aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Data/Circuit.agda10
-rw-r--r--Data/Hypergraph.agda27
-rw-r--r--Data/Hypergraph/Edge.agda7
-rw-r--r--Functor/Instance/FreeMonoid.agda64
-rw-r--r--Functor/Instance/List.agda14
-rw-r--r--Functor/Instance/Nat/Circ.agda32
-rw-r--r--Functor/Instance/Nat/Edge.agda5
-rw-r--r--NaturalTransformation/Instance/EmptyList.agda23
-rw-r--r--NaturalTransformation/Instance/ListAppend.agda46
9 files changed, 211 insertions, 17 deletions
diff --git a/Data/Circuit.agda b/Data/Circuit.agda
index 0be86f9..09dfb2e 100644
--- a/Data/Circuit.agda
+++ b/Data/Circuit.agda
@@ -12,15 +12,16 @@ open import Data.Fin using (Fin)
open import Data.Hypergraph {c} {ℓ} Gates
using
( Hypergraph
- ; mkHypergraph
; Hypergraphₛ
+ ; mkHypergraphₛ
+ ; List∘Edgeₛ
; module Edge
- ; normalize
+ ; mkHypergraph
; _≈_
; mk≈
)
open import Data.Nat using (ℕ)
-open import Relation.Binary using (Rel; Setoid)
+open import Relation.Binary using (Setoid)
open import Function.Bundles using (Func; _⟶ₛ_)
open List using (List)
@@ -35,6 +36,9 @@ map f (mkHypergraph edges) = mkHypergraph (List.map (Edge.map f) edges)
Circuitₛ : ℕ → Setoid c (c ⊔ ℓ)
Circuitₛ = Hypergraphₛ
+mkCircuitₛ : {n : ℕ} → List∘Edgeₛ n ⟶ₛ Circuitₛ n
+mkCircuitₛ = mkHypergraphₛ
+
open Func
open Edge.Sort using (sort)
diff --git a/Data/Hypergraph.agda b/Data/Hypergraph.agda
index 2e8498c..18a259b 100644
--- a/Data/Hypergraph.agda
+++ b/Data/Hypergraph.agda
@@ -6,9 +6,32 @@ open import Data.Hypergraph.Label using (HypergraphLabel)
module Data.Hypergraph {c ℓ : Level} (HL : HypergraphLabel) where
+import Data.List.Relation.Binary.Pointwise as PW
+import Data.Hypergraph.Edge HL as HypergraphEdge
+import Function.Reasoning as →-Reasoning
+import Relation.Binary.PropositionalEquality as ≡
+
open import Data.Hypergraph.Base {c} HL public
open import Data.Hypergraph.Setoid {c} {ℓ} HL public
-
-import Data.Hypergraph.Edge HL as HypergraphEdge
+open import Data.Nat using (ℕ)
+open import Function using (_∘_; _⟶ₛ_; Func)
+open import Level using (0ℓ)
+open import Relation.Binary using (Setoid)
module Edge = HypergraphEdge
+
+open Edge using (Edgeₛ; ≈-Edge⇒≡)
+open Func
+
+List∘Edgeₛ : (n : ℕ) → Setoid 0ℓ 0ℓ
+List∘Edgeₛ = PW.setoid ∘ Edgeₛ
+
+mkHypergraphₛ : {n : ℕ} → List∘Edgeₛ n ⟶ₛ Hypergraphₛ n
+mkHypergraphₛ .to = mkHypergraph
+mkHypergraphₛ {n} .cong ≋-edges = ≋-edges
+ |> PW.map ≈-Edge⇒≡
+ |> PW.Pointwise-≡⇒≡
+ |> ≡.cong mkHypergraph
+ |> Setoid.reflexive (Hypergraphₛ n)
+ where
+ open →-Reasoning
diff --git a/Data/Hypergraph/Edge.agda b/Data/Hypergraph/Edge.agda
index 7d0fa7c..ee32393 100644
--- a/Data/Hypergraph/Edge.agda
+++ b/Data/Hypergraph/Edge.agda
@@ -25,8 +25,7 @@ open import Data.String using (String; _<+>_)
open import Data.Vec.Relation.Binary.Pointwise.Inductive using (≡⇒Pointwise-≡; Pointwise-≡⇒≡)
open import Data.Vec.Show using () renaming (show to showVec)
open import Level using (0ℓ)
-open import Relation.Binary.Bundles using (DecTotalOrder; StrictTotalOrder)
-open import Relation.Binary.Structures using (IsEquivalence)
+open import Relation.Binary using (Setoid; DecTotalOrder; StrictTotalOrder; IsEquivalence)
open import Relation.Nullary using (¬_)
