (isoˡ (α X)))
+
+ F≃G : F ≃ G
+ F≃G = niHelper record
+ { η = λ X → from (α X)
+ ; η⁻¹ = λ X → to (α X)
+ ; commute = commute
+ ; iso = λ X → iso (α X)
+ }
diff --git a/Nat/Properties.agda b/Nat/Properties.agda
index 6e04346..0b3da1e 100644
--- a/Nat/Properties.agda
+++ b/Nat/Properties.agda
@@ -19,16 +19,15 @@ open import Categories.Object.Coproduct Nat using (Coproduct; IsCoproduct; IsCop
open import Coeq Nat using (coequalizer-on-coproduct)
open import FinMerge using (glue-iter; glue-unglue-once)
open import FinMerge.Properties using (lemma₂; merge-unmerge; unmerge-merge)
-open import Util using (compare; less; equal; greater; _<_<_)
+open import FinMerge.Util using (compare; less; equal; greater)
open Category Nat
-
makeZeroCoequalizer : {B : ℕ} {f g : 0 ⇒ B} → Coequalizer f g
makeZeroCoequalizer = record
{ arr = id
; isCoequalizer = record
- { equality = λ()
+ { equality = λ ()
; coequalize = λ {_} {h} _ → h
; universal = λ _ → refl
; unique = λ h≈i∘id → Equiv.sym h≈i∘id
diff --git a/NaturalTransformation/Instance/EmptyList.agda b/NaturalTransformation/Instance/EmptyList.agda
new file mode 100644
index 0000000..9f94955
--- /dev/null
+++ b/NaturalTransformation/Instance/EmptyList.agda
@@ -0,0 +1,35 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Level using (Level; _⊔_)
+
+module NaturalTransformation.Instance.EmptyList {c ℓ : Level} where
+
+open import Categories.Functor using (Functor)
+open import Categories.Functor.Construction.Constant using (const)
+open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
+open import Data.Opaque.List using (Listₛ; []ₛ; mapₛ)
+open import Data.Setoid using (_⇒ₛ_)
+open import Data.Setoid.Unit using (⊤ₛ)
+open import Function using (_⟶ₛ_)
+open import Function.Construct.Constant using () renaming (function to Const)
+open import Function.Construct.Setoid using (_∙_)
+open import Functor.Instance.List {c} {ℓ} using (List)
+open import Relation.Binary using (Setoid)
+
+opaque
+
+ unfolding []ₛ
+
+ map-[]ₛ : {A B : Setoid c ℓ}
+ → (f : A ⟶ₛ B)
+ → (open Setoid (⊤ₛ ⇒ₛ Listₛ B))
+ → []ₛ ≈ mapₛ f ∙ []ₛ
+ map-[]ₛ {_} {B} f = refl
+ where
+ open Setoid (List.₀ B)
+
+⊤⇒[] : NaturalTransformation (const ⊤ₛ) List
+⊤⇒[] = ntHelper record
+ { η = λ X → []ₛ
+ ; commute = map-[]ₛ
+ }
diff --git a/NaturalTransformation/Instance/EmptyMultiset.agda b/NaturalTransformation/Instance/EmptyMultiset.agda
new file mode 100644
index 0000000..bfec451
--- /dev/null
+++ b/NaturalTransformation/Instance/EmptyMultiset.agda
@@ -0,0 +1,34 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Level using (Level; _⊔_)
+
+module NaturalTransformation.Instance.EmptyMultiset {c ℓ : Level} where
+
+import Function.Construct.Constant as Const
+
+open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
+open import Categories.Functor using (Functor)
+open import Data.Setoid.Unit {c} {c ⊔ ℓ} using (⊤ₛ)
+open import Categories.Functor.Construction.Constant using (const)
+open import Data.Opaque.Multiset using (Multisetₛ; []ₛ; mapₛ)
+open import Functor.Instance.Multiset {c} {ℓ} using (Multiset)
+open import Function.Construct.Constant using () renaming (function to Const)
+open import Relation.Binary using (Setoid)
+open import Data.Setoid using (_⇒ₛ_)
+open import Function using (Func; _⟶ₛ_)
+open import Function.Construct.Setoid using (_∙_)
+
+opaque
+ unfolding mapₛ
