diff options
-rw-r--r-- | FinMerge.agda | 39 | ||||
-rw-r--r-- | Util.agda | 17 |
2 files changed, 37 insertions, 19 deletions
diff --git a/FinMerge.agda b/FinMerge.agda index f237a53..2e0ad03 100644 --- a/FinMerge.agda +++ b/FinMerge.agda @@ -3,7 +3,7 @@ module FinMerge where open import Data.Empty using (⊥-elim) open import Data.Fin using (Fin; fromℕ<; toℕ; #_) open import Data.Fin.Properties using (¬Fin0) -open import Data.Nat using (ℕ; _+_; _≤_; _<_ ; z<s) +open import Data.Nat using (ℕ; _+_; _≤_; _<_ ; z<s; s≤s) open import Data.Nat.Properties using (≤-trans) open import Data.Sum.Base using (_⊎_) open import Data.Product using (_×_; _,_; Σ-syntax; map₂) @@ -12,23 +12,9 @@ open import Relation.Binary.PropositionalEquality.Properties using (module ≡-R open import Function using (id ; _∘_ ; _$_) open import Data.Maybe.Base using (Maybe; just; nothing; fromMaybe) -open import Util using (_<_<_; _<_≤_; toℕ<) +open import Util using (_<_<_; _<_≤_; toℕ<; Ordering; less; equal; greater; compare) -data Ordering {n : ℕ} : Fin n → Fin n → Set where - less : ∀ {i j} → toℕ i < toℕ j < n → Ordering i j - equal : ∀ {i j} → toℕ i ≡ toℕ j → Ordering i j - greater : ∀ {i j} → toℕ j < toℕ i < n → Ordering i j - -compare : ∀ {n : ℕ} (i j : Fin n) → Ordering i j -compare Fin.zero Fin.zero = equal refl -compare Fin.zero j@(Fin.suc _) = less (z<s , toℕ< j) -compare i@(Fin.suc _) Fin.zero = greater (z<s , toℕ< i) -compare (Fin.suc i) (Fin.suc j) with compare i j -... | less (i<j , j<n) = less (_≤_.s≤s i<j , _≤_.s≤s j<n) -... | equal i≡j = equal (cong ℕ.suc i≡j) -... | greater (j<i , i<n) = greater (_≤_.s≤s j<i , _≤_.s≤s i<n) - private variable m n : ℕ @@ -51,6 +37,23 @@ glue {ℕ.suc _} {ℕ.zero} f _ = ⊥-elim (¬Fin0 (f (# 0))) glue {ℕ.suc _} {ℕ.suc _} f g with glue (f ∘ Fin.suc) (g ∘ Fin.suc) ... | ℕ.zero , h = ⊥-elim (¬Fin0 (h (# 0))) ... | ℕ.suc x , h with compare (h (f (# 0))) (h (g (# 0))) -... | less (f0<g0 , _≤_.s≤s g0<n) = x , merge (f0<g0 , g0<n) ∘ h +... | less (f0<g0 , s≤s g0<n) = x , merge (f0<g0 , g0<n) ∘ h ... | equal f0≡g0 = ℕ.suc x , h -... | greater (g0<f0 , _≤_.s≤s f0<n) = x , merge (g0<f0 , f0<n) ∘ h +... | greater (g0<f0 , s≤s f0<n) = x , merge (g0<f0 , f0<n) ∘ h + +-- Glue together the image of two finite-set functions, iterative +glue-iter + : {y : ℕ} + → (Fin m → Fin y) + → (Fin m → Fin y) + → (Fin n → Fin y) + → Σ[ x ∈ ℕ ] (Fin n → Fin x) +glue-iter {ℕ.zero} {n} {y} f g h = y , h +glue-iter {ℕ.suc m} {n} {y} f g h with compare (f (# 0)) (g (# 0)) +... | less (f0<g0 , s≤s g0<n) = + let p = merge (f0<g0 , g0<n) in + glue-iter (p ∘ f ∘ Fin.suc) (p ∘ g ∘ Fin.suc) (p ∘ h) +... | equal _ = glue-iter (f ∘ Fin.suc) (g ∘ Fin.suc) h +... | greater (g0<f0 , s≤s f0<n) = + let p = merge (g0<f0 , f0<n) in + glue-iter (p ∘ f ∘ Fin.suc) (p ∘ g ∘ Fin.suc) (p ∘ h) @@ -2,7 +2,8 @@ module Util where open import Data.Fin using (Fin; toℕ) open import Data.Nat using (ℕ; _≤_; _<_ ; z<s; s≤s) -open import Data.Product using (_×_) +open import Data.Product using (_×_; _,_) +open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong) _<_≤_ : ℕ → ℕ → ℕ → Set @@ -14,3 +15,17 @@ _<_<_ i j k = (i < j) × (j < k) toℕ< : {n : ℕ} → (i : Fin n) → toℕ i < n toℕ< Fin.zero = z<s toℕ< (Fin.suc i) = s≤s (toℕ< i) + +data Ordering {n : ℕ} : Fin n → Fin n → Set where + less : ∀ {i j} → toℕ i < toℕ j < n → Ordering i j + equal : ∀ {i j} → i ≡ j → Ordering i j + greater : ∀ {i j} → toℕ j < toℕ i < n → Ordering i j + +compare : ∀ {n : ℕ} (i j : Fin n) → Ordering i j +compare Fin.zero Fin.zero = equal refl +compare Fin.zero j@(Fin.suc _) = less (z<s , toℕ< j) +compare i@(Fin.suc _) Fin.zero = greater (z<s , toℕ< i) +compare (Fin.suc i) (Fin.suc j) with compare i j +... | less (i<j , j<n) = less (_≤_.s≤s i<j , _≤_.s≤s j<n) +... | equal i≡j = equal (cong Fin.suc i≡j) +... | greater (j<i , i<n) = greater (_≤_.s≤s j<i , _≤_.s≤s i<n) |