@@ -89,7 +88,6 @@ record ≈-Edge {n : ℕ} (E E′ : Edge n) : Set where
module i≈j = ≈-Edge i≈j
module j≈k = ≈-Edge j≈k
-open import Relation.Binary using (IsEquivalence)
≈-Edge-IsEquivalence : {v : ℕ} → IsEquivalence (≈-Edge {v})
≈-Edge-IsEquivalence = record
{ refl = ≈-Edge-refl
@@ -345,3 +343,6 @@ open module STOP′ {v} = STOP (strictTotalOrder {v}) using (decTotalOrder) publ
module Sort {v} = ListSort (decTotalOrder {v})
open Sort using (sort) public
+
+Edgeₛ : (v : ℕ) → Setoid 0ℓ 0ℓ
+Edgeₛ v = record { isEquivalence = ≈-Edge-IsEquivalence {v} }
diff --git a/Functor/Instance/FreeMonoid.agda b/Functor/Instance/FreeMonoid.agda
new file mode 100644
index 0000000..bb26fd4
--- /dev/null
+++ b/Functor/Instance/FreeMonoid.agda
@@ -0,0 +1,64 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Level using (Level; _⊔_)
+
+module Functor.Instance.FreeMonoid {c ℓ : Level} where
+
+import Categories.Object.Monoid as MonoidObject
+
+open import Categories.Category.Construction.Monoids using (Monoids)
+open import Categories.Category.Instance.Setoids using (Setoids)
+open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory)
+open import Categories.Functor using (Functor)
+open import Categories.NaturalTransformation using (NaturalTransformation)
+open import Category.Instance.Setoids.SymmetricMonoidal {c} {c ⊔ ℓ} using (Setoids-×)
+open import Data.List.Properties using (++-assoc; ++-identityˡ; ++-identityʳ)
+open import Data.Product using (_,_)
+open import Function using (_⟶ₛ_)
+open import Functor.Instance.List {c} {ℓ} using (List)
+open import NaturalTransformation.Instance.EmptyList {c} {ℓ} using (⊤⇒[])
+open import NaturalTransformation.Instance.ListAppend {c} {ℓ} using (++)
+open import Relation.Binary using (Setoid)
+open import Relation.Binary.PropositionalEquality as ≡ using (_≡_)
+
+module List = Functor List
+module Setoids-× = SymmetricMonoidalCategory Setoids-×
+module ++ = NaturalTransformation ++
+module ⊤⇒[] = NaturalTransformation ⊤⇒[]
+
+open Functor
+open MonoidObject Setoids-×.monoidal using (Monoid; IsMonoid; Monoid⇒)
+open IsMonoid
+
+module _ (X : Setoid c ℓ) where
+
+ private
+ module X = Setoid X
+ module ListX = Setoid (List.₀ X)
+
+ ListMonoid : IsMonoid (List.₀ X)
+ ListMonoid .μ = ++.η X
+ ListMonoid .η = ⊤⇒[].η X
+ ListMonoid .assoc {(x , y) , z} = ListX.reflexive (++-assoc x y z)
+ ListMonoid .identityˡ {_ , x} = ListX.reflexive (++-identityˡ x)
+ ListMonoid .identityʳ {x , _} = ListX.reflexive (≡.sym (++-identityʳ x))
+
+FreeMonoid₀ : (X : Setoid c ℓ) → Monoid
+FreeMonoid₀ X = record { isMonoid = ListMonoid X }
+
+FreeMonoid₁
+ : {A B : Setoid c ℓ}
+ (f : A ⟶ₛ B)
+ → Monoid⇒ (FreeMonoid₀ A) (FreeMonoid₀ B)
+FreeMonoid₁ f = record
+ { arr = List.₁ f
+ ; preserves-μ = λ {x,y} → ++.sym-commute f {x,y}
+ ; preserves-η = ⊤⇒[].commute f
+ }
+
+FreeMonoid : Functor (Setoids c ℓ) (Monoids Setoids-×.monoidal)
+FreeMonoid .F₀ = FreeMonoid₀
+FreeMonoid .F₁ = FreeMonoid₁
+FreeMonoid .identity {X} = List.identity {X}
+FreeMonoid .homomorphism {X} {Y} {Z} {f} {g} = List.homomorphism {X} {Y} {Z} {f} {g}
+FreeMonoid .F-resp-≈ {A} {B} {f} {g} = List.F-resp-≈ {A} {B} {f} {g}
diff --git a/Functor/Instance/List.agda b/Functor/Instance/List.agda