+ map-[]ₛ
+ : {A B : Setoid c ℓ}
+ → (f : A ⟶ₛ B)
+ → (open Setoid (⊤ₛ ⇒ₛ Multisetₛ B))
+ → []ₛ ≈ mapₛ f ∙ []ₛ
+ map-[]ₛ {B = B} f = Setoid.refl (Multisetₛ B)
+
+⊤⇒[] : NaturalTransformation (const ⊤ₛ) Multiset
+⊤⇒[] = ntHelper record
+ { η = λ X → []ₛ {Aₛ = X}
+ ; commute = map-[]ₛ
+ }
diff --git a/NaturalTransformation/Instance/ListAppend.agda b/NaturalTransformation/Instance/ListAppend.agda
new file mode 100644
index 0000000..3f198e1
--- /dev/null
+++ b/NaturalTransformation/Instance/ListAppend.agda
@@ -0,0 +1,43 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Level using (Level; _⊔_)
+
+module NaturalTransformation.Instance.ListAppend {c ℓ : Level} where
+
+open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
+open import Categories.Category.Product using (_※_)
+open import Categories.Category.BinaryProducts using (module BinaryProducts)
+open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian)
+open import Categories.Category.Cartesian using (Cartesian)
+open import Categories.Functor using (Functor; _∘F_)
+open import Data.Opaque.List as L using (mapₛ; ++ₛ)
+open import Data.List.Properties using (map-++)
+open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
+open import Data.Product using (_,_)
+open import Functor.Instance.List {c} {ℓ} using (List)
+open import Function using (Func; _⟶ₛ_; _⟨$⟩_)
+open import Relation.Binary using (Setoid)
+
+open Cartesian (Setoids-Cartesian {c} {c ⊔ ℓ}) using (products)
+open BinaryProducts products using (-×-)
+open Func
+
+opaque
+
+ unfolding ++ₛ
+
+ map-++ₛ
+ : {A B : Setoid c ℓ}
+ (f : Func A B)
+ (xs ys : Setoid.Carrier (L.Listₛ A))
+ (open Setoid (L.Listₛ B))
+ → ++ₛ ⟨$⟩ (mapₛ f ⟨$⟩ xs , mapₛ f ⟨$⟩ ys) ≈ mapₛ f ⟨$⟩ (++ₛ ⟨$⟩ (xs , ys))
+ map-++ₛ {_} {B} f xs ys = sym (reflexive (map-++ (to f) xs ys))
+ where
+ open Setoid (List.₀ B)
+
+++ : NaturalTransformation (-×- ∘F (List ※ List)) List
+++ = ntHelper record
+ { η = λ X → ++ₛ {c} {ℓ} {X}
+ ; commute = λ { {A} {B} f {xs , ys} → map-++ₛ f xs ys }
+ }
diff --git a/NaturalTransformation/Instance/MultisetAppend.agda b/NaturalTransformation/Instance/MultisetAppend.agda
new file mode 100644
index 0000000..f786124
--- /dev/null
+++ b/NaturalTransformation/Instance/MultisetAppend.agda
@@ -0,0 +1,45 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Level using (Level; _⊔_)
+
+module NaturalTransformation.Instance.MultisetAppend {c ℓ : Level} where
+
+import Data.Opaque.List as L
+
+open import Categories.Category.BinaryProducts using (module BinaryProducts)
+open import Categories.Category.Cartesian using (Cartesian)
+open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian)
+open import Categories.Category.Product using (_※_)
+open import Categories.Functor using (Functor; _∘F_)
+open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
+open import Data.List.Properties using (map-++)
+open import Data.List.Relation.Binary.Permutation.Setoid.Properties using (++⁺)
+open import Data.Opaque.Multiset using (Multisetₛ; mapₛ; ++ₛ)
+open import Data.Product using (_,_)
+open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
+open import Function using (Func; _⟶ₛ_; _⟨$⟩_)
+open import Functor.Instance.Multiset {c} {ℓ} using (Multiset)
+open import Relation.Binary using (Setoid)
+
+open Cartesian (Setoids-Cartesian {c} {c ⊔ ℓ}) using (products)