index 05db349..b40670d 100644
--- a/Functor/Instance/List.agda
+++ b/Functor/Instance/List.agda
@@ -16,7 +16,7 @@ open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_)
open import Relation.Binary using (Setoid)
open Functor
-open Setoid
+open Setoid using (reflexive)
open Func
private
@@ -36,15 +36,19 @@ mapₛ : A ⟶ₛ B → Listₛ A ⟶ₛ Listₛ B
mapₛ f .to = List.map (to f)
mapₛ f .cong = PW.map⁺ (to f) (to f) ∘ PW.map (cong f)
-map-id : (xs : ∣ Listₛ A ∣) → PW.Pointwise (_≈_ A) (List.map id xs) xs
-map-id {A} = PW.map (reflexive A) ∘ PW.≡⇒Pointwise-≡ ∘ ListProps.map-id
+map-id
+ : (xs : ∣ Listₛ A ∣)
+ → (open Setoid (Listₛ A))
+ → List.map id xs ≈ xs
+map-id {A} = reflexive (Listₛ A) ∘ ListProps.map-id
List-homo
: (f : A ⟶ₛ B)
(g : B ⟶ₛ C)
→ (xs : ∣ Listₛ A ∣)
- → PW.Pointwise (_≈_ C) (List.map (to g ∘ to f) xs) (List.map (to g) (List.map (to f) xs))
-List-homo {C = C} f g = PW.map (reflexive C) ∘ PW.≡⇒Pointwise-≡ ∘ ListProps.map-∘
+ → (open Setoid (Listₛ C))
+ → List.map (to g ∘ to f) xs ≈ List.map (to g) (List.map (to f) xs)
+List-homo {C = C} f g = reflexive (Listₛ C) ∘ ListProps.map-∘
List : Functor (Setoids c ℓ) (Setoids c (c ⊔ ℓ))
List .F₀ = Listₛ
diff --git a/Functor/Instance/Nat/Circ.agda b/Functor/Instance/Nat/Circ.agda
new file mode 100644
index 0000000..0f18c4c
--- /dev/null
+++ b/Functor/Instance/Nat/Circ.agda
@@ -0,0 +1,32 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Level using (Level; _⊔_; 0ℓ)
+
+module Functor.Instance.Nat.Circ {c ℓ : Level} where
+
+open import Data.Circuit {c} {ℓ} using (Circuitₛ; mapₛ; mkCircuitₛ)
+open import Data.Nat using (ℕ)
+open import Relation.Binary using (Setoid)
+open import Function using (Func)
+open import Categories.Functor using (Functor; _∘F_)
+open import Categories.Category.Instance.Setoids using (Setoids)
+open import Categories.Category.Instance.Nat using (Nat)
+open import Data.Fin using (Fin)
+open import Data.Circuit.Gate using (Gates)
+open import Functor.Instance.Nat.Edge Gates using (Edge)
+open import Functor.Instance.List using (List)
+
+List∘Edge : Functor Nat (Setoids 0ℓ 0ℓ)
+List∘Edge = List ∘F Edge
+
+module List∘Edge = Functor List∘Edge
+
+open Func
+open Functor
+
+Circ : Functor Nat (Setoids c (c ⊔ ℓ))
+Circ .F₀ = Circuitₛ
+Circ .F₁ = mapₛ
+Circ .identity = cong mkCircuitₛ List∘Edge.identity
+Circ .homomorphism = cong mkCircuitₛ List∘Edge.homomorphism
+Circ .F-resp-≈ f≗g = cong mkCircuitₛ (List∘Edge.F-resp-≈ f≗g)
diff --git a/Functor/Instance/Nat/Edge.agda b/Functor/Instance/Nat/Edge.agda
index ee54f2e..618807d 100644
--- a/Functor/Instance/Nat/Edge.agda
+++ b/Functor/Instance/Nat/Edge.agda
@@ -11,7 +11,7 @@ open import Categories.Category.Instance.Nat using (Nat)
open import Categories.Category.Instance.Setoids using (Setoids)
open import Categories.Functor using (Functor)
open import Data.Fin using (Fin)
-open import Data.Hypergraph.Edge HL as Edge using (≈-Edge-IsEquivalence; map; ≈-Edge)
+open import Data.Hypergraph.Edge HL as Edge using (≈-Edge-IsEquivalence; map; ≈-Edge; Edgeₛ)
open import Data.Nat using (ℕ)
open import Data.Vec.Relation.Binary.Equality.Cast using (≈-cong′; ≈-reflexive)
open import Level using (0ℓ)