+open BinaryProducts products using (-×-)
+open Func
+
+opaque
+ unfolding ++ₛ mapₛ
+
+ map-++ₛ
+ : {A B : Setoid c ℓ}
+ (f : Func A B)
+ (xs ys : Setoid.Carrier (Multiset.₀ A))
+ → (open Setoid (Multiset.₀ B))
+ → ++ₛ ⟨$⟩ (mapₛ f ⟨$⟩ xs , mapₛ f ⟨$⟩ ys) ≈ mapₛ f ⟨$⟩ (++ₛ ⟨$⟩ (xs , ys))
+ map-++ₛ {A} {B} f xs ys = sym (reflexive (map-++ (to f) xs ys))
+ where
+ open Setoid (Multiset.₀ B)
+
+++ : NaturalTransformation (-×- ∘F (Multiset ※ Multiset)) Multiset
+++ = ntHelper record
+ { η = λ X → ++ₛ
+ ; commute = λ { {A} {B} f {xs , ys} → map-++ₛ f xs ys }
+ }
diff --git a/NaturalTransformation/Monoidal/Construction/MonoidValued.agda b/NaturalTransformation/Monoidal/Construction/MonoidValued.agda
new file mode 100644
index 0000000..2ef70d4
--- /dev/null
+++ b/NaturalTransformation/Monoidal/Construction/MonoidValued.agda
@@ -0,0 +1,110 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Categories.Category using (Category)
+open import Categories.Category.Cocartesian using (Cocartesian)
+open import Categories.Category.Cocartesian.Bundle using (CocartesianCategory)
+open import Categories.Category.Construction.Monoids using (Monoids)
+open import Categories.Category.Monoidal.Bundle using (MonoidalCategory)
+open import Categories.Functor using (Functor) renaming (_∘F_ to _∙_)
+open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper; _∘ˡ_)
+open import Level using (Level)
+
+-- A natural transformation between functors F, G
+-- from a cocartesian category 𝒞 to Monoids[S]
+-- can be turned into a monoidal natural transformation
+-- between monoidal functors F′ G′ from 𝒞 to S
+
+module NaturalTransformation.Monoidal.Construction.MonoidValued
+ {o o′ ℓ ℓ′ e e′ : Level}
+ {𝒞 : Category o ℓ e}
+ (𝒞-+ : Cocartesian 𝒞)
+ {S : MonoidalCategory o′ ℓ′ e′}
+ (let module S = MonoidalCategory S)
+ {M N : Functor 𝒞 (Monoids S.monoidal)}
+ (α : NaturalTransformation M N)
+ where
+
+import Categories.Category.Monoidal.Reasoning as ⊗-Reasoning
+import Categories.Morphism.Reasoning as ⇒-Reasoning
+import Categories.Object.Monoid as MonoidObject
+import Functor.Monoidal.Construction.MonoidValued 𝒞-+ {S = S} as FamilyOfMonoids
+
+open import Categories.Category using (module Definitions)
+open import Categories.Functor.Properties using ([_]-resp-square)
+open import Categories.NaturalTransformation.Monoidal using (module Lax)
+open import Data.Product using (_,_)
+open import Functor.Forgetful.Instance.Monoid S.monoidal using (Forget)
+
+private
+
+ module α = NaturalTransformation α
+ module M = Functor M
+ module N = Functor N
+ module 𝒞 = CocartesianCategory (record { cocartesian = 𝒞-+ })
+
+ open 𝒞 using (⊥; i₁; i₂; _+_)
+ open S
+
+ open MonoidObject monoidal using (Monoid; Monoid⇒)
+ open Definitions U using (CommutativeSquare)
+ open FamilyOfMonoids M using (F,⊗,ε)
+ open FamilyOfMonoids N using () renaming (F,⊗,ε to G,⊗,ε)
+ open Monoid using (μ; η)
+ open Monoid⇒
+ open ⇒-Reasoning U using (glue′)
+ open ⊗-Reasoning monoidal
+
+ F : Functor 𝒞 U
+ F = Forget ∙ M
+
+ G : Functor 𝒞 U
+ G = Forget ∙ N
+
+ β : NaturalTransformation F G
+ β = Forget ∘ˡ α
+
+ module F = Functor F
+ module G = Functor G
+ module β = NaturalTransformation β
+
+ module _ {A : 𝒞.Obj} where
+
+ εₘ : unit ⇒ F.₀ A
+ εₘ = η (M.₀ A)
+
+ ⊲ₘ : F.₀ A ⊗₀ F.₀ A ⇒ F.₀ A
+ ⊲ₘ = μ (M.₀ A)
+
+ εₙ : unit ⇒ G.₀ A
+ εₙ = η (N.₀ A)
+