@@ -27,9 +27,6 @@ open Functor
open Setoid
open ≈-Edge
-Edgeₛ : (v : ℕ) → Setoid 0ℓ 0ℓ
-Edgeₛ v = record { isEquivalence = ≈-Edge-IsEquivalence {v} }
-
Edge₁ : {n m : ℕ} → (Fin n → Fin m) → Edgeₛ n ⟶ₛ Edgeₛ m
Edge₁ f .to = map f
Edge₁ f .cong x≈y = record
diff --git a/NaturalTransformation/Instance/EmptyList.agda b/NaturalTransformation/Instance/EmptyList.agda
new file mode 100644
index 0000000..9a558a2
--- /dev/null
+++ b/NaturalTransformation/Instance/EmptyList.agda
@@ -0,0 +1,23 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Level using (Level)
+
+module NaturalTransformation.Instance.EmptyList {c ℓ : Level} where
+
+import Function.Construct.Constant as Const
+
+open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
+open import Categories.Functor using (Functor)
+open import Categories.Category.Instance.SingletonSet using (SingletonSetoid)
+open import Categories.Functor.Construction.Constant using (const)
+open import Data.List using ([])
+open import Functor.Instance.List {c} {ℓ} using (List)
+open import Relation.Binary using (Setoid)
+
+module List = Functor List
+
+⊤⇒[] : NaturalTransformation (const SingletonSetoid) List
+⊤⇒[] = ntHelper record
+ { η = λ X → Const.function SingletonSetoid (List.₀ X) []
+ ; commute = λ {_} {B} f → Setoid.refl (List.₀ B)
+ }
diff --git a/NaturalTransformation/Instance/ListAppend.agda b/NaturalTransformation/Instance/ListAppend.agda
new file mode 100644
index 0000000..05a31f5
--- /dev/null
+++ b/NaturalTransformation/Instance/ListAppend.agda
@@ -0,0 +1,46 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Level using (Level; _⊔_)
+
+module NaturalTransformation.Instance.ListAppend {c ℓ : Level} where
+
+open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
+open import Categories.Category.Product using (_※_)
+open import Categories.Category.BinaryProducts using (module BinaryProducts)
+open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian)
+open import Categories.Category.Cartesian using (Cartesian)
+open import Categories.Functor using (Functor; _∘F_)
+open import Data.List using (_++_; map)
+open import Data.List.Properties using (map-++)
+open import Data.List.Relation.Binary.Pointwise using (++⁺)
+open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
+open import Data.Product using (_,_)
+open import Functor.Instance.List {c} {ℓ} using (List)
+open import Function using (Func; _⟶ₛ_)
+open import Relation.Binary using (Setoid)
+
+module List = Functor List
+
+open Cartesian (Setoids-Cartesian {c} {c ⊔ ℓ}) using (products)
+open BinaryProducts products using (-×-)
+open Func
+
+++ₛ : {X : Setoid c ℓ} → List.₀ X ×ₛ List.₀ X ⟶ₛ List.₀ X
+++ₛ .to (xs , ys) = xs ++ ys
+++ₛ .cong (≈xs , ≈ys) = ++⁺ ≈xs ≈ys
+
+map-++ₛ
+ : {A B : Setoid c ℓ}
+ (f : Func A B)
+ (xs ys : Data.List.List (Setoid.Carrier A))
+ → (open Setoid (List.₀ B))
+ → map (to f) xs ++ map (to f) ys ≈ map (to f) (xs ++ ys)
+map-++ₛ {_} {B} f xs ys = ListB.sym (ListB.reflexive (map-++ (to f) xs ys))
+ where
+ module ListB = Setoid (List.₀ B)
+
+++ : NaturalTransformation (-×- ∘F (List ※ List)) List
+++ = ntHelper record
+ { η = λ X → ++ₛ {X}
+ ; commute = λ { {A} {B} f {xs , ys} → map-++ₛ f xs ys }
+ }