+ ⊲ₙ : G.₀ A ⊗₀ G.₀ A ⇒ G.₀ A
+ ⊲ₙ = μ (N.₀ A)
+
+ ε-compat : β.η ⊥ ∘ εₘ ≈ εₙ
+ ε-compat = preserves-η (α.η ⊥)
+
+ module _ {n m : 𝒞.Obj} where
+
+ square : CommutativeSquare ⊲ₘ (β.η (n + m) ⊗₁ β.η (n + m)) (β.η (n + m)) ⊲ₙ
+ square = preserves-μ (α.η (n + m))
+
+ comm₁ : CommutativeSquare (F.₁ i₁) (β.η n) (β.η (n + m)) (G.₁ i₁)
+ comm₁ = β.commute i₁
+
+ comm₂ : CommutativeSquare (F.₁ i₂) (β.η m) (β.η (n + m)) (G.₁ i₂)
+ comm₂ = β.commute i₂
+
+ ⊗-homo-compat : CommutativeSquare (⊲ₘ ∘ F.₁ i₁ ⊗₁ F.₁ i₂) (β.η n ⊗₁ β.η m) (β.η (n + m)) (⊲ₙ ∘ G.₁ i₁ ⊗₁ G.₁ i₂)
+ ⊗-homo-compat = glue′ square (parallel comm₁ comm₂)
+
+open Lax.MonoidalNaturalTransformation hiding (ε-compat; ⊗-homo-compat)
+
+β,⊗,ε : Lax.MonoidalNaturalTransformation F,⊗,ε G,⊗,ε
+β,⊗,ε .U = β
+β,⊗,ε .isMonoidal = record
+ { ε-compat = ε-compat
+ ; ⊗-homo-compat = ⊗-homo-compat
+ }
+
+module β,⊗,ε = Lax.MonoidalNaturalTransformation β,⊗,ε
diff --git a/Object/Monoid/Commutative.agda b/Object/Monoid/Commutative.agda
new file mode 100644
index 0000000..8a8c756
--- /dev/null
+++ b/Object/Monoid/Commutative.agda
@@ -0,0 +1,48 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Categories.Category.Core using (Category)
+open import Categories.Category.Monoidal.Core using (Monoidal)
+open import Categories.Category.Monoidal.Symmetric using (Symmetric)
+open import Level using (Level; _⊔_)
+
+module Object.Monoid.Commutative {o ℓ e : Level} {𝒞 : Category o ℓ e} {M : Monoidal 𝒞} (sym : Symmetric M) where
+
+open import Categories.Object.Monoid M using (IsMonoid; Monoid; Monoid⇒)
+
+-- a commutative monoid object in a symmetric monoidal category
+
+open Category 𝒞
+open Symmetric sym using (module braiding; _⊗₁_)
+
+record IsCommutativeMonoid (M : Obj) : Set (ℓ ⊔ e) where
+
+ field
+ isMonoid : IsMonoid M
+
+ open IsMonoid isMonoid public
+
+ field
+ commutative : μ ≈ μ ∘ braiding.⇒.η _
+
+record CommutativeMonoid : Set (o ⊔ ℓ ⊔ e) where
+
+ field
+ Carrier : Obj
+ isCommutativeMonoid : IsCommutativeMonoid Carrier
+
+ open IsCommutativeMonoid isCommutativeMonoid public
+
+ monoid : Monoid
+ monoid = record { isMonoid = isMonoid }
+
+open CommutativeMonoid
+
+record CommutativeMonoid⇒ (M M′ : CommutativeMonoid) : Set (ℓ ⊔ e) where
+
+ module M = CommutativeMonoid M
+ module M′ = CommutativeMonoid M′
+
+ field
+ monoid⇒ : Monoid⇒ M.monoid M′.monoid
+
+ open Monoid⇒ monoid⇒ public
diff --git a/racket/circuits/expander.rkt b/racket/circuits/expander.rkt
new file mode 100644
index 0000000..66948c4
--- /dev/null
+++ b/racket/circuits/expander.rkt
@@ -0,0 +1,15 @@
+#lang racket/base
+
+;; Hypergraph module language
+(require "hypergraph.rkt")
+(provide #%app #%module-begin define new-node)
+
+;; Don't provide quote or new-edge
+
+;; Primitive cells (gates)
+(define (and a b c) (new-edge 'and a b c))
+(define (or a b c) (new-edge 'or a b c))
+(define (not a b) (new-edge 'not a b))
+(define (zero a) (new-edge 'zero a))
+(define (one a) (new-edge 'one a))
+(provide and or not zero one)
diff --git a/racket/circuits/hypergraph.rkt b/racket/circuits/hypergraph.rkt
new file mode 100644
index 0000000..e0496e4
--- /dev/null
+++ b/racket/circuits/hypergraph.rkt
@@ -0,0 +1,36 @@
+#lang racket
+
+;; Top-level syntax transformer
+;; displays hypergraph after evaluating module
+(define-syntax-rule (hypergraph-mb expr ...)
+ (#%module-begin
+ expr
+ ...
+ (displayln `(hypergraph ,node-num))
+ (for-each displayln graph)))
+
+;; Need application, quotation, and defines
+(provide quote define #%app)
+
+;; As well as #%module-begin implicit form
+(provide
+ (rename-out
+ [hypergraph-mb #%module-begin]))
+
+;; Internal state
+(define graph empty)
+(define node-num 0)
+
+;; Create a fresh node
+(define (new-node)
+ (let ([fresh-num node-num])
+ (set! node-num (+ node-num 1))
+ fresh-num))
+
+;; Create a new hyperedge
+(define (new-edge label . nodes)
+ (set! graph (cons (cons label nodes) graph)))
+
+;; User code constructs hypergraph using
+;; new-node and new-edge
+(provide new-node new-edge)
diff --git a/racket/circuits/lexer.rkt b/racket/circuits/lexer.rkt
new file mode 100644
index 0000000..5d3dc82
--- /dev/null
+++ b/racket/circuits/lexer.rkt
@@ -0,0 +1,33 @@
+#lang racket/base
+(require parser-tools/lex)
+(require (prefix-in : parser-tools/lex-sre))
+
+(define-tokens basic-tokens (ID))
+(define-empty-tokens punct-tokens (LPAREN RPAREN EOF COMMA SEMICOLON LBRACE RBRACE))
+(define-empty-tokens keyword-tokens (WIRE MODULE))
+
+(define-lex-abbrev ident-special-char (char-set "_|~+-^&#!"))
+
+;; Lexer for circuits DSL
+(define circuits-lexer
+ (lexer
+ [(eof) (token-EOF)]
+ ["(" (token-LPAREN)]
+ [")" (token-RPAREN)]
+ ["{" (token-LBRACE)]
+ ["}" (token-RBRACE)]
+ ["," (token-COMMA)]
+ [";" (token-SEMICOLON)]
+ ["wire" (token-WIRE)]
+ ["module" (token-MODULE)]
+ [(:: "//" (:* (:- any-char (char-set "\n"))) "\n")
+ (circuits-lexer input-port)]
+ [(::
+ (:or alphabetic ident-special-char)
+ (:* (:or alphabetic numeric ident-special-char)))
+ (token-ID (string->symbol lexeme))]
+ [whitespace (circuits-lexer input-port)]))
+
+(provide basic-tokens punct-tokens keyword-tokens)
+
+(provide circuits-lexer)
diff --git a/racket/circuits/main.rkt b/racket/circuits/main.rkt
new file mode 100644
index 0000000..6c12362
--- /dev/null
+++ b/racket/circuits/main.rkt
@@ -0,0 +1,5 @@
+#lang racket/base
+
+(module reader racket
+ (require "reader.rkt")
+ (provide read read-syntax))
diff --git a/racket/circuits/parser.rkt b/racket/circuits/parser.rkt
new file mode 100644
index 0000000..6287be3
--- /dev/null
+++ b/racket/circuits/parser.rkt
@@ -0,0 +1,35 @@
+#lang racket/base
+(require parser-tools/yacc)
+
+;; Needed for tokens
+(require "lexer.rkt")
+
+;; Parser for circuits DSL
+(define circuits-parser
+ (parser
+ [start decls]
+ [end EOF]
+ [error void]
+ [tokens basic-tokens punct-tokens keyword-tokens]
+ [grammar
+ (decls
+ [(decl) $1]
+ [(decl decls) (append $1 $2)])
+ (decl
+ [(wire-decl) $1]
+ [(module-decl) (list $1)]
+ [(module-inst-decl) (list $1)])
+ (idents
+ [(ID) (list $1)]
+ [(ID COMMA idents) (cons $1 $3)])
+ (wire-decl
+ [(WIRE idents SEMICOLON)
+ (map (lambda (x) `(define ,x (new-node))) $2)])
+ (module-decl
+ [(MODULE ID LPAREN idents RPAREN LBRACE decls RBRACE)
+ `(define (,$2 ,@$4) ,@$7)])
+ (module-inst-decl
+ [(ID LPAREN idents RPAREN SEMICOLON)
+ `(,$1 ,@$3)])]))
+
+(provide circuits-parser)
diff --git a/racket/circuits/reader.rkt b/racket/circuits/reader.rkt
new file mode 100644
index 0000000..66a8afa
--- /dev/null
+++ b/racket/circuits/reader.rkt
@@ -0,0 +1,17 @@
+#lang racket/base
+
+(require "lexer.rkt" "parser.rkt")
+
+(define (read in)
+ (syntax->datum (read-syntax #f in)))
+
+;; Parse the input and produce a module syntax object
+;; to be expanded using the circuits module language
+(define (read-syntax path input-port)
+ (define (tokenizer) (circuits-lexer input-port))
+ (define parse-tree (circuits-parser tokenizer))
+ (datum->syntax #f
+ `(module circuits-module circuits/expander
+ ,@parse-tree)))
+
+(provide read read-syntax)